1
|
Pulvirenti F, Milito C, Cinetto F, Garzi G, Sardella G, Spadaro G, Lippi F, Guarnieri V, Cinicola BL, Carrabba M, Guadagnolo D, Fabio G, Martire B, Cancrini C, Lanzoni G, Finocchi A, Di Matteo G, Pompilii E, Ferrari S, Quinti I. The dilemma of X-linked agammaglobulinemia carriers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100384. [PMID: 39867744 PMCID: PMC11759626 DOI: 10.1016/j.jacig.2024.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025]
Abstract
Background Many patients with X-linked agammaglobulinemia (XLA) nowadays have reached adulthood, as well as their sisters, possibly carriers of a deleterious Bruton tyrosine kinase variant. Studies on motherhood outcomes in families with XLA are lacking. Objective We sought to investigate adherence to carrier status screening, interest in preconception and prenatal genetic counseling, and reproductive decisions in relatives with XLA. Methods In this multicenter, retrospective cohort study, we collected a 3-generation pedigree and data on mothers and sisters of patients with XLA, including carrier status and pregnancy outcome. Results Data on 53 adults with XLA, 52 mothers, and 33 sisters were collected. All XLA sisters received genetic counseling. Forty percent of the sisters chose to undergo carrier status determination, and 60% of them chose invasive prenatal testing. The main reasons for the sisters to decide not to undergo genetic testing were their young age and the willingness to carry on with the pregnancy regardless of the outcome of the genetic test, followed by the willingness to postpone the decision at the time of pregnancy and the decision to not have children. Prenatal testing resulted in 5 XLA diagnoses, with 2 pregnancy terminations, 1 miscarriage, and 2 XLA live births. Three carriers refused prenatal testing and had 6 live births, including 3 XLA-affected sons. One sister was diagnosed as a carrier after the birth of an XLA-affected son. In total, 9 XLA diagnoses were made, including 6 live births. Conclusions A number of XLA sister carriers decided to carry on with their pregnancy after receiving the diagnosis of an affected fetus or after refusing prenatal testing. We propose to initiate a more extensive collaborative study to verify the effect of genetic counseling on families with XLA in other cohorts from different countries.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Sapienza University Hospital Policlinico Umberto I, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, Treviso, Department of Medicine—DIMED, University of Padova, Padua, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Germano Sardella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesca Lippi
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Valentina Guarnieri
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Bianca Laura Cinicola
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Carrabba
- Department of Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Giovanna Fabio
- Department of Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Baldassarre Martire
- Pediatrics and Neonatology Unit, Maternal-Infant Department, Monsignor A. R. Dimiccoli Hospital, Barletta, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, UOC Clinical Immunology and Vaccinology IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine University of Rome Tor Vergata, Rome, Italy
| | - Giulia Lanzoni
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Finocchi
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, UOC Clinical Immunology and Vaccinology IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, UOC Clinical Immunology and Vaccinology IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine University of Rome Tor Vergata, Rome, Italy
| | - Eva Pompilii
- Next Fertility GynePro, NextClinics International, Bologna, Italy
| | - Simona Ferrari
- Next Fertility GynePro, NextClinics International, Bologna, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Berbers RM, Paganelli FL, van Montfrans JM, Ellerbroek PM, Viveen MC, Rogers MRC, Salomons M, Schuurmans J, van Stigt Thans M, Vanmaris RMM, Brosens LAA, van der Wal MM, Dalm VASH, van Hagen PM, van de Ven AAJM, Uh HW, van Wijk F, Willems RJL, Leavis HL. Gut microbial dysbiosis, IgA, and Enterococcus in common variable immunodeficiency with immune dysregulation. MICROBIOME 2025; 13:12. [PMID: 39819634 PMCID: PMC11740714 DOI: 10.1186/s40168-024-01982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/19/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by hypogammaglobulinemia and recurrent infections. Significant morbidity and mortality are caused by immune dysregulation complications (CVIDid), which affect around one-third of CVID patients and have a poorly understood etiology. Here, we investigate the hypothesis that gut microbial dysbiosis contributes to the inflammation underlying CVIDid. RESULTS Bacterial invasion of colonic crypts was observed in CVID (3/15) and X-linked agammaglobulinemia (XLA, 1/3), but not in healthy control (HC, 0/9) biopsies. Fecal gut microbiota was characterized using 16S rRNA-targeted amplicon sequencing. Increased bacterial load, decreased alpha diversity and distinct beta diversity were observed in CVIDid (n = 42) compared to HC (n = 48), and similar results were seen in CVID with IgA deficiency (n = 40) compared to HC. CVIDid and CVID-IgA showed enrichment of the genus Enterococcus, and in vitro studies confirmed the inflammatory potential of Enterococcus gallinarum and Enterococcus hirae in patient monocytes. CONCLUSIONS This study further supports the hypothesis that a dysregulated gut microbiota, with IgA deficiency as an important driving factor, contributes to systemic inflammation in primary antibody deficiency, and introduces enterococci as potential pathobionts in CVIDid. Video Abstract.
Collapse
Affiliation(s)
- Roos-Marijn Berbers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Pauline M Ellerbroek
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Moniek Salomons
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jaap Schuurmans
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Martine van Stigt Thans
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Remi M M Vanmaris
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Maria Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Immunology, Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Immunology, Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Annick A J M van de Ven
- Departments of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands
| | - Hae-Won Uh
- Department of Data Science and Biostatistics, Julius Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Franco S, Fuchs J, Dinner S, Ma S. B-ALL in a 21-year-old male with X-linked agammaglobulinemia (XLA): a case report and review of B-cell malignancies in XLA. Leuk Lymphoma 2024:1-3. [PMID: 39671464 DOI: 10.1080/10428194.2024.2439529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Affiliation(s)
- Stephanie Franco
- Department of Internal Medicine, Northwestern Medicine, Chicago, IL, USA
| | - Joseph Fuchs
- Department of Internal Medicine, Northwestern Medicine, Chicago, IL, USA
| | - Shira Dinner
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL , USA
| | - Shuo Ma
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL , USA
| |
Collapse
|
4
|
Makary CA, Azar A, Gudis D, Crawford A, Hannikainen P, Kim J, Joe S, Kimple AJ, Lam K, Lee JT, Luong AU, Marcus S, McArdle E, Mullings W, Peppers BP, Lewandrowski C, Lin SY, Ramadan HH, Rose AS, Ryan L, Toskala E, Baroody FM. Evaluation and treatment of rhinosinusitis with primary antibody deficiency in children: Evidence-based review with recommendations. Int Forum Allergy Rhinol 2024; 14:1776-1801. [PMID: 39404739 DOI: 10.1002/alr.23468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND There is clear evidence that prevalence of primary antibody deficiency (PAD) is higher in children with chronic rhinosinusitis (CRS) than in the general population. The purpose of this multi-institutional and multidisciplinary evidence-based review with recommendations (EBRR) is to thoroughly review the literature on rhinosinusitis with PAD, summarize the existing evidence, and provide recommendations on the evaluation and management of rhinosinusitis in children with PAD. METHODS The PubMed, Embase, and Cochrane databases were systematically reviewed from inception through December 2023. Studies on the evaluation and management of rhinosinusitis in PAD patients were included. An iterative review process was utilized in accordance with EBRR guidelines. Levels of evidence and recommendations on the evaluation and management principles for PAD were generated. RESULTS A total of 50 studies were included in this evidence-based review. These studies were evaluated on the incidence of PAD in rhinosinusitis patients, the incidence of rhinosinusitis in PAD patients, and on the different treatment modalities used and their outcome. The aggregate quality of evidence varied across the reviewed domains. CONCLUSION Based on the currently available evidence, the incidence of PAD in children with recalcitrant CRS can be significantly elevated. Despite the presence of multiple studies addressing rhinosinusitis and PAD, the level of evidence supporting different treatment options continues to be lacking. Optimal management requires a multidisciplinary approach through collaboration with clinical immunology. There is need for higher level studies that compare different treatments in children with PAD and rhinosinusitis.
