1
|
McDonald OF, Wagner JG, Lewandowski RP, Heine LK, Estrada V, Pourmand E, Singhal M, Harkema JR, Lee KSS, Pestka JJ. Impact of soluble epoxide hydrolase inhibition on silica-induced pulmonary fibrosis, ectopic lymphoid neogenesis, and autoantibody production in lupus-prone mice. Inhal Toxicol 2024:1-19. [PMID: 39418113 DOI: 10.1080/08958378.2024.2413373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO2) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO2 exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity. METHODS Female 6-week-old NZBWF1 mice were fed control or TPPU-supplemented diets for 2 weeks then IN instilled with 2.5 mg cSiO2 or saline vehicle. Cohorts were terminated at 7 or 28 days post-cSiO2 instillation (PI) and lungs analyzed for prostaglandins, cytokines/chemokines, gene expression, differential cell counts, histopathology, and autoantibodies. RESULTS cSiO2-treatment induced prostaglandins, cytokines/chemokine, proinflammatory gene expression, CD206+ monocytes, Ly6B.2+ neutrophils, CD3+ T cells, CD45R+ B cells, centriacinar inflammation, collagen deposition, ectopic lymphoid structure neogenesis, and autoantibodies. While TPPU effectively inhibited sEH as reflected by skewed lipidomic profile in lung and decreased cSiO2-induced monocytes, neutrophils, and lymphocytes in lung lavage fluid, it did not significantly impact other biomarkers. DISCUSSION cSiO2 evoked robust pulmonary inflammation and fibrosis in NZBWF1 mice that was evident at 7 days PI and progressed to ELS development and autoimmunity by 28 days PI. sEH inhibition by TPPU modestly suppressed cSiO2-induced cellularity changes and pulmonary fibrosis. However, TPPU did not affect ELS formation or autoantibody responses, suggesting sEH minimally impacts cSiO2-triggered lung inflammation, fibrosis, and early autoimmunity in our model.
Collapse
Affiliation(s)
- Olivia F McDonald
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ryan P Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Lauren K Heine
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Vanessa Estrada
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Megha Singhal
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jack R Harkema
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - James J Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Koziol-White C, Gebski E, Cao G, Panettieri RA. Precision cut lung slices: an integrated ex vivo model for studying lung physiology, pharmacology, disease pathogenesis and drug discovery. Respir Res 2024; 25:231. [PMID: 38824592 PMCID: PMC11144351 DOI: 10.1186/s12931-024-02855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024] Open
Abstract
Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.
Collapse
Affiliation(s)
- Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA.
| | - Eric Gebski
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Gaoyaun Cao
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Zhu Y, Choi D, Somanath PR, Zhang D. Lipid-Laden Macrophages in Pulmonary Diseases. Cells 2024; 13:889. [PMID: 38891022 PMCID: PMC11171561 DOI: 10.3390/cells13110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Pulmonary surfactants play a crucial role in managing lung lipid metabolism, and dysregulation of this process is evident in various lung diseases. Alternations in lipid metabolism lead to pulmonary surfactant damage, resulting in hyperlipidemia in response to lung injury. Lung macrophages are responsible for recycling damaged lipid droplets to maintain lipid homeostasis. The inflammatory response triggered by external stimuli such as cigarette smoke, bleomycin, and bacteria can interfere with this process, resulting in the formation of lipid-laden macrophages (LLMs), also known as foamy macrophages. Recent studies have highlighted the potential significance of LLM formation in a range of pulmonary diseases. Furthermore, growing evidence suggests that LLMs are present in patients suffering from various pulmonary conditions. In this review, we summarize the essential metabolic and signaling pathways driving the LLM formation in chronic obstructive pulmonary disease, pulmonary fibrosis, tuberculosis, and acute lung injury.
Collapse
Affiliation(s)
- Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA (D.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Dooyoung Choi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA (D.C.)
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA (D.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA (D.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Bärnthaler T, Ramachandra AB, Ebanks S, Guerrera N, Sharma L, Dela Cruz CS, Humphrey JD, Manning EP. Developmental changes in lung function of mice are independent of sex as a biological variable. Am J Physiol Lung Cell Mol Physiol 2024; 326:L627-L637. [PMID: 38375577 PMCID: PMC11380952 DOI: 10.1152/ajplung.00120.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Pulmonary function testing (PFT) in mice includes biomechanical assessment of lung function relevant to physiology in health and its alteration in disease, hence, it is frequently used in preclinical modeling of human lung pathologies. Despite numerous reports of PFT in mice of various ages, there is a lack of reference data for developing mice collected using consistent methods. Therefore, we profiled PFTs in male and female C57BL/6J mice from 2 to 23 wk of age, providing reference values for age- and sex-dependent changes in mouse lung biomechanics during development and young adulthood. Although males and females have similar weights at birth, females weigh significantly less than males after 5 wk of age (P < 0.001) with largest weight gain observed between 3 and 8 wk in females and 3 and 13 wk in males, after which weight continued to increase more slowly up to 23 wk of age. Lung function parameters including static compliance and inspiratory capacity also increased rapidly between 3 and 8 wk in female and male mice, with male mice having significantly greater static compliance and inspiratory capacity than female mice (P < 0.001). Although these parameters appear higher in males at a given age, allometric scaling showed that static compliance and inspiratory compliance were comparable between the two sexes. This suggests that differences in measurements of lung function are likely body weight-based rather than sex-based. We expect these data to facilitate future lung disease research by filling a critical knowledge gap in our field.NEW & NOTEWORTHY This study provides reference values for changes in mouse lung biomechanics from 2 to 23 wk of age. There are rapid developmental changes in lung structure and function of male and female mice between the ages of 3 and 8 wk. Male mice become noticeably heavier than female mice at or about 5 wk of age. We identified that differences in normal lung function measurements are likely weight-based, not sex-based.
Collapse
Affiliation(s)
- Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Abhay B Ramachandra
- Department of Biomedical Engineering,Yale University, New Haven, Connecticut, United States
| | - Sadè Ebanks
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Nicole Guerrera
- Department of Medicine (Cardiovascular Medicine), Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut, United States
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering,Yale University, New Haven, Connecticut, United States
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
- VA Connecticut Healthcare System, West Haven, Connecticut, United States
| |
Collapse
|
5
|
Lee YJ, Kim M, Kim HS, Kang JL. Administration of Gas6 attenuates lung fibrosis via inhibition of the epithelial-mesenchymal transition and fibroblast activation. Cell Biol Toxicol 2024; 40:20. [PMID: 38578518 PMCID: PMC10997547 DOI: 10.1007/s10565-024-09858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Minsuk Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
| |
Collapse
|
6
|
Farh MEA, Kim HJ, Kim SY, Lee JH, Lee H, Cui R, Han S, Kim DW, Park S, Lee YJ, Lee YS, Sohn I, Cho J. Transcriptional Changes in Radiation-Induced Lung Injury: A Comparative Analysis of Two Radiation Doses for Preclinical Research. Int J Mol Sci 2024; 25:3766. [PMID: 38612576 PMCID: PMC11011446 DOI: 10.3390/ijms25073766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In a recent stereotactic body radiation therapy animal model, radiation pneumonitis and radiation pulmonary fibrosis were observed at around 2 and 6 weeks, respectively. However, the molecular signature of this model remains unclear. This study aimed to examine the molecular characteristics at these two stages using RNA-seq analysis. Transcriptomic profiling revealed distinct transcriptional patterns for each stage. Inflammatory response and immune cell activation were involved in both stages. Cell cycle processes and response to type II interferons were observed during the inflammation stage. Extracellular matrix organization and immunoglobulin production were noted during the fibrosis stage. To investigate the impact of a 10 Gy difference on fibrosis progression, doses of 45, 55, and 65 Gy were tested. A dose of 65 Gy was selected and compared with 75 Gy. The 65 Gy dose induced inflammation and fibrosis as well as the 75 Gy dose, but with reduced lung damage, fewer inflammatory cells, and decreased collagen deposition, particularly during the inflammation stage. Transcriptomic analysis revealed significant overlap, but differences were observed and clarified in Gene Ontology and KEGG pathway analysis, potentially influenced by changes in interferon-gamma-mediated lipid metabolism. This suggests the suitability of 65 Gy for future preclinical basic and pharmaceutical research connected with radiation-induced lung injury.
