1
|
Capin J, Chabert E, Zuñiga A, Bonnet J. Microbial biosensors for diagnostics, surveillance and epidemiology: Today's achievements and tomorrow's prospects. Microb Biotechnol 2024; 17:e70047. [PMID: 39548716 PMCID: PMC11568237 DOI: 10.1111/1751-7915.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024] Open
Abstract
Microbial biosensors hold great promise for engineering high-performance, field-deployable and affordable detection devices for medical and environmental applications. This review explores recent advances in the field, highlighting new sensing strategies and modalities for whole-cell biosensors as well as the remarkable expansion of microbial cell-free systems. We also discuss improvements in robustness that have enhanced the ability of biosensors to withstand the challenging conditions found in biological samples. However, limitations remain in expanding the detection repertoire, particularly for proteins. We anticipate that the AI-powered revolution in protein design will streamline the engineering of custom-made sensing modules and unlock the full potential of microbial biosensors.
Collapse
Affiliation(s)
- Julien Capin
- Centre de Biologie Structurale (CBS)University of Montpellier, INSERM U1054, CNRS UMR5048MontpellierFrance
| | - Emile Chabert
- Centre de Biologie Structurale (CBS)University of Montpellier, INSERM U1054, CNRS UMR5048MontpellierFrance
| | - Ana Zuñiga
- Centre de Biologie Structurale (CBS)University of Montpellier, INSERM U1054, CNRS UMR5048MontpellierFrance
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS)University of Montpellier, INSERM U1054, CNRS UMR5048MontpellierFrance
- INSERM ART SynbioTechnology Research Accelerator for Synthetic BiologyMontpellierFrance
| |
Collapse
|
2
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Ou Y, Guo S. Safety risks and ethical governance of biomedical applications of synthetic biology. Front Bioeng Biotechnol 2023; 11:1292029. [PMID: 37941726 PMCID: PMC10628459 DOI: 10.3389/fbioe.2023.1292029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Background: In recent years, biomedicine has witnessed rapid advancements in applying synthetic biology. While these advancements have brought numerous benefits to patients, they have also given rise to a series of safety concerns. Methods: This article provides a succinct overview of the current research on synthetic biology's application in biomedicine and systematically analyzes the safety risks associated with this field. Based on this analysis, the article proposes fundamental principles for addressing these issues and presents practical recommendations for ethical governance. Results: This article contends that the primary safety risks associated with the application of synthetic biology in biomedicine include participant safety, biosafety risks, and biosecurity risks. In order to effectively address these risks, it is essential to adhere to the principles of human-centeredness, non-maleficence, sustainability, and reasonable risk control. Guided by these fundamental principles and taking into account China's specific circumstances, this article presents practical recommendations for ethical governance, which include strengthening ethical review, promoting the development and implementation of relevant policies, improving legal safeguards through top-level design, and enhancing technical capabilities for biocontainment. Conclusion: As an emerging field of scientific technology, synthetic biology presents numerous safety risks and challenges in its application within biomedicine. In order to address these risks and challenges, it is imperative that appropriate measures be implemented. From a Chinese perspective, the solutions we propose serve not only to advance the domestic development of synthetic biology but also to contribute to its global progress.