Collapse
Affiliation(s)
- Chadi A Makary
- Department of Otolaryngology-Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, USA
| | - Antoine Azar
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Gudis
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York, USA
| | - Anna Crawford
- Health Sciences Library, Morgantown, West Virginia, USA
| | - Paavali Hannikainen
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University, Chicago, Illinois, USA
| | - Jean Kim
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Joe
- Department of Otolaryngology-Head and Neck Surgery, University of Illinois, Chicago, Illinois, USA
| | - Adam J Kimple
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kent Lam
- Department of Otolaryngology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Jivianne T Lee
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Amber U Luong
- Department of Otorhinolaryngology, McGovern Medical School of the University of Texas Health Science Center, Houston, Texas, USA
| | - Sonya Marcus
- Division of Otolaryngology-Head and Neck Surgery, Stony Brook University, Stony Brook, New York, USA
| | - Erica McArdle
- Department of Otolaryngology-Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, USA
| | - Warren Mullings
- Ear Nose and Throat Department, Kingston Public Hospital, Kingston, Jamaica
| | - Brian P Peppers
- Division of Adult and Pediatric Allergy and Immunology, Department of Pediatrics, West Virginia University, Morgantown, West Virginia, USA
| | - Callum Lewandrowski
- Division of Adult and Pediatric Allergy and Immunology, Department of Pediatrics, West Virginia University, Morgantown, West Virginia, USA
| | - Sandra Y Lin
- Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hassan H Ramadan
- Department of Otolaryngology-Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, USA
| | - Austin S Rose
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lindsey Ryan
- Department of Otolaryngology-Head and Neck Surgery, University of South Florida, Tampa, Florida, USA
| | - Elina Toskala
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fuad M Baroody
- Section of Otolaryngology-Head and Neck Surgery, The University of Chicago Medicine, The Comer Children's Hospital, Chicago, Illinois, USA
| |
Collapse
|
5
|
Wan S, Cao M, Zou J, Bai Y, Shi M, Jiang H. Case report of renal manifestations in X-linked agammaglobulinemia. Front Immunol 2024; 15:1376258. [PMID: 39119334 PMCID: PMC11307147 DOI: 10.3389/fimmu.2024.1376258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/14/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction X-linked agammaglobulinemia (XLA) is a humoral immunodeficiency disorder characterized by recurrent infections, severe hypogammaglobulinemia, and a deficiency of circulating B cells. While the hallmark clinical manifestations of XLA typically include the respiratory, dermatological, and gastrointestinal systems, renal involvement is infrequent. In this article, we report two cases of XLA with concurrent renal disease, supplemented with a review of documented cases. Case description The two cases described involve twin brothers, both presenting with respiratory tract infections and renal manifestations. Subsequent genetic testing confirmed the diagnosis of XLA. The younger brother exhibited improvement following intravenous immunoglobulin (IVIG) therapy and anti-infection treatment. Due to financial constraints, the older brother received only anti-infection and symptomatic treatments. Seven months after discharge, the older brother developed nephritis. However, he showed improvement following IVIG treatment. Conclusion Immune profiling and genetic testing should be considered in male children with recurrent infections to facilitate the effective diagnosis of XLA. Regular monitoring is also imperative to detect and treat immune-mediated renal diseases in patients with XLA.
Collapse
Affiliation(s)
- Shuisen Wan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaojia Bai
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Fasshauer M, Dinges S, Staudacher O, Völler M, Stittrich A, von Bernuth H, Wahn V, Krüger R. Monogenic Inborn Errors of Immunity with impaired IgG response to polysaccharide antigens but normal IgG levels and normal IgG response to protein antigens. Front Pediatr 2024; 12:1386959. [PMID: 38933494 PMCID: PMC11203071 DOI: 10.3389/fped.2024.1386959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
In patients with severe and recurrent infections, minimal diagnostic workup to test for Inborn Errors of Immunity (IEI) includes a full blood count, IgG, IgA and IgM. Vaccine antibodies against tetanus toxoid are also frequently measured, whereas testing for anti-polysaccharide IgG antibodies and IgG subclasses is not routinely performed by primary care physicians. This basic approach may cause a significant delay in diagnosing monogenic IEI that can present with an impaired IgG response to polysaccharide antigens with or without IgG subclass deficiency at an early stage. Our article reviews genetically defined IEI, that may initially present with an impaired IgG response to polysaccharide antigens, but normal or only slightly decreased IgG levels and normal responses to protein or conjugate vaccine antigens. We summarize clinical, genetic, and immunological findings characteristic for these IEI. This review may help clinicians to identify patients that require extended immunologic and genetic evaluations despite unremarkable basic immunologic findings. We recommend the inclusion of anti-polysaccharide IgG antibodies as part of the initial routine work-up for possible IEI.
Collapse
Affiliation(s)
- Maria Fasshauer
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig, Germany
| | - Sarah Dinges
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- Department of Immunology, Labor Berlin - Charité VivantesGmbH, Berlin, Germany
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
7
|
Sullivan NP, Maniam N, Maglione PJ. Interstitial lung diseases in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:500-506. [PMID: 37823528 DOI: 10.1097/aci.0000000000000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Our goal is to review current understanding of interstitial lung disease (ILD) affecting patients with inborn errors of immunity (IEI). This includes understanding how IEI might predispose to and promote development or progression of ILD as well as how our growing understanding of IEI can help shape treatment of ILD in these patients. Additionally, by examining current knowledge of ILD in IEI, we hope to identify key knowledge gaps that can become focus of future investigative efforts. RECENT FINDINGS Recent identification of novel IEI associated with ILD and the latest reports examining treatment of ILD in IEI are included. Of noted interest, are recent clinical studies of immunomodulatory therapy for ILD in common variable immunodeficiency. SUMMARY ILD is a frequent complication found in many IEI. This article provides a guide to identifying manifestations of ILD in IEI. We review a broad spectrum of IEI that develop ILD, including antibody deficiency and immune dysregulation disorders that promote autoimmunity and autoinflammation. This work integrates clinical information with molecular mechanisms of disease and diagnostic assessments to provide an expedient overview of a clinically relevant and expanding topic.
Collapse
Affiliation(s)
| | - Nivethietha Maniam
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Paul J Maglione
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Nishimura A, Uppuluri R, Raj R, Swaminathan VV, Cheng Y, Abu-Arja RF, Fu B, Laberko A, Albert MH, Hauck F, Bucciol G, Bigley V, Elcombe S, Kharya G, Pronk CJH, Wehr C, Neven B, Warnatz K, Meyts I, Morio T, Gennery AR, Kanegane H. An International Survey of Allogeneic Hematopoietic Cell Transplantation for X-Linked Agammaglobulinemia. J Clin Immunol 2023; 43:1827-1839. [PMID: 37454339 DOI: 10.1007/s10875-023-01551-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE X-linked agammaglobulinemia (XLA) is an inborn error of immunity caused by variants in Bruton's tyrosine kinase (BTK). XLA patients require lifelong immunoglobulin replacement therapy (IgRT). Only few XLA patients are indicated for allogeneic hematopoietic cell transplantation (HCT) because of severe complications. Accordingly, the published transplantation experience in XLA is minimal. We aimed to collect clinical data of XLA patients who received HCT in an international framework and to establish appropriate transplantation criteria and methods for XLA patients. METHODS XLA patients were recruited through a questionnaire and a literature review. The data are on patient characteristics and transplantation methods and outcomes. RESULTS In this study, twenty-two XLA patients who underwent HCT were recruited. The indication for HCT was recurrent or life-threatening infection in sixteen patients, malignancy in three, and other factors in three. A myeloablative conditioning, reduced toxicity myeloablative conditioning (RT-MAC), and reduced intensity conditioning (RIC) were selected in four, ten, and eight patients, respectively. Engraftment was achieved in 21 patients (95%). In all patients, 2-year overall survival (OS) and event-free survival (EFS) were 86% and 77%, respectively. In patients who received RT-MAC or RIC using treosulfan, busulfan, or melphalan, 2-year OS and EFS were 82% and 71%, respectively. Finally, twenty-one patients (95%) obtained complete or stable high-level mixed chimerism (50-95%), and the 1-year discontinuation rate of IgRT was 89%. CONCLUSION Based on the concept in which IgRT is the standard treatment for XLA, HCT may be an effective and safe alternative treatment option for XLA patients, and IgRT can be discontinued following transplantation. It is ideal to perform HCT in XLA patients for whom transplantation is indicated before they develop organ damage.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | | | - Yifei Cheng
- Institute of Hematology, People's Hospital, Peking University, Beijing, China
| | - Rolla F Abu-Arja
- Pediatric Blood and Marrow Transplant Program, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bin Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Alexandra Laberko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Giorgia Bucciol
- Department of Pediatrics, University Hospital Leuven, Leuven, Belgium
| | - Venetia Bigley
- Department of Immunology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Suzanne Elcombe
- Department of Immunology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gaurav Kharya
- Center for Bone Marrow Transplant and Cellular Therapy, Indraprastha Apollo Hospital, New Delhi, India
| | | | - Claudia Wehr
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Isabelle Meyts
- Department of Pediatrics, University Hospital Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, and Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
9
|
Srinivasan C, Shameli A, Ritchie B, Adatia A. Investigation of a synonymous mutation in Btk in a patient with agammaglobulinemia: A case report. Immun Inflamm Dis 2023; 11:e1049. [PMID: 37904676 PMCID: PMC10587732 DOI: 10.1002/iid3.1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is the most common form of agammaglobulinemia and is caused by mutations in Btk, which encodes Bruton tyrosine kinase (BTK). CASE DESCRIPTION We describe a 36-year-old male who presented as an infant with hypogammaglobulinemia and sinopulmonary infections and was initially diagnosed with common variable immunodeficiency. Genetic testing showed he was hemizygous for Btk c.240G > A. This synonymous variant affecting the last nucleotide of exon 3 leads to aberrant splicing of most but not all mRNA transcripts. CONCLUSION We demonstrated reduced BTK protein expression confirming the pathogenicity of the variant and related our findings to genotype-phenotype relationship studies ina XLA caused by synonymous mutations.