Collapse
Affiliation(s)
- Mohamed El-Agamy Farh
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
- Drug Development Team, ARONTIER, Co., Ltd., Seoul 06735, Republic of Korea;
| | - Hyun-Jin Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Sang-Yeon Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Jae-Hee Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Hajeong Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Ronglan Cui
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Soorim Han
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Sunjoo Park
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| | - Yoon-Jin Lee
- Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea;
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Insuk Sohn
- Drug Development Team, ARONTIER, Co., Ltd., Seoul 06735, Republic of Korea;
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.E.-A.F.); (H.-J.K.); (S.-Y.K.); (J.-H.L.); (H.L.); (R.C.); (S.H.); (D.W.K.); (S.P.)
| |
Collapse
|
7
|
Li C, Xie R, Zhang S, Yun J, Zhong A, Cen Y, Chen J. Metabolism, fibrosis, and apoptosis: The effect of lipids and their derivatives on keloid formation. Int Wound J 2024; 21:e14733. [PMID: 38339798 PMCID: PMC10858330 DOI: 10.1111/iwj.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Keloids, pathological scars resulting from skin trauma, have traditionally posed significant clinical management challenges due to their persistence and high recurrence rates. Our research elucidates the pivotal roles of lipids and their derivatives in keloid development, driven by underlying mechanisms of abnormal cell proliferation, apoptosis, and extracellular matrix deposition. Key findings suggest that abnormalities in arachidonic acid (AA) synthesis and non-essential fatty acid synthesis are integral to keloid formation. Further, a complex interplay exists between lipid derivatives, notably butyric acid (BA), prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and the regulation of hyperfibrosis. Additionally, combinations of docosahexaenoic acid (DHA) with BA and 15-deoxy-Δ12,14-Prostaglandin J2 have exhibited pronounced cytotoxic effects. Among sphingolipids, ceramide (Cer) displayed limited pro-apoptotic effects in keloid fibroblasts (KFBs), whereas sphingosine 1-phosphate (S1P) was found to promote keloid hyperfibrosis, with its analogue, FTY720, demonstrating contrasting benefits. Both Vitamin D and hexadecylphosphorylcholine (HePC) showed potential antifibrotic and antiproliferative properties, suggesting their utility in keloid management. While keloids remain a prevalent concern in clinical practice, this study underscores the promising potential of targeting specific lipid molecules for the advancement of keloid therapeutic strategies.
Collapse
Affiliation(s)
- Chen‐yu Li
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ru‐xin Xie
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Shi‐wei Zhang
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jiao Yun
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ai Zhong
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ying Cen
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jun‐jie Chen
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
8
|
Cui Y, Lv Z, Yang Z, Lei J. Inhibition of Prostaglandin-Degrading Enzyme 15-PGDH Mitigates Acute Murine Lung Allograft Rejection. Lung 2023; 201:591-601. [PMID: 37934242 DOI: 10.1007/s00408-023-00651-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Acute rejection is a frequent complication among lung transplant recipients and poses substantial therapeutic challenges. 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme responsible for the inactivation of prostaglandin E2 (PGE2), has recently been implicated in inflammatory lung diseases. However, the role of 15-PGDH in lung transplantation rejection remains elusive. The present study was undertaken to examine the expression of 15-PGDH in rejected lung allografts and whether inhibition of 15-PGDH ameliorates acute lung allograft rejection. METHODS Orthotopic mouse lung transplantations were performed between donor and recipient mice of the same strain or allogeneic mismatched pairs. The expression of 15-PGDH in mouse lung grafts was measured. The efficacy of a selective 15-PGDH inhibitor (SW033291) in ameliorating acute rejection was assessed through histopathological examination, micro-CT imaging, and pulmonary function tests. Additionally, the mechanism underlying the effects of SW033291 treatment was explored using CD8+ T cells isolated from mouse lung allografts. RESULTS Increased 15-PGDH expression was observed in rejected allografts and allogeneic CD8+ T cells. Treatment with SW033291 led to an accumulation of PGE2, modulation of CD8+ T-cell responses and mitochondrial activity, and improved allograft function and survival. CONCLUSION Our study provides new insights into the role of 15-PGDH in acute lung rejection and highlights the therapeutic potential of inhibiting 15-PGDH for enhancing graft survival. The accumulation of PGE2 and modulation of CD8+ T-cell responses represent potential mechanisms underlying the benefits of 15-PGDH inhibition in this model. Our findings provide impetus for further exploring 15-PGDH as a target for improving lung transplantation outcomes.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai, Beijing, 100069, People's Republic of China.
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai, Beijing, 100069, People's Republic of China
| | - Zeran Yang
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jianfeng Lei
- Research Core Facilities, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
9
|
Kasmani MY, Topchyan P, Brown AK, Brown RJ, Wu X, Chen Y, Khatun A, Alson D, Wu Y, Burns R, Lin CW, Kudek MR, Sun J, Cui W. A spatial sequencing atlas of age-induced changes in the lung during influenza infection. Nat Commun 2023; 14:6597. [PMID: 37852965 PMCID: PMC10584893 DOI: 10.1038/s41467-023-42021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
Influenza virus infection causes increased morbidity and mortality in the elderly. Aging impairs the immune response to influenza, both intrinsically and because of altered interactions with endothelial and pulmonary epithelial cells. To characterize these changes, we performed single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and bulk RNA sequencing (bulk RNA-seq) on lung tissue from young and aged female mice at days 0, 3, and 9 post-influenza infection. Our analyses identified dozens of key genes differentially expressed in kinetic, age-dependent, and cell type-specific manners. Aged immune cells exhibited altered inflammatory, memory, and chemotactic profiles. Aged endothelial cells demonstrated characteristics of reduced vascular wound healing and a prothrombotic state. Spatial transcriptomics identified novel profibrotic and antifibrotic markers expressed by epithelial and non-epithelial cells, highlighting the complex networks that promote fibrosis in aged lungs. Bulk RNA-seq generated a timeline of global transcriptional activity, showing increased expression of genes involved in inflammation and coagulation in aged lungs. Our work provides an atlas of high-throughput sequencing methodologies that can be used to investigate age-related changes in the response to influenza virus, identify novel cell-cell interactions for further study, and ultimately uncover potential therapeutic targets to improve health outcomes in the elderly following influenza infection.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Paytsar Topchyan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ryan J Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Donia Alson
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Chien-Wei Lin
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew R Kudek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Liang M, Zhan W, Wang L, Bei W, Wang W. Ginsenoside Rb1 Promotes Hepatic Glycogen Synthesis to Ameliorate T2DM Through 15-PGDH/PGE 2/EP4 Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:3223-3234. [PMID: 37867629 PMCID: PMC10590136 DOI: 10.2147/dmso.s431423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Ginsenoside Rb1 (Rb1), one of the crucial bioactive constituents in Panax ginseng C. A. Mey., possesses anti-type 2 diabetes mellitus (T2DM) property. Nevertheless, the precise mechanism, particularly the impact of Rb1 on hepatic glycogen production, a crucial process in the advancement of T2DM, remains poorly understood. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is responsible for prostaglandin E2 (PGE2) inactivation. A recent study has reported that inhibition of 15-PGDH promoted hepatic glycogen synthesis and improved T2DM. Therefore, herein, we aimed to investigate whether Rb1 ameliorated T2DM through 15-PGDH/PGE2-regulated hepatic glycogen synthesis. Methods By combining streptozotocin with a high-fat diet, we successfully established a mouse model for T2DM. Afterward, these mice were administered Rb1 or metformin for 8 weeks. An insulin-resistant cell model was established by incubating LO2 cells with palmitic acid. Liver glycogen and PGE2 levels, the expression levels of 15-PGDH, serine/threonine kinase AKT (AKT), and glycogen synthase kinase 3 beta (GSK3β) were measured. Molecular docking was used to predict the binding affinity between 15-PGDH and Rb1. Results Rb1 administration increased the phosphorylation levels of AKT and GSK3β to enhance glycogen synthesis in the liver of T2DM mice. Molecular docking indicated that Rb1 had a high affinity for 15-PGDH. Moreover, Rb1 treatment resulted in the suppression of elevated 15-PGDH levels and the elevation of decreased PGE2 levels in the liver of T2DM mice. Furthermore, in vitro experiments showed that Rb1 administration might enhance glycogen production by modulating the 15-PGDH/PGE2/PGE2 receptor EP4 pathway. Conclusion Our findings indicate that Rb1 may enhance liver glycogen production through a 15-PGDH-dependent pathway to ameliorate T2DM, thereby offering a new explanation for the positive impact of Rb1 on T2DM and supporting its potential as an effective therapeutic approach for T2DM.