Collapse
Affiliation(s)
- Yakun Ou
- School of Marxism, Huazhong University of Science and Technology, Wuhan, China
- Center for Bioethics, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjia Guo
- School of Marxism, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Inda-Webb ME, Jimenez M, Liu Q, Phan NV, Ahn J, Steiger C, Wentworth A, Riaz A, Zirtiloglu T, Wong K, Ishida K, Fabian N, Jenkins J, Kuosmanen J, Madani W, McNally R, Lai Y, Hayward A, Mimee M, Nadeau P, Chandrakasan AP, Traverso G, Yazicigil RT, Lu TK. Sub-1.4 cm 3 capsule for detecting labile inflammatory biomarkers in situ. Nature 2023; 620:386-392. [PMID: 37495692 DOI: 10.1038/s41586-023-06369-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Transient molecules in the gastrointestinal tract such as nitric oxide and hydrogen sulfide are key signals and mediators of inflammation. Owing to their highly reactive nature and extremely short lifetime in the body, these molecules are difficult to detect. Here we develop a miniaturized device that integrates genetically engineered probiotic biosensors with a custom-designed photodetector and readout chip to track these molecules in the gastrointestinal tract. Leveraging the molecular specificity of living sensors1, we genetically encoded bacteria to respond to inflammation-associated molecules by producing luminescence. Low-power electronic readout circuits2 integrated into the device convert the light emitted by the encapsulated bacteria to a wireless signal. We demonstrate in vivo biosensor monitoring in the gastrointestinal tract of small and large animal models and the integration of all components into a sub-1.4 cm3 form factor that is compatible with ingestion and capable of supporting wireless communication. With this device, diseases such as inflammatory bowel disease could be diagnosed earlier than is currently possible, and disease progression could be more accurately tracked. The wireless detection of short-lived, disease-associated molecules with our device could also support timely communication between patients and caregivers, as well as remote personalized care.
Collapse
Affiliation(s)
- M E Inda-Webb
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Jimenez
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Q Liu
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - N V Phan
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Ahn
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Steiger
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Wentworth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Riaz
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - T Zirtiloglu
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - K Wong
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - K Ishida
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N Fabian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, MIT, Cambridge, MA, USA
| | - J Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - W Madani
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R McNally
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Lai
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A Hayward
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Comparative Medicine, MIT, Cambridge, MA, USA
| | - M Mimee
- Department of Microbiology, Biological Sciences Division and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | | | - A P Chandrakasan
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - G Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - R T Yazicigil
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA.
| | - T K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Senti Biosciences, South San Francisco, CA, USA.
| |
Collapse
|
5
|
Wahid E, Ocheja OB, Marsili E, Guaragnella C, Guaragnella N. Biological and technical challenges for implementation of yeast-based biosensors. Microb Biotechnol 2022; 16:54-66. [PMID: 36416008 PMCID: PMC9803330 DOI: 10.1111/1751-7915.14183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Biosensors are low-cost and low-maintenance alternatives to conventional analytical techniques for biomedical, industrial and environmental applications. Biosensors based on whole microorganisms can be genetically engineered to attain high sensitivity and specificity for the detection of selected analytes. While bacteria-based biosensors have been extensively reported, there is a recent interest in yeast-based biosensors, combining the microbial with the eukaryotic advantages, including possession of specific receptors, stability and high robustness. Here, we describe recently reported yeast-based biosensors highlighting their biological and technical features together with their status of development, that is, laboratory or prototype. Notably, most yeast-based biosensors are still in the early developmental stage, with only a few prototypes tested for real applications. Open challenges, including systematic use of advanced molecular and biotechnological tools, bioprospecting, and implementation of yeast-based biosensors in electrochemical setup, are discussed to find possible solutions for overcoming bottlenecks and promote real-world application of yeast-based biosensors.