Collapse
Affiliation(s)
- Cindy Srinivasan
- Student, Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Afshin Shameli
- Alberta Precision Laboratories, Calgary, Alberta, and Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Bruce Ritchie
- Division of HematologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Adil Adatia
- Department of Medicine, Division of Pulmonary MedicineUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
10
|
Chear CT, Ismail IH, Chan KC, Noh LM, Kassim A, Latiff AHA, Gill SS, Ramly NH, Tan KK, Sundaraj C, Choo CM, Mohamed SAS, Baharin MF, Zamri AS, Yahya SNHS, Mohamad SB, Ripen AM. Clinical features and mutational analysis of X-linked agammaglobulinemia patients in Malaysia. Front Immunol 2023; 14:1252765. [PMID: 37809070 PMCID: PMC10560089 DOI: 10.3389/fimmu.2023.1252765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Bruton's tyrosine kinase (BTK) is a cytoplasmic protein involved in the B cell development. X-linked agammaglobulinemia (XLA) is caused by mutation in the BTK gene, which results in very low or absent B cells. Affected males have markedly reduced immunoglobulin levels, which render them susceptible to recurrent and severe bacterial infections. Methods: Patients suspected with X-linked agammaglobulinemia were enrolled during the period of 2010-2018. Clinical summary, and immunological profiles of these patients were recorded. Peripheral blood samples were collected for monocyte BTK protein expression detection and BTK genetic analysis. The medical records between January 2020 and June 2023 were reviewed to investigate COVID-19 in XLA. Results Twenty-two patients (from 16 unrelated families) were molecularly diagnosed as XLA. Genetic testing revealed fifteen distinct mutations, including four splicing mutations, four missense mutations, three nonsense mutations, three short deletions, and one large indel mutation. These mutations scattered throughout the BTK gene and mostly affected the kinase domain. All mutations including five novel mutations were predicted to be pathogenic or deleterious by in silico prediction tools. Genetic testing confirmed that eleven mothers and seven sisters were carriers for the disease, while three mutations were de novo. Flow cytometric analysis showed that thirteen patients had minimal BTK expression (0-15%) while eight patients had reduced BTK expression (16-64%). One patient was not tested for monocyte BTK expression due to insufficient sample. Pneumonia (n=13) was the most common manifestation, while Pseudomonas aeruginosa was the most frequently isolated pathogen from the patients (n=4). Mild or asymptomatic COVID-19 was reported in four patients. Conclusion This report provides the first overview of demographic, clinical, immunological and genetic data of XLA in Malaysia. The combination of flow cytometric assessment and BTK genetic analysis provides a definitive diagnosis for XLA patients, especially with atypical clinical presentation. In addition, it may also allow carrier detection and assist in genetic counselling and prenatal diagnosis.
Collapse
Affiliation(s)
- Chai Teng Chear
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Intan Hakimah Ismail
- Clinical Immunology Unit, Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kwai Cheng Chan
- Pediatric Department, Penang General Hospital, Ministry of Health, George Town, Penang, Malaysia
| | - Lokman Mohd Noh
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | - Asiah Kassim
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | | | - Sandeep Singh Gill
- Pediatric Department, Hospital Wanita Dan Kanak-Kanak Sabah, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Nazatul Haslina Ramly
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | - Kah Kee Tan
- Pediatric Department, Perdana University and Royal College of Surgeons in Ireland (PURCSI), School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Charlotte Sundaraj
- Pediatric Department, Hospital Putrajaya, Ministry of Health, Putrajaya, Malaysia
| | - Chong Ming Choo
- Pediatric Department, Hospital Sultan Abdul Halim, Ministry of Health, Sungai Petani, Kedah, Malaysia
| | | | - Mohd Farid Baharin
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Amelia Suhana Zamri
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sharifah Nurul Husna Syed Yahya
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre of Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| |
Collapse
|
11
|
Hernandez-Trujillo V, Zhou C, Scalchunes C, Ochs HD, Sullivan KE, Cunningham-Rundles C, Fuleihan RL, Bonilla FA, Petrovic A, Rawlings DJ, de la Morena MT. A Registry Study of 240 Patients with X-Linked Agammaglobulinemia Living in the USA. J Clin Immunol 2023:10.1007/s10875-023-01502-x. [PMID: 37219739 DOI: 10.1007/s10875-023-01502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE To understand the natural history and clinical outcomes for patients with X-linked agammaglobulinemia (XLA) in the United States utilizing the United States Immunodeficiency Network (USIDNET) patient registry. METHODS The USIDNET registry was queried for data from XLA patients collected from 1981 to 2019. Data fields included demographics, clinical features before and after diagnosis of XLA, family history, genetic mutation in Bruton's tyrosine kinase (BTK), laboratory findings, treatment modalities, and mortality. RESULTS Data compiled through the USIDNET registry on 240 patients were analyzed. Patient year of birth ranged from 1945 to 2017. Living status was available for 178 patients; 158/178 (88.8%) were alive. Race was reported for 204 patients as follows: White, 148 (72.5%); Black/African American, 23 (11.2%); Hispanic, 20 (9.8%); Asian or Pacific Islander, 6 (2.9%), and other or more than one race, 7 (3.4%). The median age at last entry, age at disease onset, age at diagnosis, and length of time with XLA diagnosis was 15 [range (r) = 1-52 years], 0.8 [r = birth-22.3 years], 2 [r = birth-29 years], and 10 [r = 1-56 years] years respectively. One hundred and forty-one patients (58.7%) were < 18 years of age. Two hundred and twenty-one (92%) patients were receiving IgG replacement (IgGR), 58 (24%) were on prophylactic antibiotics, and 19 (7.9%) were on immunomodulatory drugs. Eighty-six (35.9%) patients had undergone surgical procedures, two had undergone hematopoietic cell transplantation, and two required liver transplantation. The respiratory tract was the most affected organ system (51.2% of patients) followed by gastrointestinal (40%), neurological (35.4%), and musculoskeletal (28.3%). Infections were common both before and after diagnosis, despite IgGR therapy. Bacteremia/sepsis and meningitis were reported more frequently before XLA diagnosis while encephalitis was more commonly reported after diagnosis. Twenty patients had died (11.2%). The median age of death was 21 years (range = 3-56.7 years). Neurologic condition was the most common underlying co-morbidity for those XLA patients who died. CONCLUSIONS Current therapies for XLA patients reduce early mortality, but patients continue to experience complications that impact organ function. With improved life expectancy, more efforts will be required to improve post-diagnosis organ dysfunction and quality of life. Neurologic manifestations are an important co-morbidity associated with mortality and not yet clearly fully understood.
Collapse
Affiliation(s)
- Vivian Hernandez-Trujillo
- Division of Allergy and Immunology, Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| | - Chuan Zhou
- Division of General Pediatrics, School of Medicine, Center for Child Health, University of Washington, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Christopher Scalchunes
- Immune Deficiency Foundation. Immune Deficiency Foundation | (primaryimmune.org), Hanover, USA
| | - Hans D Ochs
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Kathleen E Sullivan
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramsay L Fuleihan
- Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY, USA
| | | | - Aleksandra Petrovic
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - David J Rawlings
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, 98101, USA
| | - M Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA.
| |
Collapse
|
12
|
Milota T, Smetanova J, Klojdova I. Gastrointestinal Involvement in Primary Antibody Deficiencies. GASTROINTESTINAL DISORDERS 2023; 5:52-67. [DOI: 10.3390/gidisord5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Primary antibody deficiencies (PADs) are the most frequent group of inborn errors of immunity. Impaired B-cell development, reduced production of immunoglobulins (mainly IgG and IgA), and specific antibodies resulting in recurrent infections are their hallmarks. Infections typically affect the respiratory tract; however, gastrointestinal involvement is also common. These include infection with Helicobacter pylori, Salmonella, Campylobacter species, Giardia, and noroviruses. Impaired IgA production also contributes to dysbiosis and thereby an increase in abundance of species with proinflammatory properties, resulting in immune system dysregulation. Dysregulation of the immune system results in a broad spectrum of non-infectious manifestations, including autoimmune, lymphoproliferative, and granulomatous complications. Additionally, it increases the risk of malignancy, which may be present in more than half of patients with PADs. Higher prevalence is often seen in monogenic causes, and gastrointestinal involvement may clinically mimic various conditions including inflammatory bowel diseases and celiac disease but possess different immunological features and response to standard treatment, which make diagnosis and therapy challenging. The spectrum of malignancies includes gastric cancer and lymphoma. Thus, non-infectious manifestations significantly affect mortality and morbidity. In this overview, we provide a comprehensive insight into the epidemiology, genetic background, pathophysiology, and clinical manifestations of infectious and non-infectious complications.
Collapse
Affiliation(s)
- Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| | - Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, 15006 Prague, Czech Republic
| | - Iveta Klojdova
- DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 15006 Prague, Czech Republic
| |
Collapse
|
13
|
Vihinen M. Systematic errors in annotations of truncations, loss-of-function and synonymous variants. Front Genet 2023; 14:1015017. [PMID: 36713076 PMCID: PMC9880313 DOI: 10.3389/fgene.2023.1015017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Description of genetic phenomena and variations requires exact language and concepts. Vast amounts of variation data are produced with next-generation sequencing pipelines. The obtained variations are automatically annotated, e.g., for their functional consequences. These tools and pipelines, along with systematic nomenclature, mainly work well, but there are still some problems in nomenclature, organization of some databases, misuse of concepts and certain practices. Therefore, systematic errors prevent correct annotation and often preclude further analysis of certain variation types. Problems and solutions are described for presumed protein truncations, variants that are claimed to be of loss-of-function based on the type of variation, and synonymous variants that are not synonymous and lead to sequence changes or to missing protein.