Collapse
Affiliation(s)
- Mingjie Liang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Wenjing Zhan
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Lexun Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Weijian Bei
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
11
|
Wang J, He Y, Wang B, Yin R, Chen B, Wang H. Muscle-targeted nanoparticles strengthen the effects of small-molecule inhibitors in ameliorating sarcopenia. Nanomedicine (Lond) 2023; 18:1635-1649. [PMID: 37909281 DOI: 10.2217/nnm-2023-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Background: Sarcopenia is an aging-related degeneration of muscle mass and strength. Small-molecule inhibitor SW033291 has been shown to attenuate muscle atrophy. Targeted nanodrug-delivery systems can improve the efficacy of small-molecule inhibitors. Methods: The skeletal muscle cell-targeted nanoparticle was called AP@SW033291, which consisted of SW033291, modular peptide ASSLNIAGGRRRRRG and PEG-DSPE. Nanoparticles were featured with particle size, fluorescence emission spectra and targeting ability. We also investigated their effects on muscle mass and function. Results: The size of AP@SW033291 was 125.7 nm and it demonstrated targeting effects on skeletal muscle; thus, it could improve muscle mass and muscle function. Conclusion: Nanoparticle AP@SW033291 could become a potential strategy to strengthen the treatment effects of small-molecule inhibitors in sarcopenia.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yikang He
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Baoyue Wang
- Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Ruian Yin
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Biao Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, PR China
| | - Hongxing Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
12
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
13
|
Rajesh R, Atallah R, Bärnthaler T. Dysregulation of metabolic pathways in pulmonary fibrosis. Pharmacol Ther 2023; 246:108436. [PMID: 37150402 DOI: 10.1016/j.pharmthera.2023.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder of unknown origin and the most common interstitial lung disease. It progresses with the recruitment of fibroblasts and myofibroblasts that contribute to the accumulation of extracellular matrix (ECM) proteins, leading to the loss of compliance and alveolar integrity, compromising the gas exchange capacity of the lung. Moreover, while there are therapeutics available, they do not offer a cure. Thus, there is a pressing need to identify better therapeutic targets. With the advent of transcriptomics, proteomics, and metabolomics, the cellular mechanisms underlying disease progression are better understood. Metabolic homeostasis is one such factor and its dysregulation has been shown to impact the outcome of IPF. Several metabolic pathways involved in the metabolism of lipids, protein and carbohydrates have been implicated in IPF. While metabolites are crucial for the generation of energy, it is now appreciated that metabolites have several non-metabolic roles in regulating cellular processes such as proliferation, signaling, and death among several other functions. Through this review, we succinctly elucidate the role of several metabolic pathways in IPF. Moreover, we also discuss potential therapeutics which target metabolism or metabolic pathways.
Collapse
Affiliation(s)
- Rishi Rajesh
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Reham Atallah
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
14
|
Lam M, Lamanna E, Organ L, Donovan C, Bourke JE. Perspectives on precision cut lung slices-powerful tools for investigation of mechanisms and therapeutic targets in lung diseases. Front Pharmacol 2023; 14:1162889. [PMID: 37261291 PMCID: PMC10228656 DOI: 10.3389/fphar.2023.1162889] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Precision cut lung slices (PCLS) have emerged as powerful experimental tools for respiratory research. Pioneering studies using mouse PCLS to visualize intrapulmonary airway contractility have been extended to pulmonary arteries and for assessment of novel bronchodilators and vasodilators as therapeutics. Additional disease-relevant outcomes, including inflammatory, fibrotic, and regenerative responses, are now routinely measured in PCLS from multiple species, including humans. This review provides an overview of established and innovative uses of PCLS as an intermediary between cellular and organ-based studies and focuses on opportunities to increase their application to investigate mechanisms and therapeutic targets to oppose excessive airway contraction and fibrosis in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Emma Lamanna
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institut Pasteur, Unit of Antibodies in Therapy and Pathology, INSERM UMR1222, Paris, France
| | - Louise Organ
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
15
|
Huang W, Li H, Kiselar J, Fink SP, Regmi S, Day A, Yuan Y, Chance M, Ready JM, Markowitz SD, Taylor DJ. Small molecule inhibitors of 15-PGDH exploit a physiologic induced-fit closing system. Nat Commun 2023; 14:784. [PMID: 36774348 PMCID: PMC9922282 DOI: 10.1038/s41467-023-36463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
15-prostaglandin dehydrogenase (15-PGDH) is a negative regulator of tissue stem cells that acts via enzymatic activity of oxidizing and degrading PGE2, and related eicosanoids, that support stem cells during tissue repair. Indeed, inhibiting 15-PGDH markedly accelerates tissue repair in multiple organs. Here we have used cryo-electron microscopy to solve the solution structure of native 15-PGDH and of 15-PGDH individually complexed with two distinct chemical inhibitors. These structures identify key 15-PGDH residues that mediate binding to both classes of inhibitors. Moreover, we identify a dynamic 15-PGDH lid domain that closes around the inhibitors, and that is likely fundamental to the physiologic 15-PGDH enzymatic mechanism. We furthermore identify two key residues, F185 and Y217, that act as hinges to regulate lid closing, and which both inhibitors exploit to capture the lid in the closed conformation, thus explaining their sub-nanomolar binding affinities. These findings provide the basis for further development of 15-PGDH targeted drugs as therapeutics for regenerative medicine.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongyun Li
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Janna Kiselar
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephen P Fink
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sagar Regmi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alexander Day
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yiyuan Yuan
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark Chance
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
- University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA.
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
Cellular and Molecular Mechanisms in Idiopathic Pulmonary Fibrosis. Adv Respir Med 2023; 91:26-48. [PMID: 36825939 PMCID: PMC9952569 DOI: 10.3390/arm91010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The respiratory system is a well-organized multicellular organ, and disruption of cellular homeostasis or abnormal tissue repair caused by genetic deficiency and exposure to risk factors lead to life-threatening pulmonary disease including idiopathic pulmonary fibrosis (IPF). Although there is no clear etiology as the name reflected, its pathological progress is closely related to uncoordinated cellular and molecular signals. Here, we review the advances in our understanding of the role of lung tissue cells in IPF pathology including epithelial cells, mesenchymal stem cells, fibroblasts, immune cells, and endothelial cells. These advances summarize the role of various cell components and signaling pathways in the pathogenesis of idiopathic pulmonary fibrosis, which is helpful to further study the pathological mechanism of the disease, provide new opportunities for disease prevention and treatment, and is expected to improve the survival rate and quality of life of patients.
Collapse
|
17
|
Rubino M, Travers JG, Headrick AL, Enyart BT, Lemieux ME, Cavasin MA, Schwisow JA, Hardy EJ, Kaltenbacher KJ, Felisbino MB, Jonas E, Ambardekar AV, Bristow MR, Koch KA, McKinsey TA. Inhibition of Eicosanoid Degradation Mitigates Fibrosis of the Heart. Circ Res 2023; 132:10-29. [PMID: 36475698 DOI: 10.1161/circresaha.122.321475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Organ fibrosis due to excessive production of extracellular matrix by resident fibroblasts is estimated to contribute to >45% of deaths in the Western world, including those due to cardiovascular diseases such as heart failure. Here, we screened for small molecule inhibitors with a common ability to suppress activation of fibroblasts across organ systems. METHODS High-content imaging of cultured cardiac, pulmonary, and renal fibroblasts was used to identify nontoxic compounds that blocked induction of markers of activation in response to the profibrotic stimulus, transforming growth factor-β1. SW033291, which inhibits the eicosanoid-degrading enzyme, 15-hydroxyprostaglandin dehydrogenase, was chosen for follow-up studies with cultured adult rat ventricular fibroblasts and human cardiac fibroblasts (CF), and for evaluation in mouse models of cardiac fibrosis and diastolic dysfunction. Additional mechanistic studies were performed with CFs treated with exogenous eicosanoids. RESULTS Nine compounds, including SW033291, shared a common ability to suppress transforming growth factor-β1-mediated activation of cardiac, pulmonary, and renal fibroblasts. SW033291 dose-dependently inhibited transforming growth factor-β1-induced expression of activation markers (eg, α-smooth muscle actin and periostin) in adult rat ventricular fibroblasts and normal human CFs, and reduced contractile capacity of the cells. Remarkably, the 15-hydroxyprostaglandin dehydrogenase inhibitor also reversed constitutive activation of fibroblasts obtained from explanted hearts from patients with heart failure. SW033291 blocked cardiac fibrosis induced by angiotensin II infusion and ameliorated diastolic dysfunction in an alternative model of systemic hypertension driven by combined uninephrectomy and deoxycorticosterone acetate administration. Mechanistically, SW033291-mediated stimulation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling was required for the compound to block CF activation. Of the 12 exogenous eicosanoids that were tested, only 12(S)-hydroxyeicosatetraenoic acid, which signals through the G protein-coupled receptor, GPR31, recapitulated the suppressive effects of SW033291 on CF activation. CONCLUSIONS Inhibition of degradation of eicosanoids, arachidonic acid-derived fatty acids that signal through G protein-coupled receptors, is a potential therapeutic strategy for suppression of pathological organ fibrosis. In the heart, we propose that 15-hydroxyprostaglandin dehydrogenase inhibition triggers CF-derived autocrine/paracrine signaling by eicosanoids, including 12(S)-hydroxyeicosatetraenoic acid, to stimulate extracellular signal-regulated kinase 1/2 and block conversion of fibroblasts into activated cells that secrete excessive amounts of extracellular matrix and contribute to heart failure pathogenesis.