Collapse
Affiliation(s)
- Ehtisham Wahid
- DEI – Department of Electrical and Information Engineering – Politecnico di BariBariItaly
| | - Ohiemi Benjamin Ocheja
- Department of Biosciences, Biotechnologies and Environment – University of Bari “A. Moro”BariItaly
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingboChina
| | - Cataldo Guaragnella
- DEI – Department of Electrical and Information Engineering – Politecnico di BariBariItaly
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment – University of Bari “A. Moro”BariItaly
| |
Collapse
|
6
|
Menuhin-Gruman I, Arbel M, Amitay N, Sionov K, Naki D, Katzir I, Edgar O, Bergman S, Tuller T. Evolutionary Stability Optimizer (ESO): A Novel Approach to Identify and Avoid Mutational Hotspots in DNA Sequences While Maintaining High Expression Levels. ACS Synth Biol 2022; 11:1142-1151. [PMID: 34928133 PMCID: PMC8938948 DOI: 10.1021/acssynbio.1c00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Modern
synthetic biology procedures rely on the ability to generate
stable genetic constructs that keep their functionality over long
periods of time. However, maintenance of these constructs requires
energy from the cell and thus reduces the host’s fitness. Natural
selection results in loss-of-functionality mutations that negate the
expression of the construct in the population. Current approaches
for the prevention of this phenomenon focus on either small-scale,
manual design of evolutionary stable constructs or the detection of
mutational sites with unstable tendencies. We designed the Evolutionary
Stability Optimizer (ESO), a software tool that enables the large-scale
automatic design of evolutionarily stable constructs with respect
to both mutational and epigenetic hotspots and allows users to define
custom hotspots to avoid. Furthermore, our tool takes the expression
of the input constructs into account by considering the guanine-cytosine
(GC) content and codon usage of the host organism, balancing the trade-off
between stability and gene expression, allowing to increase evolutionary
stability while maintaining the high expression. In this study, we
present the many features of the ESO and show that it accurately predicts
the evolutionary stability of endogenous genes. The ESO was created
as an easy-to-use, flexible platform based on the notion that directed
genetic stability research will continue to evolve and revolutionize
current applications of synthetic biology. The ESO is available at
the following link: https://www.cs.tau.ac.il/~tamirtul/ESO/.
Collapse
Affiliation(s)
- Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Matan Arbel
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Niv Amitay
- School of Electrical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Karin Sionov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Itai Katzir
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Omer Edgar
- School of Medicine, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel 6997801
| |
Collapse
|
7
|
Abstract
Point-of-care and in-vivo bio-diagnostic tools are the current need for the present critical scenarios in the healthcare industry. The past few decades have seen a surge in research activities related to solving the challenges associated with precise on-site bio-sensing. Cutting-edge fiber optic technology enables the interaction of light with functionalized fiber surfaces at remote locations to develop a novel, miniaturized and cost-effective lab on fiber technology for bio-sensing applications. The recent remarkable developments in the field of nanotechnology provide innumerable functionalization methodologies to develop selective bio-recognition elements for label free biosensors. These exceptional methods may be easily integrated with fiber surfaces to provide highly selective light-matter interaction depending on various transduction mechanisms. In the present review, an overview of optical fiber-based biosensors has been provided with focus on physical principles used, along with the functionalization protocols for the detection of various biological analytes to diagnose the disease. The design and performance of these biosensors in terms of operating range, selectivity, response time and limit of detection have been discussed. In the concluding remarks, the challenges associated with these biosensors and the improvement required to develop handheld devices to enable direct target detection have been highlighted.
Collapse
|
8
|
Ovechkina VS, Zakian SM, Medvedev SP, Valetdinova KR. Genetically Encoded Fluorescent Biosensors for Biomedical Applications. Biomedicines 2021; 9:biomedicines9111528. [PMID: 34829757 PMCID: PMC8615007 DOI: 10.3390/biomedicines9111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Genetically encoded fluorescent biosensors constitute a class of imaging agents that enable visualization of biological processes and events directly in situ, preserving the native biological context and providing detailed insight into their localization and dynamics in cells. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically encoded fluorescent biosensors in drug screening. This review summarizes results of the studies that have been conducted in the last years toward the fabrication of genetically encoded fluorescent biosensors for biomedical applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Collapse
Affiliation(s)
- Vera S. Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kamila R. Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
9
|