Collapse
|
14
|
Muacevic A, Adler JR. X-Linked Agammaglobulinemia Leading to Chronic Obstructive Lung Disease. Cureus 2022; 14:e32470. [PMID: 36644069 PMCID: PMC9835111 DOI: 10.7759/cureus.32470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
X-linked agammaglobulinemia (XLA) is a rare primary immunodeficiency disorder. It occurs in around one in 200,000 live births and is caused by mutations in the Bruton Tyrosine Kinase (BTK) gene leading to B lymphocyte deficiency and increased susceptibility to infection. Infection is the most common initial clinical presentation, followed by family history and neutropenia. Even in patients with a positive family history, only 34% of patients were diagnosed before clinical symptoms arose. Over half of patients are diagnosed by two years of age. Treatment is aimed at replacing immunoglobulin using intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) and prophylactic antibiotics to prevent infections. Despite these therapies, patients still suffer from repetitive infections. Another significant source of morbidity in patients with XLA is a chronic lung disease. By the time of diagnosis, 62% of patients had at least one case of pneumonia. We describe the case of a patient who has developed an accelerated course of chronic obstructive pulmonary disease (COPD) secondary to pre-existing X-linked agammaglobulinemia and recurrent respiratory infections.
Collapse
|
15
|
Hanitsch LG. Bronchiectasis and obstructive lung diseases in primary antibody deficiencies and beyond: update on management and pathomechanisms. Curr Opin Allergy Clin Immunol 2022; 22:335-342. [PMID: 36165423 DOI: 10.1097/aci.0000000000000856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Pulmonary complications are among the most frequent manifestations in patients with primary antibody deficiency (PAD), contributing significantly to morbidity and mortality. Here, we focus on recent findings in obstructive pulmonary disease and bronchiectasis in PAD. Since specific data on patients with PAD is limited and management mostly follows general recommendations, this review also aims to summarize data from the immunocompetent population. RECENT FINDINGS Potential risk factors for the development and progression of bronchiectasis include reduced immunoglobulins and lower CD4 cells. In addition, Pseudomonas aeruginosa and an altered microbiome might contribute to local inflammation and disease progression. Findings on the contribution of neutrophils and eosinophils in the affected immunocompetent population require confirmation in PAD. Despite its high global burden, there is an extreme paucity of data on chronic obstructive pulmonary disease in PAD. Lower IgA and IgM are associated with asthma in PAD, but the heterogeneity of prevalence among PAD groups is poorly understood. Recent observations of non-IgE-mediated pathomechanisms in asthma may be of particular interest in PAD patients. SUMMARY Management of PAD patients with chronic lung disease requires a multidisciplinary team approach including immunology, pulmonology, infectious disease and physiotherapy. Diagnostic processes should be harmonized to ensure a more precise perspective on prevalence and disease courses.
Collapse
Affiliation(s)
- Leif G Hanitsch
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
16
|
Fan YH, Lin TL, Sun HL, Pan HH, Ku MS, Lue KH. Successful treatment of atopic dermatitis with dupilumab in the setting of X-linked agammaglobulinemia. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:3032-3034.e1. [PMID: 35961615 DOI: 10.1016/j.jaip.2022.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Yi-Hsuan Fan
- Department of Pediatrics, Institute of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Teng-Li Lin
- Department of Dermatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hai-Lun Sun
- Department of Pediatrics, Institute of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Hsien Pan
- Department of Pediatrics, Institute of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Sho Ku
- Department of Pediatrics, Institute of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ko-Huang Lue
- Department of Pediatrics, Institute of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
17
|
Ahmed A, Lippner E, Khanolkar A. Clinical Aspects of B Cell Immunodeficiencies: The Past, the Present and the Future. Cells 2022; 11:3353. [PMID: 36359748 PMCID: PMC9654110 DOI: 10.3390/cells11213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022] Open
Abstract
B cells and antibodies are indispensable for host immunity. Our understanding of the mechanistic processes that underpin how B cells operate has left an indelible mark on the field of clinical pathology, and recently has also dramatically reshaped the therapeutic landscape of diseases that were once considered incurable. Evaluating patients with primary immunodeficiency diseases (PID)/inborn errors of immunity (IEI) that primarily affect B cells, offers us an opportunity to further our understanding of how B cells develop, mature, function and, in certain instances, cause further disease. In this review we provide a brief compendium of IEI that principally affect B cells at defined stages of their developmental pathway, and also attempt to offer some educated viewpoints on how the management of these disorders could evolve over the years.
Collapse
Affiliation(s)
- Aisha Ahmed
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth Lippner
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
19
|
Long JD, Trope EC, Yang J, Rector K, Kuo CY. Genes as Medicine: The Development of Gene Therapies for Inborn Errors of Immunity. Hematol Oncol Clin North Am 2022; 36:829-851. [PMID: 35778331 DOI: 10.1016/j.hoc.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The field of gene therapy has experienced tremendous growth in the last decade ranging from improvements in the design of viral vectors for gene addition of therapeutic gene cassettes to the discovery of site-specific nucleases targeting transgenes to desired locations in the genome. Such advancements have not only enabled the development of disease models but also created opportunities for the development of tailored therapeutic approaches. There are 3 main methods of gene modification that can be used for the prevention or treatment of disease. This includes viral vector-mediated gene therapy to supply or bypass a missing/defective gene, gene editing enabled by programmable nucleases to create sequence-specific alterations in the genome, and gene silencing to reduce the expression of a gene or genes. These gene-modification platforms can be delivered either in vivo, for which the therapy is injected directed into a patient's body, or ex vivo, in which cells are harvested from a patient and modified in a laboratory setting, and then returned to the patient.
Collapse
Affiliation(s)
- Joseph D Long
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA
| | - Edward C Trope
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA
| | - Jennifer Yang
- Department of Psychology, University of California, Los Angeles, 1285 Psychology Building, Box 951563, Los Angeles, CA 90095, USA
| | | | - Caroline Y Kuo
- Division of Allergy & Immunology, Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte, MDCC 12-430, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Wakamatsu M, Kojima D, Muramatsu H, Okuno Y, Kataoka S, Nakamura F, Sakai Y, Tsuge I, Ito T, Ueda K, Saito A, Morihana E, Ito Y, Ohashi N, Tanaka M, Tanaka T, Kojima S, Nakajima Y, Ito T, Takahashi Y. TREC/KREC Newborn Screening followed by Next-Generation Sequencing for Severe Combined Immunodeficiency in Japan. J Clin Immunol 2022; 42:1696-1707. [PMID: 35902420 DOI: 10.1007/s10875-022-01335-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
PURPOSE The aim of this study is to evaluate the usefulness of T cell receptor excision circle (TREC) and/or kappa-deleting recombination excision circle (KREC) measurements integrated with diagnostic next-generation sequencing (NGS) analysis using a severe combined immunodeficiency (SCID) newborn screening (NBS) program. METHODS TREC and/or KREC values were measured in 137,484 newborns between April 2017 and December 2021 using EnLite TREC (n = 80,791) or TREC/KREC kits (n = 56,693). For newborns with positive screening results, diagnostic NGS analysis was performed with a 349-gene panel to detect genetic mutations associated with primary immunodeficiencies (PIDs). RESULTS A total of 145 newborns (0.11%) had abnormal TREC and/or KREC values, and a genetic diagnosis was established in 2 patients with SCID (1 in 68,742 newborns) (IL2RG-SCID and reticular dysgenesis) and 10 with non-SCID PIDs with T and/or B cell deficiencies (1 in 13,748 newborns) using NGS analysis. Furthermore, TREC values of 2849 newborns were measured and confirmed the significant correlation between the results of both TREC and TREC/KREC kits (P < 0.001) and naïve T cell counts. CONCLUSIONS We performed the first large-scale TREC and TREC/KREC NBS programs in Japan. Our NBS programs followed by the diagnostic NGS analysis for newborns with abnormal TREC and/or KREC values are useful for the early identification and rapid molecular evaluation of not only SCID but also different non-SCID PIDs.
Collapse
Affiliation(s)
- Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiei Kojima
- Department of Pediatrics, Ogaki Municipal Hospital, Ogaki, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiko Nakamura
- Department of Clinical Laboratory, Aichi Health Promotion Foundation, Nagoya, Japan
| | - Yoshimi Sakai
- Department of Clinical Laboratory, Aichi Health Promotion Foundation, Nagoya, Japan
| | - Ikuya Tsuge
- Department of Pediatrics, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Tsuyoshi Ito
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akiko Saito
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Eiji Morihana
- Department of Neonatology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Yasuhiko Ito
- Department of Pediatrics, Nagoya City University West Medical Center, Nagoya, Japan
| | - Naoki Ohashi
- Department of Paediatric Cardiology, Chukyo Children Heart Centre, Japan, Community Health Care Organization Chukyo Hospital, Nagoya, Japan
| | - Makito Tanaka
- Department of Pediatrics, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Taihei Tanaka
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Nakajima
- Department of Pediatrics, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Tetsuya Ito
- Department of Pediatrics, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
21
|
Responses to SARS-CoV-2 Vaccines of Patients with Common Variable Immune Deficiencies and X-linked Agammaglobulinemia. J Clin Immunol 2022; 42:911-913. [PMID: 35325341 PMCID: PMC8944176 DOI: 10.1007/s10875-022-01251-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
|
22
|
O'Toole D, Groth D, Wright H, Bonilla FA, Fuleihan RL, Cunningham-Rundles C, Sullivan KE, Ochs HD, Marsh R, Feuille E. X-Linked Agammaglobulinemia: Infection Frequency and Infection-Related Mortality in the USIDNET Registry. J Clin Immunol 2022; 42:827-836. [PMID: 35288819 PMCID: PMC8920804 DOI: 10.1007/s10875-022-01237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disorder caused by mutations in the Bruton tyrosine kinase (BTK) gene leading to B lymphocyte deficiency and susceptibility to infection. A potential benefit of earlier diagnosis and treatment initiation on morbidity and mortality in XLA is incompletely understood. In the USIDNET Registry, we describe infection frequency and infection-related mortality in patients with XLA and their relationship to age of diagnosis and treatment initiation. Among the 231 XLA patients enrolled in the Registry, respiratory infections (N = 203, 88%) were the most commonly reported. Among those deceased (N = 20) where cause of death was known (N = 17), mortality was attributed to infection in most (N = 12, 71%). Chronic lung disease, often a consequence of repeated lower respiratory tract infection (LRTI), was also a frequent complication associated with mortality (N = 9, 53%). Age of diagnosis in years was lower for those without LRTI compared to those with (median 1.5 [IQR 0.5-3.3] vs. median 3.0 [IQR 1.0-5.0], p = 0.0026) and among living patients compared to deceased (median 1.8 [IQR 0.5-5.0] vs. median 2.7 [IQR 1.6-6.0], p = 0.04). Age at treatment initiation in years was lower among those without LRTIs compared to those with (median 1.0 [IQR 0.4-2.4] vs. median 2.8 [IQR 1.0-5.4], p = 0.0006). For every year increase in age at start of therapy, the odds of experiencing a LRTI was 1.216 (OR 1.216, 95% CI 1.048-1.411, p = 0.01). Given the expected finding of reduced LRTIs and mortality among those with earlier age at diagnosis, our study findings support inclusion of XLA in newborn screening programs.