Collapse
Affiliation(s)
- Marcello Rubino
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Joshua G Travers
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Alaina L Headrick
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Blake T Enyart
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | | | - Maria A Cavasin
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Jessica A Schwisow
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Elizabeth J Hardy
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Keenan J Kaltenbacher
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Marina B Felisbino
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Eric Jonas
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Amrut V Ambardekar
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Michael R Bristow
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Keith A Koch
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Timothy A McKinsey
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| |
Collapse
|
18
|
Wang W, Liang M, Wang L, Bei W, Rong X, Xu J, Guo J. Role of prostaglandin E2 in macrophage polarization: Insights into atherosclerosis. Biochem Pharmacol 2023; 207:115357. [PMID: 36455672 DOI: 10.1016/j.bcp.2022.115357] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis, a trigger of cardiovascular disease, poses grave threats to human health. Although atherosclerosis depends on lipid accumulation and vascular wall inflammation, abnormal phenotypic regulation of macrophages is considered the pathological basis of atherosclerosis. Macrophage polarization mainly refers to the transformation of macrophages into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, which has recently become a much-discussed topic. Increasing evidence has shown that M2 macrophage polarization can alleviate atherosclerosis progression. PGE2 is a bioactive lipid that has been observed to be elevated in atherosclerosis and to play a pro-inflammatory role, yet recent studies have reported that PGE2 promotes anti-inflammatory M2 macrophage polarization and mitigates atherosclerosis progression. However, the mechanisms by which PGE2 acts remain unclear. This review summarizes current knowledge of PGE2 and macrophages in atherosclerosis. Additionally, we discuss potential PGE2 mechanisms of macrophage polarization, including CREB, NF-κB, and STAT signaling pathways, which may provide important therapeutic strategies based on targeting PGE2 pathways to modulate macrophage polarization for atherosclerosis treatment.
Collapse
Affiliation(s)
- Weixuan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Mingjie Liang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Weijian Bei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Jianqin Xu
- Department of Endocrinology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
19
|
Wang L, Zhao W, Xia C, Li Z, Zhao W, Xu K, Wang N, Lian H, Rosas IO, Yu G. TRIB3 Mediates Fibroblast Activation and Fibrosis though Interaction with ATF4 in IPF. Int J Mol Sci 2022; 23:ijms232415705. [PMID: 36555349 PMCID: PMC9778945 DOI: 10.3390/ijms232415705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by fibroblast activation, excessive deposition of extracellular matrix, and progressive scarring; the pathogenesis remains elusive. The present study explored the role of Tribbles pseudokinase 3 (TRIB3), a well-known stress and metabolic sensor, in IPF. TRIB3 is down-regulated in the lungs of IPF patients in comparison to control subjects. Deficiency of TRIB3 markedly inhibited A549 epithelial cells' proliferation and migration, significantly reducing wound healing. Conversely, overexpression of TRIB3 promoted A549 cell proliferation and transmigration while it inhibited its apoptosis. Meanwhile, overexpressed TRIB3 inhibited fibroblast activation and decreased ECM synthesis and deposition in MRC5 cells. TRIB3 attenuated pulmonary fibrosis by negative regulation of ATF4, while TRIB3 expression markedly inhibited ATF4 promoter-driven transcription activity and down-regulated ATF4 expression. A co-culture system showed that TRIB3 is important to maintain the normal epithelial-mesenchymal crosstalk and regulate fibroblast activation. Taken together, our data suggested that an axis of TRIB3-ATF4 is a key mediator in IPF which might be a potential target for fibroproliferative lung disease treatment.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wenyu Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Cong Xia
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhongzheng Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Weiming Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Ningdan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Hui Lian
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Ivan O. Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: ; Tel.: +86-373-3326340
| |
Collapse
|
20
|
Hu B, Toda K, Wang X, Antczak MI, Smith J, Geboers S, Nishikawa G, Li H, Dawson D, Fink S, Desai AB, Williams NS, Markowitz SD, Ready JM. Orally Bioavailable Quinoxaline Inhibitors of 15-Prostaglandin Dehydrogenase (15-PGDH) Promote Tissue Repair and Regeneration. J Med Chem 2022; 65:15327-15343. [PMID: 36322935 PMCID: PMC9885488 DOI: 10.1021/acs.jmedchem.2c01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
15-Prostaglandin dehydrogenase (15-PGDH) regulates the concentration of prostaglandin E2 in vivo. Inhibitors of 15-PGDH elevate PGE2 levels and promote tissue repair and regeneration. Here, we describe a novel class of quinoxaline amides that show potent inhibition of 15-PGDH, good oral bioavailability, and protective activity in mouse models of ulcerative colitis and recovery from bone marrow transplantation.
Collapse
Affiliation(s)
- Bin Hu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Kosuke Toda
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Xiaoyu Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Monika I Antczak
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Julianne Smith
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Sophie Geboers
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Gen Nishikawa
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Hongyun Li
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Dawn Dawson
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Stephen Fink
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Amar B Desai
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| | - Sanford D Markowitz
- Case Comprehensive Cancer Center, Cleveland, Ohio44106-5065, United States
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio44106, United States
- Seidman Cancer Center, University Hospitals of Cleveland, Cleveland, Ohio44106, United States
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Teas75390-9038, United States
| |
Collapse
|
21
|
Bianchi P, Guo SW, Habiba M, Benagiano G. Utility of the Levonorgestrel-Releasing Intrauterine System in the Treatment of Abnormal Uterine Bleeding and Dysmenorrhea: A Narrative Review. J Clin Med 2022; 11:5836. [PMID: 36233703 PMCID: PMC9570961 DOI: 10.3390/jcm11195836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION We undertook a literature review of the use of levonorgestrel-releasing intrauterine devices when utilized for heavy menstrual bleeding and/or dysmenorrhea. METHODS A narrative review of articles in the Scopus and Medline databases was conducted. RESULTS A number of options exist for the management of both abnormal uterine bleeding (AUB) and dysmenorrhea, and evidence is accumulating that the insertion of a levonorgestrel-releasing intrauterine system (LNG-IUS) represents a useful option for their long-term treatment. The idea of using a progestogen released in utero was initially conceived to achieve long-term contraception, but it was quickly found that these systems could be utilized for a number of therapeutic applications. The first device to be made commercially available, Progestasert, was withdrawn from the market because, in the event of contraceptive failure, it caused a disproportionate percentage of extrauterine pregnancies. On the other hand, the LNG-IUS continues to be successfully utilized in its various variants, releasing 20, 13, or 8 μg/day. These devices have a respective duration of action of 7 (possibly 8), 5, and 3 years, and there exist versions of frameless systems affixed to the myometrium of the uterine fundus. In the present review, following a brief description of the major causes of AUB and dysmenorrhea, the molecular bases for the use of the LNG-IUS are summarized. This is followed by a compendium of its use in AUB and dysmenorrhea, concluding that the insertion of the system improves the quality of life, reduces menstrual blood loss better than other medical therapies, and decreases the extent of dysmenorrhea and pelvic pain. In addition, there is no evidence of a significant difference in these outcomes when the use of the LNG-IUS was compared with improvements offered by endometrial ablation or hysterectomy. Possibly, the most important mechanism of action of the system consists of its ability to induce amenorrhea, which effectively eliminates heavy bleeding and dysmenorrhea. However, no method is ideal for every woman, and, in the case of the LNG-IUS, younger age and severe dysmenorrhea seem to be associated with a higher risk of discontinuation. CONCLUSION The higher-dose LNG-IUS is a useful tool for HMB and dysmenorrhea in women of all ages. The low cost and ease of use make the LNG-IUS an attractive option, especially when contraception is also desired.
