1
|
Lee H, Nakahashi-Oda C, Lyu W, Tanaka M, Rai A, Muramoto Y, Wang Y, Mizuno S, Shibuya K, Shibuya A. Inhibitory immunoreceptors CD300a and CD300lf cooperate to regulate mast cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae030. [PMID: 40073110 DOI: 10.1093/jimmun/vkae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/07/2024] [Indexed: 03/14/2025]
Abstract
Mast cells (MCs) play a central role in allergic immune responses. MC activation is regulated by several inhibitory immunoreceptors. The CD300 family members CD300a and CD300lf recognize phospholipid ligands and inhibit the FcεRI-mediated activating signal in MCs. While CD300a binds to phosphatidylserine (PS) to inhibit MCs activation, CD300lf function is less clear due to its ability to bind with ceramide and PS. Moreover, it also remains blurring whether CD300a and CD300lf function independently, cooperatively, or by interfering with each other in regulating MC activation. Using imaging and flow cytometric analyses of bone marrow-derived cultured MCs (BMMCs) from wild-type (WT), Cd300a-/-, Cd300lf-/-, and Cd300a-/-Cd300lf-/- mice, we show that CD300lf and CD300a colocalized with PS externalized to the outer leaflet of the plasma membrane with a polar formation upon activation, and CD300lf cooperates with CD300a to inhibit BMMCs activation. CD300lf also colocalized with extracellular ceramide in addition to the internal PS on the cell surface, which results in stronger inhibition of MC activation than CD300lf binding to PS alone. Similarly, although both Cd300a-/- and Cd300lf-/- mice showed decreased rectal temperatures compared with WT mice in the model of passive systemic anaphylaxis, Cd300a-/-Cd300lf-/- mice showed lower rectal temperature than either Cd300a-/- or Cd300lf-/- mice. Our results demonstrate the cooperativity of multiple inhibitory receptors expressed on MCs and their regulatory functions upon binding to respective ligands.
Collapse
Affiliation(s)
- Hanbin Lee
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wenxin Lyu
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mamoru Tanaka
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Rai
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoichi Muramoto
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yaqiu Wang
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Abe F, Nakahashi-Oda C, Lee H, Tran-Duc BD, Shibuya K, Shibuya A. A Humanized Monoclonal Antibody Against CD300A Ameliorates Acute Ischemic Stroke in Humanized Mice. Monoclon Antib Immunodiagn Immunother 2025; 44:2-7. [PMID: 39804190 DOI: 10.1089/mab.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
CD300a and CD300A, among the CD300 immunoglobulin (Ig)-like receptor family members in mice and humans, respectively, are expressed on myeloid cell lineage. The interaction of CD300a and CD300A with their ligands phosphatidylserine and phosphatidylethanolamine, respectively, exposed on the plasma membrane of dead cells mediate an inhibitory signal in myeloid cells. We previously reported that a neutralizing antimouse CD300a monoclonal antibody (mAb) enhanced efferocytosis by macrophages and ameliorated acute ischemic stroke (AIS) in mice. Unlike mouse CD300a, human CD300A has a single nucleotide polymorphism (SNP, rs2272111) encoding a nonsense mutation of glutamine (CD300AQ111) instead of arginine (CD300AR111) at residue 111. In this study, we show that the SNP frequency is 32%-35% for the heterozygous allele and 4%-5% for the homozygous alleles, except Africa. In addition, we developed a humanized antihuman CD300A mAb, named TNAX103, that recognizes both CD300AR111 and CD300AQ111. We show that TNAX103 interfered with the binding of CD300AR111 and CD300AQ111 to dead cells. In addition, the injection of TNAX103 decreased neurological scores and prolonged survival in humanized mice after middle cerebral artery occlusion. These results suggest that TNAX103 may be potentially useful for the treatment of patients expressing either CD300AR111 or CD300AQ111 with AIS.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Ischemic Stroke/immunology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/antagonists & inhibitors
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Polymorphism, Single Nucleotide
- Disease Models, Animal
- Antigens, CD
Collapse
Affiliation(s)
- Fumie Abe
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- TNAX Biopharma Corporation, Tsukuba, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, Japan
| | - Hanbin Lee
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Bao Duy Tran-Duc