Delamarche E, Temiz Y, Lovchik RD, Christiansen MG, Schuerle S. Capillary Microfluidics for Monitoring Medication Adherence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Yuksel Temiz
- IBM Research Europe Saeumerstrasse 4 Rueschlikon Switzerland
| | | | - Michael G. Christiansen
- Institute for Translational Medicine Department of Health Sciences and Technology ETH Zurich Vladimir-Prelog-Weg 1–5/10 8092 Zurich Switzerland
| | - Simone Schuerle
- Institute for Translational Medicine Department of Health Sciences and Technology ETH Zurich Vladimir-Prelog-Weg 1–5/10 8092 Zurich Switzerland
| |
Collapse
|
10
|
Gheorghiu M, Polonschii C, Popescu O, Gheorghiu E. Advanced Optogenetic-Based Biosensing and Related Biomaterials. MATERIALS 2021; 14:ma14154151. [PMID: 34361345 PMCID: PMC8347019 DOI: 10.3390/ma14154151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
The ability to stimulate mammalian cells with light, brought along by optogenetic control, has significantly broadened our understanding of electrically excitable tissues. Backed by advanced (bio)materials, it has recently paved the way towards novel biosensing concepts supporting bio-analytics applications transversal to the main biomedical stream. The advancements concerning enabling biomaterials and related novel biosensing concepts involving optogenetics are reviewed with particular focus on the use of engineered cells for cell-based sensing platforms and the available toolbox (from mere actuators and reporters to novel multifunctional opto-chemogenetic tools) for optogenetic-enabled real-time cellular diagnostics and biosensor development. The key advantages of these modified cell-based biosensors concern both significantly faster (minutes instead of hours) and higher sensitivity detection of low concentrations of bioactive/toxic analytes (below the threshold concentrations in classical cellular sensors) as well as improved standardization as warranted by unified analytic platforms. These novel multimodal functional electro-optical label-free assays are reviewed among the key elements for optogenetic-based biosensing standardization. This focused review is a potential guide for materials researchers interested in biosensing based on light-responsive biomaterials and related analytic tools.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Correspondence: (M.G.); (E.G.)
| | - Cristina Polonschii
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Octavian Popescu
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai-University, 400084 Cluj-Napoca, Romania;
- Institute of Biology Bucharest, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Eugen Gheorghiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
- Correspondence: (M.G.); (E.G.)
| |
Collapse
|
11
|
Delamarche E, Temiz Y, Lovchik RD, Christiansen MG, Schuerle S. Capillary Microfluidics for Monitoring Medication Adherence. Angew Chem Int Ed Engl 2021; 60:17784-17796. [PMID: 33710725 DOI: 10.1002/anie.202101316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Medication adherence is a medical and societal issue worldwide, with approximately half of patients failing to adhere to prescribed treatments. The goal of this Minireview is to examine how recent work on microfluidics for point-of-care diagnostics may be used to enhance adherence to medication. It specifically focuses on capillary microfluidics since these devices are self-powered, easy to use, and well established for diagnostics and drug monitoring. Considering that an improvement in medication adherence can have a much larger effect than the development of new medical treatments, it is long overdue for the research communities working in chemistry, biology, pharmacology, and material sciences to consider developing technologies to enhance medication adherence. For these reasons, this Minireview is not meant to be exhaustive but rather to provide a quick starting point for researchers interested in joining this complex but intriguing and exciting field of research.
Collapse
Affiliation(s)
| | - Yuksel Temiz
- IBM Research Europe, Saeumerstrasse 4, Rueschlikon, Switzerland
| | | | - Michael G Christiansen
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8092, Zurich, Switzerland
| | - Simone Schuerle
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8092, Zurich, Switzerland
| |
Collapse
|
12
|
Ribeiro BV, Cordeiro TAR, Oliveira E Freitas GR, Ferreira LF, Franco DL. Biosensors for the detection of respiratory viruses: A review. TALANTA OPEN 2020; 2:100007. [PMID: 34913046 PMCID: PMC7428963 DOI: 10.1016/j.talo.2020.100007] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
The recent events of outbreaks related to different respiratory viruses in the past few years, exponentiated by the pandemic caused by the coronavirus disease 2019 (COVID-19), reported worldwide caused by SARS-CoV-2, raised a concern and increased the search for more information on viruses-based diseases. The detection of the virus with high specificity and sensitivity plays an important role for an accurate diagnosis. Despite the many efforts to identify the SARS-CoV-2, the diagnosis still relays on expensive and time-consuming analysis. A fast and reliable alternative is the use of low-cost biosensor for in loco detection. This review gathers important contributions in the biosensor area regarding the most current respiratory viruses, presents the advances in the assembly of the devices and figures of merit. All information is useful for further biosensor development for the detection of respiratory viruses, such as for the new coronavirus.