Collapse
Affiliation(s)
- Paola Bianchi
- Department of Medico-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza, University of Rome, 00161 Rome, Italy
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai 200011, China
| | - Marwan Habiba
- Department of Health Sciences, University Hospitals of Leicester, University of Leicester, Leicester LE1 7RH, UK
| | - Giuseppe Benagiano
- Faculty of Medicine and Dentistry, Sapienza, University of Rome, 00161 Rome, Italy
| |
Collapse
|
22
|
Feitosa MF, Wojczynski MK, Anema JA, Daw EW, Wang L, Santanasto AJ, Nygaard M, Province MA. Genetic pleiotropy between pulmonary function and age-related traits: The Long Life Family Study. J Gerontol A Biol Sci Med Sci 2022; 79:glac046. [PMID: 35180297 PMCID: PMC10873520 DOI: 10.1093/gerona/glac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pulmonary function (PF) progressively declines with aging. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) are predictors of morbidity of pulmonary and cardiovascular diseases and all-cause mortality. In addition, reduced PF is associated with elevated chronic low-grade systemic inflammation, glucose metabolism, body fatness, and low muscle strength. It may suggest pleiotropic genetic effects between PF with these age-related factors. METHODS We evaluated whether FEV1 and FVC share common pleiotropic genetic effects factors with interleukin-6, high-sensitivity C-reactive protein, body mass index, muscle (grip) strength, plasma glucose, and glycosylated hemoglobin in 3,888 individuals (age range: 26-106). We employed sex-combined and sex-specific correlated meta-analyses to test whether combining genome-wide association p-values from two or more traits enhances the ability to detect variants sharing effects on these correlated traits. RESULTS We identified 32 loci for PF, including 29 novel pleiotropic loci associated with pulmonary function and (i) body fatness (CYP2U1/SGMS2), (ii) glucose metabolism (CBWD1/DOCK8 and MMUT/CENPQ), (iii) inflammatory markers (GLRA3/HPGD, TRIM9, CALN1, CTNNB1/ZNF621, GATA5/SLCO4A1/NTSR1, and NPVF/C7orf31/CYCS), and (iv) muscle strength (MAL2, AC008825.1/LINC02103, AL136418.1). CONCLUSIONS The identified genes/loci for PF and age-related traits suggest their underlying shared genetic effects, which can explain part of their phenotypic correlations. Integration of gene expression and genomic annotation data shows enrichment of our genetic variants in lung, blood, adipose, pancreas, and muscles, among others. Our findings highlight the critical roles of identified gene/locus in systemic inflammation, glucose metabolism, strength performance, PF, and pulmonary disease, which are involved in accelerated biological aging.
Collapse
Affiliation(s)
- Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jason A Anema
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adam J Santanasto
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marianne Nygaard
- Epidemiology, Biostatistics, and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun 2022; 13:494. [PMID: 35078977 PMCID: PMC8789871 DOI: 10.1038/s41467-022-28062-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.
Collapse
Affiliation(s)
- Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - John E McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Taylor S Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Neeharika Kothapalli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Barnthaler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Jessica Nouws
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matthew J Robertson
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tao Yang
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Cosme
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sergio Poli
- Department of Internal Medicine, Mount Sinai Medical Center, Miami, FL, USA
| | - Ehab A Ayaub
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jose L Gomez
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Micha Sam B Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivan O Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Hu Y, Wang Q, Yu J, Zhou Q, Deng Y, Liu J, Zhang L, Xu Y, Xiong W, Wang Y. Tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis by modulating β-catenin signaling. Nat Commun 2022; 13:114. [PMID: 35013220 PMCID: PMC8748833 DOI: 10.1038/s41467-021-27684-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Tartrate-resistant acid phosphatase 5 (ACP5) performs a variety of functions. However, its role in IPF remains unclear. Here, we demonstrate that the levels of ACP5 are increased in IPF patient samples and mice with bleomycin (BLM)-induced pulmonary fibrosis. In particular, higher levels of ACP5 are present in the sera of IPF patients with a diffusing capacity of the lungs for carbonmonoxide (DLCO) less than 40% of the predicted value. Additionally, Acp5 deficiency protects mice from BLM-induced lung injury and fibrosis coupled with a significant reduction of fibroblast differentiation and proliferation. Mechanistic studies reveal that Acp5 is upregulated by transforming growth factor-β1 (TGF-β1) in a TGF-β receptor 1 (TGFβR1)/Smad family member 3 (Smad3)-dependent manner, after which Acp5 dephosphorylates p-β-catenin at serine 33 and threonine 41, inhibiting the degradation of β-catenin and subsequently enhancing β-catenin signaling in the nucleus, which promotes the differentiation, proliferation and migration of fibroblast. More importantly, the treatment of mice with Acp5 siRNA-loaded liposomes or Acp5 inhibitor reverses established lung fibrosis. In conclusions, Acp5 is involved in the initiation and progression of pulmonary fibrosis and strategies aimed at silencing or suppressing Acp5 could be considered as potential therapeutic approaches against pulmonary fibrosis. Idiopathic pulmonary fibrosis is a fatal lung disease with limited treatment options. Here the authors show that tartrate-resistant acid phosphatase 5 (Acp5) promotes lung fibrosis by enhancing beta-catenin signaling and that inhibition of Acp5 can reverse stablished pulmonary fibrosis.
Collapse
Affiliation(s)
- Yinan Hu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100029, Beijing, China
| | - Qi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Qing Zhou
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yanhan Deng
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Juan Liu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lei Zhang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Weining Xiong
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China. .,Department of Pulmonary and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai, 200011, China.
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
25
|
Huang Q, Liu X, Critchley H, Fu Z, Guo S. How does the extent of fibrosis in adenomyosis lesions contribute to heavy menstrual bleeding? Reprod Med Biol 2022; 21:e12442. [PMID: 35386380 PMCID: PMC8967287 DOI: 10.1002/rmb2.12442] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/29/2021] [Accepted: 01/16/2022] [Indexed: 12/19/2022] Open
Abstract
Purpose To investigate how the extent of fibrosis in adenomyosis lesions contributes to heavy menstrual bleeding (HMB). Methods We recruited 57 women with histologically confirmed adenomyosis, 29 of whom reported moderate/heavy bleeding (MHB) (menstrual blood loss (MBL) ≥20 but <100 mL) and the remaining 28, excessive MBL (EXB; ≥100 mL). Lesional stiffness was measured by transvaginal elastosonography. Full-thickness uterine tissue columns containing the lesion and its neighboring endometrial-myometrial interface (EMI) and endometrial tissues were evaluated for tissue fibrosis and immunohistochemical analysis of HIF-1α, COX-2, EP2, and EP4. Results The lesional stiffness in the EXB group was significantly higher than that of MHB, and consistently, the extent of lesional fibrosis and the extent of tissue fibrosis in both EMI and eutopic endometrium were also significantly higher. In adenomyotic lesions and their neighboring EMI and eutopic endometrial tissues, the immunostaining of HIF-1α, COX-2, EP2, and EP4 was significantly reduced. The extent of fibrosis and the immunostaining levels of HIF-1α, COX-2, EP2, and EP4 were negatively correlated in all tissues. Conclusions Lesional fibrosis begets stiffening matrix, propagating fibrosis to neighboring EMI and eutopic endometrium, resulting in reduced PGE2 and HIF-1α signaling, and thus likely reduced hypoxia necessary for endometrial repair, leading to HMB.
Collapse
Affiliation(s)
- Qingqing Huang
- Department of GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xishi Liu
- Department of GynecologyShanghai OB/GYN HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
| | - Hilary Critchley
- MRC Centre for Reproductive HealthUniversity of EdinburghThe Queen's Medical Research InstituteEdinburghUK
| | - Zhongpeng Fu
- Department of Ultrasound ImagingShanghai OB/GYN HospitalFudan UniversityShanghaiChina
| | - Sun‐Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
- Research InstituteShanghai OB/GYN HospitalFudan UniversityShanghaiChina
| |
Collapse
|
26
|
Huang Q, Liu X, Guo SW. Higher fibrotic content of endometriotic lesions is associated with diminished prostaglandin E2 signaling. Reprod Med Biol 2021; 21:e12423. [PMID: 34938147 PMCID: PMC8656679 DOI: 10.1002/rmb2.12423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose While the prevailing view holds that the prostaglandin E2 (PGE2) signaling plays a vital role in endometriosis, PGE2 also is known to be anti-fibrotic. We investigated the immunostaining of COX-2, EP2, and EP4, along with fibrotic content in ovarian endometrioma (OE) and deep endometriosis (DE) lesions, and in OE lesions from adolescent and adult patients. In addition, we evaluated the effect of substrate stiffness on the expression of COX-2, EP2, and EP4 in endometrial stromal cells. Methods Immunohistochemistry analysis of COX-2, EP2, and EP4, along with the quantification of lesional fibrosis, was conducted for OE and DE lesion samples and also OE lesion samples from adolescent and adult patients. The effect of substrate rigidity on fibroblast-to-myofibroblast transdifferentiation (FMT) and the expression of COX-2, EP2, and EP4, with or without TGF-β1 stimulation, were investigated. Results The immunostaining of COX-2, EP2, and EP4 was substantially reduced in endometriotic lesions as lesions became more fibrotic. Both TGF-β1 stimulation and stiff substrates induced FMT and reduced the expression of COX-2, EP2, and EP4. Conclusions Since fibrosis is a common feature of endometriosis, our results thus cast doubts on the use of therapeutics that suppresses the PGE2 signaling pathway, either by inhibiting COX-2 or EP2/EP4.