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Elst J, De Puysseleyr LP, Ebo DG, Faber MA, Van Gasse AL, van der Poorten MLM, Decuyper II, Bridts CH, Mertens C, Van Houdt M, Hagendorens MM, De Clerck LS, Verlinden A, Vermeulen K, Maes MB, Berneman ZN, Valent P, Sabato V. Overexpression of FcεRI on Bone Marrow Mast Cells, but Not MRGPRX2, in Clonal Mast Cell Disorders With Wasp Venom Anaphylaxis. Front Immunol 2022; 13:835618. [PMID: 35281031 PMCID: PMC8914951 DOI: 10.3389/fimmu.2022.835618] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Background Uncertainties remain about the molecular mechanisms governing clonal mast cell disorders (CMCD) and anaphylaxis. Objective This study aims at comparing the burden, phenotype and behavior of mast cells (MCs) and basophils in patients with CMCD with wasp venom anaphylaxis (CMCD/WVA+), CMCD patients without anaphylaxis (CMCD/ANA-), patients with an elevated baseline serum tryptase (EBST), patients with wasp venom anaphylaxis without CMCD (WVA+) and patients with a non-mast cell haematological pathology (NMHP). Methods This study included 20 patients with CMCD/WVA+, 24 with CMCD/ANA-, 19 with WVA+, 6 with EBST and 5 with NMHP. We immunophenotyped MCs and basophils and compared baseline serum tryptase (bST) and both total and venom specific IgE in the different groups. For basophil studies, 13 healthy controls were also included. Results Higher levels of bST were found in CMCD patients with wasp venom anaphylaxis, CMCD patients without anaphylaxis and EBST patients. Total IgE levels were highest in patients with wasp venom anaphylaxis with and without CMCD. Bone marrow MCs of patients with CMCD showed lower CD117 expression and higher expression of CD45, CD203c, CD63, CD300a and FcεRI. Within the CMCD population, patients with wasp venom anaphylaxis showed a higher expression of FcεRI as compared to patients without anaphylaxis. Expression of MRGPRX2 on MCs did not differ between the study populations. Basophils are phenotypically and functionally comparable between the different patient populations. Conclusion Patients with CMCD show an elevated burden of aberrant activated MCs with a significant overexpression of FcεRI in patients with a wasp venom anaphylaxis.
Collapse
Affiliation(s)
- Jessy Elst
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Leander P De Puysseleyr
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Didier G Ebo
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium.,Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| | - Margaretha A Faber
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Athina L Van Gasse
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Marie-Line M van der Poorten
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Ine I Decuyper
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Chris H Bridts
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Christel Mertens
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Michel Van Houdt
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Margo M Hagendorens
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Luc S De Clerck
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Anke Verlinden
- Department of Haematology, Antwerp University Hospital, Antwerp, Belgium
| | - Katrien Vermeulen
- Department of Clinical Biology, Antwerp University Hospital, Antwerp, Belgium
| | - Marie-Berthe Maes
- Department of Clinical Biology, Antwerp University Hospital, Antwerp, Belgium
| | - Zwi N Berneman
- Department of Haematology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Vito Sabato
- Department of Immunology, Allergology, Rheumatology and the Infla-Med Centre of Excellence, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Immunology, Allergology, Rheumatology, Antwerp University Hospital, Antwerp, Belgium.,Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| |
Collapse
|
4
|
Nakazawa Y, Nishiyama N, Koizumi H, Kanemaru K, Nakahashi-Oda C, Shibuya A. Tumor-derived extracellular vesicles regulate tumor-infiltrating regulatory T cells via the inhibitory immunoreceptor CD300a. eLife 2021; 10:61999. [PMID: 34751648 PMCID: PMC8577836 DOI: 10.7554/elife.61999] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/26/2021] [Indexed: 12/21/2022] Open
Abstract