Collapse
Affiliation(s)
- Brayan Viana Ribeiro
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| | - Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Guilherme Ramos Oliveira E Freitas
- Laboratory of Microbiology (MICRO), Biotechnology Institute, Federal University of Uberlândia - campus Patos de Minas - Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais, Brazil
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| |
Collapse
|
13
|
Tseng CP, Silberg JJ, Bennett GN, Verduzco R. 100th Anniversary of Macromolecular Science Viewpoint: Soft Materials for Microbial Bioelectronics. ACS Macro Lett 2020; 9:1590-1603. [PMID: 35617074 DOI: 10.1021/acsmacrolett.0c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioelectronics brings together the fields of biology and microelectronics to create multifunctional devices with the potential to address longstanding technological challenges and change our way of life. Microbial electrochemical devices are a growing subset of bioelectronic devices that incorporate naturally occurring or synthetically engineered microbes into electronic devices and have broad applications including energy harvesting, chemical production, water remediation, and environmental and health monitoring. The goal of this Viewpoint is to highlight recent advances and ongoing challenges in the rapidly developing field of microbial bioelectronic devices, with an emphasis on materials challenges. We provide an overview of microbial bioelectronic devices, discuss the biotic-abiotic interface in these devices, and then present recent advances and ongoing challenges in materials related to electron transfer across the abiotic-biotic interface, microbial adhesion, redox signaling, electronic amplification, and device miniaturization. We conclude with a summary and perspective of the field of microbial bioelectronics.
Collapse
Affiliation(s)
- Chia-Ping Tseng
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - George N. Bennett
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
14
|
Hadjilouka A, Loizou K, Apostolou T, Dougiakis L, Inglezakis A, Tsaltas D. Newly Developed System for the Robust Detection of Listeria monocytogenes Based on a Bioelectric Cell Biosensor. BIOSENSORS 2020; 10:E178. [PMID: 33212801 PMCID: PMC7698059 DOI: 10.3390/bios10110178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 11/16/2022]
Abstract
Human food-borne diseases caused by pathogenic bacteria have been significantly increased in the last few decades causing numerous deaths worldwide. The standard analyses used for their detection have significant limitations regarding cost, special facilities and equipment, highly trained staff, and a long procedural time that can be crucial for foodborne pathogens with high hospitalization and mortality rates, such as Listeria monocytogenes. This study aimed to develop a biosensor that could detect L. monocytogenes rapidly and robustly. For this purpose, a cell-based biosensor technology based on the Bioelectric Recognition Assay (BERA) and a portable device developed by EMBIO Diagnostics, called B.EL.D (Bio Electric Diagnostics), were used. Membrane engineering was performed by electroinsertion of Listeria monocytogenes homologous antibodies into the membrane of African green monkey kidney (Vero) cells. The newly developed biosensor was able to detect the pathogen's presence rapidly (3 min) at concentrations as low as 102 CFU mL-1, demonstrating a higher sensitivity than most existing biosensor-based methods. In addition, lack of cross-reactivity with other Listeria species, as well as with Escherichia coli, was shown, thus, indicating biosensor's significant specificity against L. monocytogenes.
Collapse
Affiliation(s)
- Agni Hadjilouka
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Archbishop Kyprianos, Limassol 3036, Cyprus;
| | - Konstantinos Loizou
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
| | - Theofylaktos Apostolou
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
| | - Lazaros Dougiakis
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
| | - Antonios Inglezakis
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Archbishop Kyprianos, Limassol 3036, Cyprus;
| |
Collapse
|
15
|
Abstract
The ability to detect disease early and deliver precision therapy would be transformative for the treatment of human illnesses. To achieve these goals, biosensors that can pinpoint when and where diseases emerge are needed. Rapid advances in synthetic biology are enabling us to exploit the information-processing abilities of living cells to diagnose disease and then treat it in a controlled fashion. For example, living sensors could be designed to precisely sense disease biomarkers, such as by-products of inflammation, and to respond by delivering targeted therapeutics in situ. Here, we provide an overview of ongoing efforts in microbial biosensor design, highlight translational opportunities, and discuss challenges for enabling sense-and-respond precision medicines.