Collapse
Affiliation(s)
- Qingqing Huang
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,The Third Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Xishi Liu
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| |
Collapse
|
27
|
Atallah R, Gindlhuber J, Platzer W, Bärnthaler T, Tatzl E, Toller W, Strutz J, Rittchen S, Luschnig P, Birner-Gruenberger R, Wadsack C, Heinemann A. SUCNR1 Is Expressed in Human Placenta and Mediates Angiogenesis: Significance in Gestational Diabetes. Int J Mol Sci 2021; 22:12048. [PMID: 34769478 PMCID: PMC8585094 DOI: 10.3390/ijms222112048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Placental hypervascularization has been reported in pregnancy-related pathologies such as gestational diabetes mellitus (GDM). Nevertheless, the underlying causes behind this abnormality are not well understood. In this study, we addressed the expression of SUCNR1 (cognate succinate receptor) in human placental endothelial cells and hypothesized that the succinate-SUCNR1 axis might play a role in the placental hypervascularization reported in GDM. We measured significantly higher succinate levels in placental tissue lysates from women with GDM relative to matched controls. In parallel, SUCNR1 protein expression was upregulated in GDM tissue lysates as well as in isolated diabetic fetoplacental arterial endothelial cells (FpECAds). A positive correlation of SUCNR1 and vascular endothelial growth factor (VEGF) protein levels in tissue lysates indicated a potential link between the succinate-SUCNR1 axis and placental angiogenesis. In our in vitro experiments, succinate prompted hallmarks of angiogenesis in human umbilical vein endothelial cells (HUVECs) such as proliferation, migration and spheroid sprouting. These results were further validated in fetoplacental arterial endothelial cells (FpECAs), where succinate induced endothelial tube formation. VEGF gene expression was increased in response to succinate in both HUVECs and FpECAs. Yet, knockdown of SUCNR1 in HUVECs led to suppression of VEGF gene expression and abrogated the migratory ability and wound healing in response to succinate. In conclusion, our data underline SUCNR1 as a promising metabolic target in human placenta and as a potential driver of enhanced placental angiogenesis in GDM.
Collapse
MESH Headings
- Adult
- Case-Control Studies
- Cells, Cultured
- Diabetes, Gestational/genetics
- Diabetes, Gestational/metabolism
- Diabetes, Gestational/physiopathology
- Endothelium, Vascular/metabolism
- Female
- Human Umbilical Vein Endothelial Cells
- Humans
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic/genetics
- Placenta/blood supply
- Placenta/metabolism
- Pregnancy
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
Collapse
Affiliation(s)
- Reham Atallah
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (R.A.); (W.P.); (T.B.); (S.R.); (P.L.)
- National Research Centre, Cairo 12622, Egypt
| | - Juergen Gindlhuber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (R.B.-G.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria
| | - Wolfgang Platzer
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (R.A.); (W.P.); (T.B.); (S.R.); (P.L.)
| | - Thomas Bärnthaler
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (R.A.); (W.P.); (T.B.); (S.R.); (P.L.)
| | - Eva Tatzl
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8036 Graz, Austria; (E.T.); (W.T.)
| | - Wolfgang Toller
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8036 Graz, Austria; (E.T.); (W.T.)
| | - Jasmin Strutz
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (J.S.); (C.W.)
- Institute of Biomedical Science, Carinthia University of Applied Sciences, 9020 Klagenfurt, Austria
| | - Sonja Rittchen
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (R.A.); (W.P.); (T.B.); (S.R.); (P.L.)
| | - Petra Luschnig
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (R.A.); (W.P.); (T.B.); (S.R.); (P.L.)
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (R.B.-G.)
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (J.S.); (C.W.)
| | - Akos Heinemann
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (R.A.); (W.P.); (T.B.); (S.R.); (P.L.)
| |
Collapse
|
28
|
Rittchen S, Jandl K, Lanz I, Reiter B, Ferreirós N, Kratz D, Lindenmann J, Brcic L, Bärnthaler T, Atallah R, Olschewski H, Sturm EM, Heinemann A. Monocytes and Macrophages Serve as Potent Prostaglandin D 2 Sources during Acute, Non-Allergic Pulmonary Inflammation. Int J Mol Sci 2021; 22:ijms222111697. [PMID: 34769126 PMCID: PMC8584273 DOI: 10.3390/ijms222111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Acute respiratory inflammation, most commonly resulting from bacterial or viral infection, is one of the leading causes of death and disability worldwide. The inflammatory lipid mediator prostaglandin D2 (PGD2) and its rate-limiting enzyme, hematopoietic PGD synthase (hPGDS), are well-known drivers of allergic pulmonary inflammation. Here, we sought to investigate the source and role of hPGDS-derived PGD2 in acute pulmonary inflammation. Murine bronchoalveolar monocytes/macrophages from LPS- but not OVA-induced lung inflammation released significant amounts of PGD2. Accordingly, human monocyte-derived macrophages expressed high basal levels of hPGDS and released significant levels of PGD2 after LPS/IFN-γ, but not IL-4 stimulation. Human peripheral blood monocytes secreted significantly more PGD2 than monocyte-derived macrophages. Using human precision-cut lung slices (PCLS), we observed that LPS/IFN-γ but not IL-4/IL-13 drive PGD2 production in the lung. HPGDS inhibition prevented LPS-induced PGD2 release by human monocyte-derived macrophages and PCLS. As a result of hPGDS inhibition, less TNF-α, IL-6 and IL-10 could be determined in PCLS-conditioned medium. Collectively, this dataset reflects the time-dependent release of PGD2 by human phagocytes, highlights the importance of monocytes and macrophages as PGD2 sources and suggests that hPGDS inhibition might be a potential therapeutic option for acute, non-allergic lung inflammation.
Collapse
Affiliation(s)
- Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Katharina Jandl
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Ilse Lanz
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Bernhard Reiter
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (N.F.); (D.K.)
| | - Daniel Kratz
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (N.F.); (D.K.)
| | - Jörg Lindenmann
- Department of Surgery, Divison of Thoracic and Hyperbaric Surgery, Medical University of Graz, 8010 Graz, Austria;
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Thomas Bärnthaler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Reham Atallah
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8010 Graz, Austria
| | - Eva M. Sturm
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
| | - Akos Heinemann
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (S.R.); (K.J.); (I.L.); (B.R.); (T.B.); (R.A.); (E.M.S.)
- BioTechMed, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-74112
| |
Collapse
|
29
|
Sun CC, Zhou ZQ, Yang D, Chen ZL, Zhou YY, Wen W, Feng C, Zheng L, Peng XY, Tang CF. Recent advances in studies of 15-PGDH as a key enzyme for the degradation of prostaglandins. Int Immunopharmacol 2021; 101:108176. [PMID: 34655851 DOI: 10.1016/j.intimp.2021.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
15-hydroxyprostaglandin dehydrogenase (15-PGDH; encoded by HPGD) is ubiquitously expressed in mammalian tissues and catalyzes the degradation of prostaglandins (PGs; mainly PGE2, PGD2, and PGF2α) in a process mediated by solute carrier organic anion transport protein family member 2A1 (SLCO2A1; also known as PGT, OATP2A1, PHOAR2, or SLC21A2). As a key enzyme, 15-PGDH catalyzes the rapid oxidation of 15-hydroxy-PGs into 15-keto-PGs with lower biological activity. Increasing evidence suggests that 15-PGDH plays a key role in many physiological and pathological processes in mammals and is considered a potential pharmacological target for preventing organ damage, promoting bone marrow graft recovery, and enhancing tissue regeneration. Additionally, results of whole-exome analyses suggest that recessive inheritance of an HPGD mutation is associated with idiopathic hypertrophic osteoarthropathy. Interestingly, as a tumor suppressor, 15-PGDH inhibits proliferation and induces the differentiation of cancer cells (including those associated with colorectal, lung, and breast cancers). Furthermore, a recent study identified 15-PGDH as a marker of aging tissue and a potential novel therapeutic target for resisting the complex pathology of aging-associated diseases. Here, we review and summarise recent information on the molecular functions of 15-PGDH and discuss its pathophysiological implications.