Although tumor-infiltrating regulatory T (Treg) cells play a pivotal role in tumor immunity, how Treg cell activation are regulated in tumor microenvironments remains unclear. Here, we found that mice deficient in the inhibitory immunoreceptor CD300a on their dendritic cells (DCs) have increased numbers of Treg cells in tumors and greater tumor growth compared with wild-type mice after transplantation of B16 melanoma. Pharmacological impairment of extracellular vesicle (EV) release decreased Treg cell numbers in CD300a-deficient mice. Coculture of DCs with tumor-derived EV (TEV) induced the internalization of CD300a and the incorporation of EVs into endosomes, in which CD300a inhibited TEV-mediated TLR3–TRIF signaling for activation of the IFN-β-Treg cells axis. We also show that higher expression of CD300A was associated with decreased tumor-infiltrating Treg cells and longer survival time in patients with melanoma. Our findings reveal the role of TEV and CD300a on DCs in Treg cell activation in the tumor microenvironment.
Collapse
Affiliation(s)
- Yuta Nakazawa
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctoral Program of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nanako Nishiyama
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctoral Program of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Koizumi
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctoral Program of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazumasa Kanemaru
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Nakahashi-Oda C, Fujiyama S, Nakazawa Y, Kanemaru K, Wang Y, Lyu W, Shichita T, Kitaura J, Abe F, Shibuya A. CD300a blockade enhances efferocytosis by infiltrating myeloid cells and ameliorates neuronal deficit after ischemic stroke. Sci Immunol 2021; 6:eabe7915. [PMID: 34652960 DOI: 10.1126/sciimmunol.abe7915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoshi Fujiyama
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Doctoral Program of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuta Nakazawa
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Doctoral Program of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazumasa Kanemaru
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yaqiu Wang
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Wenxin Lyu
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Jiro Kitaura
- The Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Fumie Abe
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,TNAX Biopharma Corporation, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
6
|
Positive and negative roles of lipids in mast cells and allergic responses. Curr Opin Immunol 2021; 72:186-195. [PMID: 34174696 DOI: 10.1016/j.coi.2021.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/15/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022]
Abstract
Mast cells are a central immune cell population that are crucial in allergic responses. They secrete granule contents and cytokines and produce a panel of lipid mediators in response to FcεRI-dependent or independent stimuli. Leukotrienes and prostaglandins derived from ω6 arachidonic acid, or specialized pro-resolving lipid mediators derived from ω3 eicosapentaenoic and docosahexaenoic acids, exert pleiotropic effects on various cells in the tissue microenvironment, thereby positively or negatively regulating allergic responses. Mast cells also express the inhibitory receptors CD300a and CD300f, which recognize structural lipids. CD300a or CD300f binding to externalized phosphatidylserine or extracellular ceramides, respectively, inhibits FcεRI-mediated mast cell activation. The inhibitory CD300-lipid axis downregulates IgE-driven, mast cell-dependent type I hypersensitivity through different mechanisms. Herein, we provide an overview of our current understanding of the biological roles of lipids in mast cell-dependent allergic responses.
Collapse
|
7
|
Cao Y, Ao T, Wang X, Wei W, Fan J, Tian X. CD300a and CD300f molecules regulate the function of leukocytes. Int Immunopharmacol 2021; 93:107373. [PMID: 33548578 DOI: 10.1016/j.intimp.2021.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The CD300 molecule family is a type I transmembrane glycoprotein expressed on cell membrane of human and other mammals, and of its eight members, only CD300a and CD300f are classified as inhibitory receptors. CD300a and CD300f play an important role in regulating the function of leukocytes, such as activation, proliferation, differentiation, migration and immunity function. They are considered as potential targets for studying the development and progression of inflammation, infection and other diseases. Here, we review the expression and regulatory mechanisms of CD300a and CD300f on leukocytes, as well as their effects on relevant diseases.