Collapse
Affiliation(s)
- Dana O'Toole
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, 3959 Broadway, New York, NY, 10036, USA.
| | - Daniel Groth
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Ramsay L Fuleihan
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Columbia University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, 3959 Broadway, New York, NY, 10036, USA
| | | | | | - Hans D Ochs
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | | | | |
Collapse
|
23
|
Conti F, Marzollo A, Moratti M, Lodi L, Ricci S. Inborn Errors of Immunity underlying a susceptibility to pyogenic infections: from innate immune system deficiency to complex phenotypes. Clin Microbiol Infect 2022; 28:1422-1428. [PMID: 35640842 DOI: 10.1016/j.cmi.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/26/2022]
|
24
|
Akatsu C, Alborzian Deh Sheikh A, Matsubara N, Takematsu H, Schweizer A, Abdu-Allah HHM, Tedder TF, Nitschke L, Ishida H, Tsubata T. The inhibitory coreceptor CD22 restores B cell signaling by developmentally regulating Cd45-/- immunodeficient B cells. Sci Signal 2022; 15:eabf9570. [PMID: 35230871 DOI: 10.1126/scisignal.abf9570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The protein tyrosine phosphatase CD45 plays a crucial role in B cell antigen receptor (BCR) signaling by activating Src family kinases. Cd45-/- mice show altered B cell development and a phenotype likely due to reduced steady-state signaling; however, Cd45-/- B cells show relatively normal BCR ligation-induced signaling. In our investigation of how BCR signaling was restored in Cd45-/- cells, we found that the coreceptor CD22 switched from an inhibitory to a stimulatory function in these cells. We disrupted the ability of CD22 to interact with its ligands in Cd45-/- B cells by generating Cd45-/-St6galI-/- mice, which cannot synthesize the glycan ligand of CD22, or by treating Cd45-/- B cells in vitro with the sialoside GSC718, which inhibits ligand binding to CD22. BCR ligation-induced signaling was reduced by ST6GalI deficiency, but not by GSC718 treatment, suggesting that CD22 restored BCR ligation-induced signaling in Cd45-/- mature B cells by altering cellular phenotypes during development. CD22 was required for the increase in the surface amount of IgM-BCR on Cd45-/- B cells, which augmented signaling. Because B cell survival depends on steady-state BCR signaling, IgM-BCR abundance was likely increased by the selective survival of IgM-BCRhi Cd45-/- B cells because of CD22-mediated signaling under conditions of substantially reduced steady-state signaling. Because the amount of surface IgM-BCR is increased on B cells from patients with other BCR signaling deficiencies, including X-linked agammaglobulinemia, our findings suggest that CD22 may contribute to the partial restoration of B cell function in these patients.
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Amin Alborzian Deh Sheikh
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Naoko Matsubara
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiromu Takematsu
- Faculty of Medical Technology, Fujita Health University, Toyoake, Aichi, Japan
| | - Astrid Schweizer
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | | | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
25
|
Lehman HK, Yu KOA, Towe CT, Risma KA. Respiratory Infections in Patients with Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:683-691.e1. [PMID: 34890826 DOI: 10.1016/j.jaip.2021.10.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Recurrent and life-threatening respiratory infections are nearly universal in patients with primary immunodeficiency diseases (PIDD). Early recognition, aggressive treatment, and prophylaxis with antimicrobials and immunoglobulin replacement have been the mainstays of management and will be reviewed here with an emphasis on respiratory infections. Genetic discoveries have allowed direct translation of research to clinical practice, improving our understanding of clinical patterns of pathogen susceptibilities and guiding prophylaxis. The recent identification of inborn errors in type I interferon signaling as a basis for life-threatening viral infections in otherwise healthy individuals suggests another targetable pathway for treatment and/or prophylaxis. The future of PIDD diagnosis will certainly involve early genetic identification by newborn screening before onset of infections, with early treatment offering the potential of preventing disease complications such as chronic lung changes. Gene editing approaches offer tremendous therapeutic potential, with rapidly emerging delivery systems. Antiviral therapies are desperately needed, and specific cellular therapies show promise in patients requiring hematopoietic stem cell transplantation. The introduction of approved therapies for clinical use in PIDD is limited by the difficulty of studying outcomes in rare patients/conditions with conventional clinical trials.
Collapse
Affiliation(s)
- Heather K Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY.
| | - Karl O A Yu
- Division of Infectious Diseases, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY
| | - Christopher T Towe
- Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kimberly A Risma
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
26
|
Zhou Q, Teng Y, Pan J, Shi Q, Liu Y, Liang D, Li Z, Wu L. Identification of four novel mutations in BTK from six Chinese families with X-linked agammaglobulinemia. Clin Chim Acta 2022; 531:48-55. [PMID: 35245483 DOI: 10.1016/j.cca.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/15/2022] [Accepted: 02/26/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND The defect of Bruton's tyrosine kinase (BTK) gene resulted in X-linked agammaglobulinemia (XLA), which is characterized by recurrent bacterial infections, immunodeficiency with low B-cell numbers and immunoglobulin. Diagnosis of XLA depends on clinical phenotype and genetic testing. METHODS Six unrelated Chinese families with high suspicion of XLA were enrolled in this study. Potential pathogenic variants were detected and validated by Whole Exome Sequencing (WES) and Sanger Sequencing. Western blot, Quantitative PCR (qPCR) analysis and immunofluorescence analysis were used to evaluate the preliminary function of candidate BTK variants. RESULTS A total of six variants were identified, four of which were not reported before. The novel missense mutation(c.1900T>G) and deletion(c.897delG) were found that the mutant protein and mRNA expression levels have fallen by Western Blot and qPCR identification. We also constructed minigene expression vector to determine the deletion (c.1751-6_1755delttctagGGGTT) resulting a 35bp skipping in exon 18. Meanwhile, the break point of gross deletion (Exon2-5) discovered based on WES was confirmed to be located at site ChX:101367539_101376531 through qPCR and Gap-PCR. CONCLUSION This study makes definitive diagnosis for 6 families with suspected XLA and further expands the spectrum of BTK mutations, providing new information for the diagnosis of the disease.
Collapse
Affiliation(s)
- Qimin Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Jianyan Pan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Qingxin Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yingdi Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China; Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China; Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China.
| |
Collapse
|
27
|
Sun D, Heimall JR, Greenhawt MJ, Bunin NJ, Shaker MS, Romberg N. Cost Utility of Lifelong Immunoglobulin Replacement Therapy vs Hematopoietic Stem Cell Transplant to Treat Agammaglobulinemia. JAMA Pediatr 2022; 176:176-184. [PMID: 34779842 PMCID: PMC8593831 DOI: 10.1001/jamapediatrics.2021.4583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Lifelong immunoglobulin replacement therapy (IRT) is standard-of-care treatment for congenital agammaglobulinemia but accrues high annual costs ($30 000-$90 000 per year) and decrements to quality of life over patients' life spans. Hematopoietic stem cell transplant (HSCT) offers an alternative 1-time therapy, but has high morbidity and mortality. OBJECTIVE To evaluate the cost utility of IRT vs matched sibling donor (MSD) and matched unrelated donor (MUD) HSCT to treat patients with agammaglobulinemia in the US. DESIGN, SETTING, AND PARTICIPANTS This economic evaluation used Markov analysis to model the base-case scenario of a patient aged 12 months with congenital agammaglobulinemia receiving lifelong IRT vs MSD or MUD HSCT. Costs, probabilities, and quality-of-life measures were derived from the literature. Microsimulations estimated premature deaths for each strategy in a virtual cohort. One-way sensitivity and probabilistic sensitivity analyses evaluated uncertainty around parameter estimates performed from a societal perspective over a 100-year time horizon. The threshold for cost-effective care was set at $100 000 per quality-adjusted life-year (QALY). This study was conducted from 2020 across a 100-year time horizon. EXPOSURES Immunoglobulin replacement therapy vs MSD or MUD HSCT for treatment of congenital agammaglobulinemia. MAIN OUTCOMES AND MEASURES The primary outcomes were incremental cost-effectiveness ratio (ICER) expressed in 2020 US dollars per QALY gained and premature deaths associated with each strategy. RESULTS In this economic evaluation of patients with congenital agammaglobulinemia, lifelong IRT cost more than HSCT ($1 512 946 compared with $563 776 [MSD] and $637 036 [MUD]) and generated similar QALYs (20.61 vs 17.25 [MSD] and 17.18 [MUD]). Choosing IRT over MSD or MUD HSCT yielded ICERs of $282 166 per QALY gained over MSD and $255 633 per QALY gained over MUD HSCT, exceeding the US willingness-to-pay threshold of $100 000/QALY. However, IRT prevented at least 2488 premature deaths per 10 000 microsimulations compared with HSCT. When annual IRT price was reduced from $60 145 to below $29 469, IRT became the cost-effective strategy. Findings remained robust in sensitivity and probabilistic sensitivity analyses. CONCLUSIONS AND RELEVANCE In the US, IRT is more expensive than HSCT for agammaglobulinemia treatment. The findings of this study suggest that IRT prevents more premature deaths but does not substantially increase quality of life relative to HSCT. Reducing US IRT cost by 51% to a value similar to IRT prices in countries implementing value-based pricing may render it the more cost-effective strategy.