Collapse
Affiliation(s)
- Chen-Chen Sun
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zuo-Qiong Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Dong Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zhang-Lin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Yun-Yi Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Wei Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Chen Feng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Xi-Yang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| |
Collapse
|
30
|
Cheng H, Huang H, Guo Z, Chang Y, Li Z. Role of prostaglandin E2 in tissue repair and regeneration. Am J Cancer Res 2021; 11:8836-8854. [PMID: 34522214 PMCID: PMC8419039 DOI: 10.7150/thno.63396] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue regeneration following injury from disease or medical treatment still represents a challenge in regeneration medicine. Prostaglandin E2 (PGE2), which involves diverse physiological processes via E-type prostanoid (EP) receptor family, favors the regeneration of various organ systems following injury for its capabilities such as activation of endogenous stem cells, immune regulation, and angiogenesis. Understanding how PGE2 modulates tissue regeneration and then exploring how to elevate the regenerative efficiency of PGE2 will provide key insights into the tissue repair and regeneration processes by PGE2. In this review, we summarized the application of PGE2 to guide the regeneration of different tissues, including skin, heart, liver, kidney, intestine, bone, skeletal muscle, and hematopoietic stem cell regeneration. Moreover, we introduced PGE2-based therapeutic strategies to accelerate the recovery of impaired tissue or organs, including 15-hydroxyprostaglandin dehydrogenase (15-PGDH) inhibitors boosting endogenous PGE2 levels and biomaterial scaffolds to control PGE2 release.
Collapse
|
31
|
Li K, Zhao J, Wang M, Niu L, Wang Y, Li Y, Zheng Y. The Roles of Various Prostaglandins in Fibrosis: A Review. Biomolecules 2021; 11:biom11060789. [PMID: 34073892 PMCID: PMC8225152 DOI: 10.3390/biom11060789] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Organ fibrosis is a common pathological result of various chronic diseases with multiple causes. Fibrosis is characterized by the excessive deposition of extracellular matrix and eventually leads to the destruction of the tissue structure and impaired organ function. Prostaglandins are produced by arachidonic acid through cyclooxygenases and various prostaglandin-specific synthases. Prostaglandins bind to homologous receptors on adjacent tissue cells in an autocrine or paracrine manner and participate in the regulation of a series of physiological or pathological processes, including fibrosis. This review summarizes the properties, synthesis, and degradation of various prostaglandins, as well as the roles of these prostaglandins and their receptors in fibrosis in multiple models to reveal the clinical significance of prostaglandins and their receptors in the treatment of fibrosis.
Collapse
|
32
|
Dopamine receptor agonists ameliorate bleomycin-induced pulmonary fibrosis by repressing fibroblast differentiation and proliferation. Biomed Pharmacother 2021; 139:111500. [PMID: 33901873 DOI: 10.1016/j.biopha.2021.111500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fatal interstitial lung disease, with limited therapeutic options. The abnormal and uncontrolled differentiation and proliferation of fibroblasts have been confirmed to play a crucial role in driving the pathogenesis of IPF. Therefore, effective and well-tolerated antifibrotic agents that interfere with fibroblasts would be an ideal treatment, but no such treatments are available. Remarkably, we found that dopamine (DA) receptor D1 (D1R) and DA receptor D2 (D2R) were both upregulated in myofibroblasts in lungs of IPF patients and a bleomycin (BLM)-induced mouse model. Then, we explored the safety and efficacy of DA, fenoldopam (FNP, a selective D1R agonist) and sumanirole (SMR, a selective D2R agonist) in reversing BLM-induced pulmonary fibrosis. Further data showed that DA receptor agonists exerted potent antifibrotic effects in BLM-induced pulmonary fibrosis by attenuating the differentiation and proliferation of fibroblasts. Detailed pathway analysis revealed that DA receptor agonists decreased the phosphorylation of Smad2 induced by TGF-β1 in primary human lung fibroblasts (PHLFs) and IMR-90 cells. Overall, DA receptor agonists protected mice from BLM-induced pulmonary fibrosis and may be therapeutically beneficial for IPF patients in a clinical setting.
Collapse
|
33
|
Fortier SM, Penke LR, King D, Pham TX, Ligresti G, Peters-Golden M. Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions. JCI Insight 2021; 6:144799. [PMID: 33561015 PMCID: PMC8026183 DOI: 10.1172/jci.insight.144799] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Myofibroblasts are the major cellular source of collagen, and their accumulation - via differentiation from fibroblasts and resistance to apoptosis - is a hallmark of tissue fibrosis. Clearance of myofibroblasts by dedifferentiation and restoration of apoptosis sensitivity has the potential to reverse fibrosis. Prostaglandin E2 (PGE2) and mitogens such as FGF2 have each been shown to dedifferentiate myofibroblasts, but - to our knowledge - the resultant cellular phenotypes have neither been comprehensively characterized or compared. Here, we show that PGE2 elicited dedifferentiation of human lung myofibroblasts via cAMP/PKA, while FGF2 utilized MEK/ERK. The 2 mediators yielded transitional cells with distinct transcriptomes, with FGF2 promoting but PGE2 inhibiting proliferation and survival. The gene expression pattern in fibroblasts isolated from the lungs of mice undergoing resolution of experimental fibrosis resembled that of myofibroblasts treated with PGE2 in vitro. We conclude that myofibroblast dedifferentiation can proceed via distinct programs exemplified by treatment with PGE2 and FGF2, with dedifferentiation occurring in vivo most closely resembling the former.
Collapse
Affiliation(s)
| | - Loka R. Penke
- Division of Pulmonary and Critical Care Medicine and
| | - Dana King
- BCRF Bioinformatics Core, University of Michigan, Ann Arbor, Michigan, USA
| | - Tho X. Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
34
|
Croasdell Lucchini A, Gachanja NN, Rossi AG, Dorward DA, Lucas CD. Epithelial Cells and Inflammation in Pulmonary Wound Repair. Cells 2021; 10:339. [PMID: 33562816 PMCID: PMC7914803 DOI: 10.3390/cells10020339] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory diseases are frequently characterised by epithelial injury, airway inflammation, defective tissue repair, and airway remodelling. This may occur in a subacute or chronic context, such as asthma and chronic obstructive pulmonary disease, or occur acutely as in pathogen challenge and acute respiratory distress syndrome (ARDS). Despite the frequent challenge of lung homeostasis, not all pulmonary insults lead to disease. Traditionally thought of as a quiescent organ, emerging evidence highlights that the lung has significant capacity to respond to injury by repairing and replacing damaged cells. This occurs with the appropriate and timely resolution of inflammation and concurrent initiation of tissue repair programmes. Airway epithelial cells are key effectors in lung homeostasis and host defence; continual exposure to pathogens, toxins, and particulate matter challenge homeostasis, requiring robust defence and repair mechanisms. As such, the epithelium is critically involved in the return to homeostasis, orchestrating the resolution of inflammation and initiating tissue repair. This review examines the pivotal role of pulmonary airway epithelial cells in initiating and moderating tissue repair and restitution. We discuss emerging evidence of the interactions between airway epithelial cells and candidate stem or progenitor cells to initiate tissue repair as well as with cells of the innate and adaptive immune systems in driving successful tissue regeneration. Understanding the mechanisms of intercellular communication is rapidly increasing, and a major focus of this review includes the various mediators involved, including growth factors, extracellular vesicles, soluble lipid mediators, cytokines, and chemokines. Understanding these areas will ultimately identify potential cells, mediators, and interactions for therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | | | - Christopher D. Lucas
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh EH16 4TJ, UK; (A.C.L.); (N.N.G.); (A.G.R.); (D.A.D.)
| |
Collapse
|
35
|
Berhan A, Harris T, Jaffar J, Jativa F, Langenbach S, Lönnstedt I, Alhamdoosh M, Ng M, Lee P, Westall G, Wilson N, Wilson M, Stewart AG. Cellular Microenvironment Stiffness Regulates Eicosanoid Production and Signaling Pathways. Am J Respir Cell Mol Biol 2021; 63:819-830. [PMID: 32926636 DOI: 10.1165/rcmb.2020-0227oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pathological changes in the biomechanical environment are implicated in the progression of idiopathic pulmonary fibrosis (IPF). Stiffened matrix augments fibroblast proliferation and differentiation and activates TGF-β1 (transforming growth factor-β1). Stiffened matrix impairs the synthesis of the antifibrogenic lipid mediator prostaglandin E2 (PGE2) and reduces the expression of the rate-limiting prostanoid biosynthetic enzyme cyclooxygenase-2 (COX-2). We now show that prostaglandin E synthase (PTGES), the final enzyme in the PGE2 biosynthetic pathway, is expressed at lower levels in the lungs of patients with IPF. We also show substantial induction of COX-2, PTGES, prostaglandin E receptor 4 (EP4), and cytosolic phospholipase A2 (cPLA2) expression in human lung fibroblasts cultured in soft collagen hydrogels or in spheroids compared with conventional culture on stiff plastic culture plates. Induction of COX-2, cPLA2, and PTGES expression in spheroid cultures was moderately inhibited by the p38 mitogen-activated protein kinase inhibitor SB203580. The induction of prostanoid biosynthetic enzyme expression was accompanied by an increase in PGE2 levels only in non-IPF-derived fibroblast spheroids. Our study reveals an extensive dysregulation of prostanoid biosynthesis and signaling pathways in IPF-derived fibroblasts, which are only partially abrogated by culture in soft microenvironments.