Collapse
Affiliation(s)
- Yue Cao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Tianrang Ao
- Department of Cardiology, Peking Union Medical College Hospital, Tsinghua University, Beijing 100730, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Wumei Wei
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
8
|
Strategies for Mast Cell Inhibition in Food Allergy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:719-731. [PMID: 33380934 PMCID: PMC7757070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mast cells are tissue resident allergic effector cells that drive IgE-mediated food allergies. There are several steps leading to mast cell activation in the context of allergic disease that can be targeted to prevent mast cell activation and degranulation. These include blocking IgE-FcεRI crosslinking and type 2 cytokine receptor activation; modulating cell-surface neural chemical receptors; stabilizing mast cell membranes to prevent co-localization of activating receptors; impeding intracellular signaling; and engaging cell surface inhibitory receptors. This review highlights several ITIM-containing inhibitory mast cell surface receptors that could serve as pharmaceutical targets to prevent mast cell activation and degranulation in the context of food allergy. When activated, these ITIM-containing inhibitory receptors recruit the phosphatases SHP-1, SHP-2, and/or SHIP to dephosphorylate the tyrosine kinases responsible for activation signals downstream of the IgE-FcεRI complex. We describe several members of the Ig and Ig-like inhibitory receptor and C-type lectin inhibitory receptor superfamilies. Fundamental studies exploring the behavior of these receptors within the context of experimental food allergy models are needed. A deeper understanding of how these receptors modulate mast cell-driven food allergic responses will shape future strategies to harness these inhibitory receptors to treat food allergy.
Collapse
|
9
|
Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, Sotlar K, Sperr WR, Escribano L, George TI, Kluin-Nelemans HC, Ustun C, Triggiani M, Brockow K, Gotlib J, Orfao A, Kovanen PT, Hadzijusufovic E, Sadovnik I, Horny HP, Arock M, Schwartz LB, Austen KF, Metcalfe DD, Galli SJ. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Am J Cancer Res 2020; 10:10743-10768. [PMID: 32929378 PMCID: PMC7482799 DOI: 10.7150/thno.46719] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs.
Collapse
|
10
|
Vitallé J, Terrén I, Orrantia A, Bilbao A, Gamboa PM, Borrego F, Zenarruzabeitia O. The Expression and Function of CD300 Molecules in the Main Players of Allergic Responses: Mast Cells, Basophils and Eosinophils. Int J Mol Sci 2020; 21:ijms21093173. [PMID: 32365988 PMCID: PMC7247439 DOI: 10.3390/ijms21093173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Allergy is the host immune response against non-infectious substances called allergens. The prevalence of allergic diseases is increasing worldwide. However, while some drugs counteract the symptomatology caused by allergic reactions, no completely effective treatments for allergic diseases have been developed yet. In this sense, the ability of surface activating and inhibitory receptors to modulate the function of the main effector cells of allergic responses makes these molecules potential pharmacological targets. The CD300 receptor family consists of members with activating and inhibitory capabilities mainly expressed on the surface of immune cells. Multiple studies in the last few years have highlighted the importance of CD300 molecules in several pathological conditions. This review summarizes the literature on CD300 receptor expression, regulation and function in mast cells, basophils and eosinophils, the main players of allergic responses. Moreover, we review the involvement of CD300 receptors in the pathogenesis of certain allergic diseases, as well as their prospective use as therapeutic targets for the treatment of IgE-dependent allergic responses.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
| | - Agurtzane Bilbao
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Pediatrics Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Pedro M. Gamboa
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Allergology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (J.V.); (I.T.); (A.O.); (A.B.); (P.M.G.); (F.B.)
- Correspondence: ; Tel.: +34-699-227-735
| |
Collapse
|