Collapse
Affiliation(s)
- Di Sun
- Department of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer R. Heimall
- Department of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Matthew J. Greenhawt
- Children's Hospital Colorado, Section of Allergy and Immunology, Food Challenge and Research Unit, Aurora,Department of Pediatrics, University of Colorado School of Medicine, Aurora
| | - Nancy J. Bunin
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia,Department of Pediatrics, Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marcus S. Shaker
- Dartmouth-Hitchcock Medical Center, Section of Allergy and Immunology, Lebanon, New Hampshire
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
28
|
B cell repertoire in patients with a novel BTK mutation: expanding the spectrum of atypical X-linked agammaglobulinemia. Immunol Res 2022; 70:216-223. [PMID: 35001352 DOI: 10.1007/s12026-022-09263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/04/2022] [Indexed: 11/05/2022]
Abstract
X-linked agammaglobulinemia (XLA) is caused by mutations in the Bruton tyrosine kinase) BTK) gene. Affected patients have severely reduced amounts of circulating B cells. Patients with atypical XLA may have residual circulating B cells, and there are few studies exploring these cells' repertoire. We aimed to study the B cell repertoire of a novel hypomorphic mutation in the BTK gene, using the next generation sequencing (NGS) technology. Clinical data was collected from our clinical records. Real-time PCR was used to determine KREC copies, and NGS was used to determine the immunoglobulin (Ig) heavy chain (IgH) repertoire diversity. Both patients had a relatively mild clinical and laboratory phenotype, residual BTK protein expression, and the same novel mutation in the BTK gene, c.1841 T > C, p. L614P. Signal-joint kappa-deleting recombination excision circles (sj-KREC) for both patients were completely absent reflecting lack of naïve B cells. The intron RSS-Kde coding joints (cj) were significantly reduced, reflecting residual replicating B cells. NGS displayed restricted IgH repertoire with highly uneven distribution of clones, especially for Pt2. We report a novel BTK mutation, c.1841 T > C (p. L614P) that is associated with a relatively mild phenotype. We conclude that the IgH repertoire in atypical XLA is restricted with highly uneven distribution of clones. This phenomenon may be explained by extremely reduced to non-existent levels of BTK in B cells. This report sheds further light on atypical cases of XLA.
Collapse
|
29
|
Cardenas-Morales M, Hernandez-Trujillo VP. Agammaglobulinemia: from X-linked to Autosomal Forms of Disease. Clin Rev Allergy Immunol 2022; 63:22-35. [PMID: 34241796 PMCID: PMC8269404 DOI: 10.1007/s12016-021-08870-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 01/12/2023]
Abstract
Interruptions or alterations in the B cell development pathway can lead to primary B cell immunodeficiency with resultant absence or diminished immunoglobulin production. While the most common cause of congenital agammaglobulinemia is X-linked agammaglobulinemia (XLA), accounting for approximately 85% of cases, other genetic forms of agammaglobulinemia have been identified. Early recognition and diagnosis of these conditions are pivotal for improved outcomes and prevention of sequelae and complications. The diagnosis of XLA is often delayed, and can be missed if patient has a mild phenotype. The lack of correlation between phenotype and genotype in this condition makes management and predicting outcomes quite difficult. In contrast, while less common, autosomal recessive forms of agammaglobulinemia present at younger ages and with typically more severe clinical features resulting in an earlier diagnosis. Some diagnostic innovations, such as KREC level measurements and serum BCMA measurements, may aid in facilitating an earlier identification of agammaglobulinemia leading to prompt treatment. Earlier diagnosis may improve the overall health of patients with XLA.
Collapse
Affiliation(s)
| | - Vivian P. Hernandez-Trujillo
- Allergy and Immunology Care Center of South Florida, Miami, FL USA ,Division of Allergy and Immunology, Nicklaus Children’s Hospital, Miami, FL USA
| |
Collapse
|
30
|
Lougaris V, Plebani A. Predominantly Antibody Deficiencies. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:482-496. [DOI: 10.1016/b978-0-12-818731-9.00097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Clinical, immunological and genomic characteristics of children with X-linked agammaglobulinemia from Kerala, South India. Hum Immunol 2022; 83:335-345. [DOI: 10.1016/j.humimm.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
|
32
|
Nunes-Santos CJ, Koh C, Rai A, Sacco K, Marciano BE, Kleiner DE, Marko J, Bergerson JRE, Stack M, Rivera MM, Constantine G, Strober W, Uzel G, Fuss IJ, Notarangelo LD, Holland SM, Rosenzweig SD, Heller T. Nodular regenerative hyperplasia in X-linked agammaglobulinemia: An underestimated and severe complication. J Allergy Clin Immunol 2022; 149:400-409.e3. [PMID: 34087243 PMCID: PMC8633079 DOI: 10.1016/j.jaci.2021.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Late-onset complications in X-linked agammaglobulinemia (XLA) are increasingly recognized. Nodular regenerative hyperplasia (NRH) has been reported in primary immunodeficiency but data in XLA are limited. OBJECTIVES This study sought to describe NRH prevalence, associated features, and impact in patients with XLA. METHODS Medical records of all patients with XLA referred to the National Institutes of Health between October 1994 and June 2019 were reviewed. Liver biopsies were performed when clinically indicated. Patients were stratified into NRH+ or NRH- groups, according to their NRH biopsy status. Fisher exact test and Mann-Whitney test were used for statistical comparisons. RESULTS Records of 21 patients with XLA were reviewed, with a cumulative follow-up of 129 patient-years. Eight patients underwent ≥1 liver biopsy of whom 6 (29% of the National Institutes of Health XLA cohort) were NRH+. The median age at NRH diagnosis was 20 years (range, 17-31). Among patients who had liver biopsies, alkaline phosphatase levels were only increased in patients who were NRH+ (P = .04). Persistently low platelet count (<100,000 per μL for >6 months), mildly to highly elevated hepatic venous pressure gradient and either hepatomegaly and/or splenomegaly were present in all patients who were NRH+. In opposition, persistently low platelet counts were not seen in patients who were NRH-, and hepatosplenomegaly was observed in only 1 patient who was NRH-. Hepatic venous pressure gradient was normal in the only patient tested who was NRH-. All-cause mortality was higher among patients who were NRH+ (5 of 6, 83%) than in the rest of the cohort (1 of 15, 7% among patients who were NRH- and who were classified as unknown; P = .002). CONCLUSIONS NRH is an underreported, frequent, and severe complication in XLA, which is associated with increased morbidity and mortality.
Collapse
Affiliation(s)
- CJ Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, USA
| | - C Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, USA
| | - A Rai
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, USA
| | - K Sacco
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - BE Marciano
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - DE Kleiner
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD, USA
| | - J Marko
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD
| | - JRE Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - M Stack
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - MM Rivera
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, USA
| | - G Constantine
- National Institute of Allergy and Infectious Diseases Allergy and Immunology Fellowship Program, NIH, Bethesda, Maryland
| | - W Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - G Uzel
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - IJ Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - LD Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - SM Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - SD Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, USA, corresponding authors Sergio D. Rosenzweig, MD, PhD, ; Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Building 10, Room 2C306, 10 Center Drive, Bethesda, MD, 20892 and Theo Heller, MD, ; Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, 10 Center Drive, Bethesda, MD 20892
| | - T Heller
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, USA, corresponding authors Sergio D. Rosenzweig, MD, PhD, ; Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Building 10, Room 2C306, 10 Center Drive, Bethesda, MD, 20892 and Theo Heller, MD, ; Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, 10 Center Drive, Bethesda, MD 20892
| |
Collapse
|
33
|
SARS-CoV-2 Vaccine Induced Atypical Immune Responses in Antibody Defects: Everybody Does their Best. J Clin Immunol 2021; 41:1709-1722. [PMID: 34669144 PMCID: PMC8527979 DOI: 10.1007/s10875-021-01133-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/03/2021] [Indexed: 01/17/2023]
Abstract
Background Data on immune responses to SARS-CoV-2 in patients with Primary Antibody Deficiencies (PAD) are limited to infected patients and to heterogeneous cohorts after immunization. Methods Forty-one patients with Common Variable Immune Deficiencies (CVID), six patients with X-linked Agammaglobulinemia (XLA), and 28 healthy age-matched controls (HD) were analyzed for anti-Spike and anti-receptor binding domain (RBD) antibody production, generation of Spike-specific memory B-cells, and Spike-specific T-cells before vaccination and one week after the second dose of BNT162b2 vaccine. Results The vaccine induced Spike-specific IgG and IgA antibody responses in all HD and in 20% of SARS-CoV-2 naive CVID patients. Anti-Spike IgG were detectable before vaccination in 4 out 7 CVID previously infected with SARS-CoV-2 and were boosted in six out of seven patients by the subsequent immunization raising higher levels than patients naïve to infection. While HD generated Spike-specific memory B-cells, and RBD-specific B-cells, CVID generated Spike-specific atypical B-cells, while RBD-specific B-cells were undetectable in all patients, indicating the incapability to generate this new specificity. Specific T-cell responses were evident in all HD and defective in 30% of CVID. All but one patient with XLA responded by specific T-cell only. Conclusion In PAD patients, early atypical immune responses after BNT162b2 immunization occurred, possibly by extra-follicular or incomplete germinal center reactions. If these responses to vaccination might result in a partial protection from infection or reinfection is now unknown. Our data suggests that SARS-CoV-2 infection more effectively primes the immune response than the immunization alone, possibly suggesting the need for a third vaccine dose for patients not previously infected. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01133-0.