Collapse
Affiliation(s)
- Asres Berhan
- Department of Pharmacology and Therapeutics, and
| | - Trudi Harris
- Department of Pharmacology and Therapeutics, and
| | - Jade Jaffar
- Department of Allergy, Immunology, Respiratory Medicine, The Alfred Hospital/Monash University, Melbourne, Victoria, Australia
| | - Fernando Jativa
- Department of Pharmacology and Therapeutics, and.,Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | - Milica Ng
- CSL Ltd., Melbourne, Victoria, Australia; and
| | - Peter Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Glen Westall
- Department of Allergy, Immunology, Respiratory Medicine, The Alfred Hospital/Monash University, Melbourne, Victoria, Australia
| | - Nick Wilson
- CSL Ltd., Melbourne, Victoria, Australia; and
| | | | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, and.,ARC Centre for Personalised Therapeutics Technologies, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Zhu K, Xu A, Xia W, Li P, Han R, Wang E, Zhou S, Wang R. Integrated analysis of the molecular mechanisms in idiopathic pulmonary fibrosis. Int J Med Sci 2021; 18:3412-3424. [PMID: 34522168 PMCID: PMC8436110 DOI: 10.7150/ijms.61309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of idiopathic interstitial pneumonia. Some miRNAs may be associated with IPF and may affect the occurrence and development of IPF in various pathways. Many miRNAs and genes that may be involved in the development of IPF have been discovered using chip and high throughput technologies. Methods: We analyzed one miRNA and four mRNA databases. We identified hub genes and pathways related to IPF using GO, KEGG enrichment analysis, gene set variation analysis (GSVA), PPI network construction, and hub gene analysis. A comprehensive analysis of differentially expressed miRNAs (DEMs), predicted miRNA target genes, and differentially expressed genes (DEGs) led to the creation of a miRNA-mRNA regulatory network in IPF. Results: We found 203 DEGs and 165 DEMs that were associated with IPF. The findings of enrichment analyses showed that these DEGs were mainly involved in antimicrobial humoral response, antimicrobial humoral immune response mediated by antimicrobial peptide, extracellular matrix organization, cell killing, and organ or tissue specific immune response. The VEGFA, CDH5, and WNT3A genes overlapped between hub genes and the miRNA-mRNA regulatory network. The miRNAs including miR-199b-5p, miR-140-5p, miR-199a-5p, miR-125A-5p, and miR-107 that we predicted would regulate the VEGFA, CDH5, and WNT3A genes, which were also associated with IPF or other fibrosis-related diseases. GSVA indicated that metabolic processes of UTP and IMP, immune response, regulation of Th2 cell cytokine production, and positive regulation of NK cell-mediated immunity are associated with the pathogenesis and treatment of IPF. These pathways also interact with VEGFA, CDH5, and WNT3A. Conclusion: These findings provide a new research direction for the diagnosis and treatment of IPF.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Aiqun Xu
- Department of General Medicine, Hefei Second People's Hospital, Hefei 230001, China
| | - Wanli Xia
- Department of Thoracic Surgery, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Enze Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sijing Zhou
- Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China.,Hefei Prevention and Treatment Center for Occupational Diseases, Hefei 230022, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
37
|
Jandl K, Kwapiszewska G. Stiffness of the Extracellular Matrix: A Regulator of Prostaglandins in Pulmonary Fibrosis? Am J Respir Cell Mol Biol 2020; 63:721-722. [PMID: 32946267 PMCID: PMC7790137 DOI: 10.1165/rcmb.2020-0398ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Austria.,Otto Loewi Research Center, Division of Pharmacology Medical University of Graz Graz, Austria and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Austria.,Otto Loewi Research Center, Division of Physiology Medical University of Graz Graz, Austria
| |
Collapse
|
38
|
Understanding Fibrosis in Systemic Sclerosis: Novel and Emerging Treatment Approaches. Curr Rheumatol Rep 2020; 22:77. [DOI: 10.1007/s11926-020-00953-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
39
|
Smith JNP, Witkin MD, Jogasuria AP, Christo KF, Raffay TM, Markowitz SD, Desai AB. Therapeutic targeting of 15-PGDH in murine pulmonary fibrosis. Sci Rep 2020; 10:11657. [PMID: 32669620 PMCID: PMC7363833 DOI: 10.1038/s41598-020-68336-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by interstitial remodeling and pulmonary dysfunction. The etiology of IPF is not completely understood but involves pathologic inflammation and subsequent failure to resolve fibrosis in response to epithelial injury. Treatments for IPF are limited to anti-inflammatory and immunomodulatory agents, which are only partially effective. Prostaglandin E2 (PGE2) disrupts TGFβ signaling and suppresses myofibroblast differentiation, however practical strategies to raise tissue PGE2 during IPF have been limited. We previously described the discovery of a small molecule, (+)SW033291, that binds with high affinity to the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and increases PGE2 levels. Here we evaluated pulmonary 15-PGDH expression and activity and tested whether pharmacologic 15-PGDH inhibition (PGDHi) is protective in a mouse model of bleomycin-induced pulmonary fibrosis (PF). Long-term PGDHi was well-tolerated, reduced the severity of pulmonary fibrotic lesions and extracellular matrix remodeling, and improved pulmonary function in bleomycin-treated mice. Moreover, PGDHi attenuated both acute inflammation and weight loss, and decreased mortality. Endothelial cells and macrophages are likely targets as these cell types highly expressed 15-PGDH. In conclusion, PGDHi ameliorates inflammatory pathology and fibrosis in murine PF, and may have clinical utility to treat human disease.
Collapse
Affiliation(s)
- Julianne N P Smith
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Matthew D Witkin
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alvin P Jogasuria
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kelsey F Christo
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Thomas M Raffay
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanford D Markowitz
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA. .,University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA.
| | - Amar B Desai
- Department of Medicine, and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
40
|
Chang X, Xing L, Wang Y, Zhou TJ, Shen LJ, Jiang HL. Nanoengineered immunosuppressive therapeutics modulating M1/M2 macrophages into the balanced status for enhanced idiopathic pulmonary fibrosis therapy. NANOSCALE 2020; 12:8664-8678. [PMID: 32227023 DOI: 10.1039/d0nr00750a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effective treatment in clinic for idiopathic pulmonary fibrosis (IPF) remains a challenge due to low drug accumulation in lungs and imbalanced polarization of pro/anti-inflammatory macrophages (M1/M2 macrophages). Herein, a novel endogenous cell-targeting nanoplatform (PNCE) is developed for enhanced IPF treatment efficacy through modulating M1/M2 macrophages into the balanced status to suppress fibroblast over-activation. Notably, PNCE loaded with nintedanib (NIN) and colchicine (COL) can firstly target endogenous monocyte-derived multipotent cells (MOMCs) and then be effectively delivered into IPF lungs due to the homing ability of MOMCs, and detached sensitively from MOMCs by matrix metalloproteinases-2 (MMP-2) over-expressed in IPF lungs. After PNCE selectively accumulated within fibrosis foci, COL can mildly modulate the polarization of M1 macrophages into M2 macrophages to balance innate immune responses, which can enhance the suppressing effect of NIN on fibroblast activation, further improving the IPF therapy. Altogether, PNCE has two collaborative steps including the inhibition of innate immune responses accompanied by the decrease of fibroblast populations in IPF lungs, achieving a stronger and excellent anti-fibrotic efficacy both in vitro and in vivo. This endogenous cell-based engineered liposomal nanoplatform not only allows therapeutic drugs to take effect selectively in vivo, but also provides an alternative strategy for an enhanced curative effect by modulating innate immune responses in IPF therapy.
Collapse
Affiliation(s)
- Xin Chang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, China.
| | | | | | | | | | | |
Collapse
|