Collapse
Affiliation(s)
- Maria Eugenia Inda
- MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Timothy K. Lu
- MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
16
|
Tanna T, Ramachanderan R, Platt RJ. Engineered bacteria to report gut function: technologies and implementation. Curr Opin Microbiol 2020; 59:24-33. [PMID: 32828048 DOI: 10.1016/j.mib.2020.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
Abstract
Advances in synthetic biology and microbiology have enabled the creation of engineered bacteria which can sense and report on intracellular and extracellular signals. When deployed in vivo these whole-cell bacterial biosensors can act as sentinels to monitor biomolecules of interest in human health and disease settings. This is particularly interesting in the context of the gut microbiota, which interacts extensively with the human host throughout time and transit of the gut and can be accessed from feces without requiring invasive collection. Leveraging rational engineering approaches for genetic circuits as well as an expanding catalog of disease-associated biomarkers, bacterial biosensors can act as non-invasive and easy-to-monitor reporters of the gut. Here, we summarize recent engineering approaches applied in vivo in animal models and then highlight promising technologies for designing the next generation of bacterial biosensors.
Collapse
Affiliation(s)
- Tanmay Tanna
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Computer Science, ETH Zurich, Universitätstrasse 6, 8092 Zürich, Switzerland
| | - Raghavendra Ramachanderan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland.
| |
Collapse
|
17
|
Bortolotti A, Vazquez DB, Almada JC, Inda ME, Drusin SI, Villalba JM, Moreno DM, Ruysschaert JM, Cybulski LE. A Transmembrane Histidine Kinase Functions as a pH Sensor. Biomolecules 2020; 10:biom10081183. [PMID: 32823946 PMCID: PMC7465017 DOI: 10.3390/biom10081183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
The two-component system DesK-DesR regulates the synthesis of unsaturated fatty acids in the soil bacteria Bacillus subtilis. This system is activated at low temperature and maintains membrane lipid fluidity upon temperature variations. Here, we found that DesK—the transmembrane histidine kinase—also responds to pH and studied the mechanism of pH sensing. We propose that a helix linking the transmembrane region with the cytoplasmic catalytic domain is involved in pH sensing. This helix contains several glutamate, lysine, and arginine residues At neutral pH, the linker forms an alpha helix that is stabilized by hydrogen bonds in the i, i + 4 register and thus favors the kinase state. At low pH, protonation of glutamate residues breaks salt bridges, which results in helix destabilization and interruption of signaling. This mechanism inhibits unsaturated fatty acid synthesis and rigidifies the membrane when Bacillus grows in acidic conditions.
Collapse
Affiliation(s)
- Ana Bortolotti
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Daniela Belén Vazquez
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Juan Cruz Almada
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Salvador Iván Drusin
- Departamento de Químico-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Área Física, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Santa Fe, Argentina;
| | - Juan Manuel Villalba
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Diego M. Moreno
- Instituto de Química de Rosario (CONICET-UNR), Suipacha 570, S2002LRK Rosario, Santa Fe, Argentina;
- Área Química General e Inorgánica, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Santa Fe, Argentina
| | - Jean Marie Ruysschaert
- Structure et Fonction des Membranes Biologiques (SFMB) Campus de la Plaine, CP206/02, Boulevard du Triomphe, 1050 Bruxelles, Belgium
- Correspondence: (J.M.R.); (L.E.C.)
| | - Larisa Estefania Cybulski
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
- Correspondence: (J.M.R.); (L.E.C.)
| |
Collapse
|