Collapse
|
34
|
Seth N, Tuano KS, Chinen J. Inborn errors of immunity: Recent progress. J Allergy Clin Immunol 2021; 148:1442-1450. [PMID: 34688776 DOI: 10.1016/j.jaci.2021.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Recent advances in the field of inborn errors of immunity (IEIs) have been wide in scope, including progress in mechanisms of disease, diagnosis, and management. New gene defects affecting the immune response continue to be reported, as many as 26 in the year 2020. It was noted that the presentation of IEIs might not include recurrent infections in 9% of cases, and that current diagnostic methods can identify molecular causes in 92% of patients with severe combined immunodeficiency. Progress in immunopathogenesis explained mechanisms leading to symptoms of autosomal-recessive hyper-IgE syndrome. There was an emphasis on research in primary antibody deficiencies. The benefit of antibiotic prophylaxis to reduce the frequency of infections was demonstrated in these patients. The regimen of rituximab and azathioprine or mycophenolate was proven effective for chronic granulocytic interstitial pneumonia. The efficacy and adverse events of hematopoietic stem cell transplant in different IEI conditions were reported, as well as different strategies to improve outcomes, supporting its use in immunodeficiency and immunodysregulatory syndromes. The recent pandemic of coronavirus disease 2019 affected patients with IEIs, in particular those with deficiency in the interferon-mediated activation of the immune response. Initial data suggest that coronavirus disease 2019 vaccines might elicit anti-coronavirus disease 2019-neutralizing antibody responses in some patients with IEI conditions.
Collapse
Affiliation(s)
- Neha Seth
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Karen S Tuano
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Javier Chinen
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex.
| |
Collapse
|
35
|
Grammatikos A, Donati M, Johnston SL, Gompels MM. Peripheral B Cell Deficiency and Predisposition to Viral Infections: The Paradigm of Immune Deficiencies. Front Immunol 2021; 12:731643. [PMID: 34527001 PMCID: PMC8435594 DOI: 10.3389/fimmu.2021.731643] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
In the era of COVID-19, understanding how our immune system responds to viral infections is more pertinent than ever. Immunodeficiencies with very low or absent B cells offer a valuable model to study the role of humoral immunity against these types of infection. This review looks at the available evidence on viral infections in patients with B cell alymphocytosis, in particular those with X-linked agammaglobulinemia (XLA), Good’s syndrome, post monoclonal-antibody therapy and certain patients with Common Variable Immune Deficiency (CVID). Viral infections are not as infrequent as previously thought in these conditions and individuals with very low circulating B cells seem to be predisposed to an adverse outcome. Particularly in the case of SARS-CoV2 infection, mounting evidence suggests that peripheral B cell alymphocytosis is linked to a poor prognosis.
Collapse
Affiliation(s)
- Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Matthew Donati
- Severn Infection Sciences and Public Health England National Infection Service South West, Department of Virology, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Sarah L Johnston
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Mark M Gompels
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| |
Collapse
|
36
|
Haematopoietic Stem Cell Transplant for Norovirus-Induced Intestinal Failure in X-linked Agammaglobulinemia. J Clin Immunol 2021; 41:1574-1581. [PMID: 34164761 PMCID: PMC8221090 DOI: 10.1007/s10875-021-01088-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022]
Abstract
Since the first clinical description in 1952, immunoglobulin replacement therapy remains the mainstay of treatment of patients with X-linked agammaglobulinemia (XLA). However, this therapy only replaces IgG isotype and does not compensate for the loss of Bruton tyrosine kinase in non-B-lymphocytes. Patients may still therefore develop complications despite current standard of care. Here, we describe an XLA patient with persistent chronic norovirus infection, refractory to treatment and causing intestinal failure. The patient underwent haematopoietic stem cell transplantation, curing XLA and allowed clearance of norovirus prior to humoral immunoreconstitution, suggesting non-humoral immunodeficiency in these patients.
Collapse
|
37
|
Abraham RS, Butte MJ. The New "Wholly Trinity" in the Diagnosis and Management of Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:613-625. [PMID: 33551037 DOI: 10.1016/j.jaip.2020.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
The field of immunology has a rich and diverse history, and the study of inborn errors of immunity (IEIs) represents both the "cake" and the "icing on top of the cake," as it has enabled significant advances in our understanding of the human immune system. This explosion of knowledge has been facilitated by a unique partnership, a triumvirate formed by the physician who gathers detailed immunological and clinical phenotypic information from, and shares results with, the patient; the laboratory scientist/immunologist who performs diagnostic testing, as well as advanced functional correlative studies; and the genomics scientist/genetic counselor, who conducts and interprets varied genetic analyses, all of which are essential for dissecting constitutional genetic disorders. Although the basic principles of clinical care have not changed in recent years, the practice of clinical immunology has changed to reflect the prodigious advances in diagnostics, genomics, and therapeutics. An "omic/tics"-centric approach to IEI reflects the tremendous strides made in the field in the new millennium with recognition of new disorders, characterization of the molecular underpinnings, and development and implementation of personalized treatment strategies. This review brings renewed attention to bear on the indispensable "trinity" of phenotypic, genomic, and immunological analyses in the diagnosis, management, and treatment of IEIs.
Collapse
Affiliation(s)
- Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and the Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Calif.
| |
Collapse
|
38
|
Crohn's-like Enteritis in X-Linked Agammaglobulinemia: A Case Series and Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3466-3478. [PMID: 34029777 DOI: 10.1016/j.jaip.2021.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is an inherited primary immunodeficiency that usually manifests clinically with recurrent sinopulmonary infections. Gastrointestinal manifestations are mostly driven by acute infections and disturbed mucosal immunity, but there is a notable prevalence of inflammatory bowel disease (IBD). Differentiating between XLA-associated enteritis, which can originate from recurrent infections, and IBD can be diagnostically and therapeutically challenging. OBJECTIVE This study presents a critical appraisal of the clinical, radiological, endoscopic, and histological features associated with XLA-associated Crohn disease (CD)-like enteritis. METHODS We report 3 cases and performed a systematic review of the literature describing the diagnoses and outcomes. RESULTS An XLA-related enteropathy presented in adolescence with an ileocolonic CD-like phenotype without perianal disease. Abdominal pain, noninfectious diarrhea, and weight loss were the most common symptoms. Imaging and endoscopic findings closely resemble CD. However, histologically, it presents without nodular lymphoid hyperplasia and only 2 studies reported the presence of granulomas. In addition, in XLA-associated enteritis, immunohistochemistry showed the absence or marked reduction in B cells and plasma cells. CONCLUSIONS An XLA-associated enteritis is a distinct pathological process that presents clinically in a manner similar to ileocolonic CD. It is important to evaluate for infectious diarrhea, which is common in XLA and can mimic IBD clinically. Complete multidisciplinary evaluation is, therefore, recommended for XLA patients with persistent gastrointestinal symptoms. Although more research is needed, therapeutic selection for XLA-associated enteritis is like that of IBD, and the possible risk of drug interactions and complications from increasing immunosuppression should be considered.
Collapse
|
39
|
Costamagna G, Abati E, Bresolin N, Comi GP, Corti S. Management of patients with neuromuscular disorders at the time of the SARS-CoV-2 pandemic. J Neurol 2021; 268:1580-1591. [PMID: 32804279 PMCID: PMC7429942 DOI: 10.1007/s00415-020-10149-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023]
Abstract
The novel Coronavirus disease-19 (COVID-19) pandemic has posed several challenges for neuromuscular disorder (NMD) patients. The risk of a severe course of SARS-CoV-2 infection is increased in all but the mildest forms of NMDs. High-risk conditions include reduced airway clearance due to oropharyngeal weakness and risk of worsening with fever, fasting or infection Isolation requirements may have an impact on treatment regimens administered in hospital settings, such as nusinersen, glucosidase alfa, intravenous immunoglobulin, and rituximab infusions. In addition, specific drugs for SARS-CoV2 infection under investigation impair neuromuscular function significantly; chloroquine and azithromycin are not recommended in myasthenia gravis without available ventilatory support and prolonged prone positioning may influence options for treatment. Other therapeutics may affect specific NMDs (metabolic, mitochondrial, myotonic diseases) and experimental approaches for Coronavirus disease 2019 may be offered "compassionately" only after consulting the patient's NMD specialist. In parallel, the reorganization of hospital and outpatient services may change the management of non-infected NMD patients and their caregivers, favouring at-distance approaches. However, the literature on the validation of telehealth in this subgroup of patients is scant. Thus, as the first wave of the pandemic is progressing, clinicians and researchers should address these crucial open issues to ensure adequate caring for NMD patients. This manuscript summarizes available evidence so far and provides guidance for both general neurologists and NMD specialists dealing with NMD patients in the time of COVID-19.
Collapse
Affiliation(s)
- Gianluca Costamagna
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Elena Abati
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
40
|
Paccoud O, Mahlaoui N, Moshous D, Aguilar C, Neven B, Lanternier F, Suarez F, Picard C, Fischer A, Blanche S, Lecuit M, Hermine O, Lortholary O. Current Spectrum of Infections in Patients with X-Linked Agammaglobulinemia. J Clin Immunol 2021; 41:1266-1271. [PMID: 33880703 DOI: 10.1007/s10875-021-01043-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Outcome of patients with X-linked agammaglobulinemia (XLA) has improved with the widespread use of immunoglobulin replacement therapy (IgRT). There are few data on the spectrum of infections experienced by patients undergoing IgRT. We carried out a retrospective cross-sectional analysis of the records of XLA patients seen at Necker-Enfants Malades Hospital, Paris. For each infection, we evaluated infection site, microbial etiology, antibiotic prophylaxis, immunosuppressive treatment, IgRT route, and last known IgG trough level. Sixty patients were included, who cumulated a follow-up of 1470 patient-years. We recorded 188 infections, including 97 after initiation of IgRT. The rate of infection was highest before IgRT (0.66 vs. 0.06 per person-year (ppy), p < 0.001) and was higher after the age of 16 compared to before (0.14 vs. 0.05 ppy, p = 0.048). It was similar for patients receiving intravenous or subcutaneous Ig (0.09 vs 0.05 ppy, p = 0.54). The lungs and gastrointestinal tract accounted for 71% of infection sites. Forty-six (47%) infections occurred in patients receiving antibiotic prophylaxis. Sixteen (16.5%) infections occurred in patients receiving immunosuppressive therapy, which more frequently occurred after age 16 (35% vs. 2.4%, p < 0.001). The median IgG trough level prior to all infections was 8.4 g/L. Almost half (44.3%) of infections occurred with prior IgG trough levels > 8 g/L, and 16/97 (16.7%) in patients with trough levels > 10 g/L. Infection remains a significant issue in patients with XLA undergoing IgRT despite adequate IgG trough levels. Chronic inflammatory manifestations of X-linked agammaglobulinemia and immunosuppressive therapies may be significant drivers of infection during adulthood.
Collapse
Affiliation(s)
- Olivier Paccoud
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Université de Paris, 149 Rue de Sèvres, 75015, Paris, France.
| | - Nizar Mahlaoui
- Pediatric Immuno-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, Paris, France.,Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Despina Moshous
- Pediatric Immuno-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, Paris, France.,Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Claire Aguilar
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Université de Paris, 149 Rue de Sèvres, 75015, Paris, France.,Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France
| | - Bénédicte Neven
- Pediatric Immuno-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, Paris, France.,Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Fanny Lanternier
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
| | - Felipe Suarez
- Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, Paris, France
| | - Capucine Picard
- Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France.,Study Center for Primary Immunodeficiencies (CEDI), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Alain Fischer
- Pediatric Immuno-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, Paris, France.,Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Stéphane Blanche
- Pediatric Immuno-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, Paris, France.,Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Marc Lecuit
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Université de Paris, 149 Rue de Sèvres, 75015, Paris, France.,Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France.,Biology of Infection Unit, Inserm U1117, Pasteur Institute, Paris, France
| | - Olivier Hermine
- Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, Paris, France
| | - Olivier Lortholary
- Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Université de Paris, 149 Rue de Sèvres, 75015, Paris, France.,Imagine Institute, INSERM UMR1163, Université de Paris, Paris, France
| | | |
Collapse
|
41
|
Dispenza MC. The Use of Bruton's Tyrosine Kinase Inhibitors to Treat Allergic Disorders. CURRENT TREATMENT OPTIONS IN ALLERGY 2021; 8:261-273. [PMID: 33880321 PMCID: PMC8050815 DOI: 10.1007/s40521-021-00286-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/20/2021] [Indexed: 12/19/2022]
Abstract
Purpose of review Studies show that inhibitors of Bruton’s tyrosine kinase (BTKis), currently FDA-approved for the treatment of B cell malignancies, can prevent IgE-mediated reactions through broad inhibition of the FcεRI signaling pathway in human mast cells and basophils. This review will summarize recent data supporting the use of these drugs as novel therapies in various allergic disorders. Recent findings Recent studies have shown that BTKis can prevent IgE-mediated degranulation and cytokine production in primary human mast cells and basophils. Two oral doses of the second-generation BTKi acalabrutinib can completely prevent moderate passive systemic anaphylaxis in humanized mice and even protect against death during severe anaphylaxis. Furthermore, two doses of ibrutinib can reduce or eliminate skin prick test responses to foods and aeroallergens in allergic subjects. BTKis in development also show efficacy in clinical trials for chronic urticaria. Unlike other therapies targeting IgE, such as omalizumab, BTKis appear to have rapid onset and transient effects, making them ideal candidates for intermittent use to prevent acute reactions such as IgE-mediated anaphylaxis. Summary These studies suggest that BTKis may be capable of preventing IgE-mediated anaphylaxis, paving the way for future trials in food allergy and urticaria.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
42
|
Nishimura A, Naruto T, Miyamoto S, Grigg A, Bosco JJ, Hoshino A, Amano K, Iwamoto S, Hirayama M, Migita M, Ohara O, Takagi M, Morio T, van Zelm MC, Kanegane H. Genomics analysis of leukaemia predisposition in X-linked agammaglobulinaemia. Br J Haematol 2021; 193:1277-1281. [PMID: 33855700 DOI: 10.1111/bjh.17459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuya Naruto
- Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Andrew Grigg
- Department of Clinical Haematology, Olivia Newton John Cancer Research Institute, Austin Health, Melbourne, Australia
| | - Julian J Bosco
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | | | | - Masahiro Migita
- Department of Pediatrics, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan.,Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Menno C van Zelm
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Hirokazu Kanegane
- Department of Child Health and Development, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
43
|
Tiri A, Masetti R, Conti F, Tignanelli A, Turrini E, Bertolini P, Esposito S, Pession A. Inborn Errors of Immunity and Cancer. BIOLOGY 2021; 10:biology10040313. [PMID: 33918597 PMCID: PMC8069273 DOI: 10.3390/biology10040313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. Immunologists and oncologists should interact to monitor and promptly diagnose the potential development of cancer in known IEI patients, as well as an underlying IEI in newly diagnosed cancers with suggestive medical history or high rate of therapy-related toxicity. The creation of an international registry of IEI cases with detailed information on the occurrence of cancer is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the aim of improving prognosis and reducing comorbidities. Abstract Inborn Errors of Immunity (IEI) are a heterogeneous group of disorders characterized by a defect in the function of at least one, and often more, components of the immune system. The aim of this narrative review is to discuss the epidemiology, the pathogenesis and the correct management of tumours in patients with IEI. PubMed was used to search for all of the studies published over the last 20 years using the keywords: “inborn errors of immunity” or “primary immunodeficiency” and “cancer” or “tumour” or “malignancy”. Literature analysis showed that the overall risk for cancer in children with IEI ranges from 4 to 25%. Several factors, namely, age of the patient, viral infection status and IEI type can influence the development of different cancer types. The knowledge of a specific tumour risk in the presence of IEI highlights the importance of a synergistic effort by immunologists and oncologists in tracking down the potential development of cancer in known IEI patients, as well as an underlying IEI in patients with newly diagnosed cancers. In the current genomic era, the creation of an international registry of IEI cases integrated with malignancies occurrence information is fundamental to optimizing the diagnostic process and to evaluating the outcomes of new therapeutic options, with the hope to obtain a better prognosis for these patients.
Collapse
Affiliation(s)
- Alessandra Tiri
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Riccardo Masetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| | - Anna Tignanelli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Elena Turrini
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
| | - Patrizia Bertolini
- Pediatric Oncohematology Unit, Pietro Barilla Children’s Hospital, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (A.T.); (A.T.); (E.T.)
- Correspondence: ; Tel.: +39-0521-903-524
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, 40138 Bologna, Italy; (R.M.); (F.C.); (A.P.)
| |
Collapse
|
44
|
Chear CT, Nallusamy R, Chan KC, Mohd Tap R, Baharin MF, Syed Yahya SNH, Krishnan PB, Mohamad SB, Ripen AM. Atypical Presentation of Severe Fungal Necrotizing Fasciitis in a Patient with X-Linked Agammaglobulinemia. J Clin Immunol 2021; 41:1178-1186. [PMID: 33713249 DOI: 10.1007/s10875-021-01017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
X-linked agammaglobulinemia is a rare primary immunodeficiency due to a BTK mutation. The patients are characteristically deficient in peripheral B cells and serum immunoglobulins. While they are susceptible to infections caused by bacteria, enteroviruses, and parasites, fungal infections are uncommon in XLA patients. Here, we report a boy of Malay ethnicity who suffered from recurrent upper respiratory tract infections and severe progressive necrotizing fasciitis caused by Saksenaea erythrospora. Immunological tests showed a B cell deficiency and hypogammaglobulinemia. Whole-exome sequencing identified a dinucleotide deletion (c.1580_1581del) in BTK, confirmed by Sanger sequencing and predicted to be disease causing by in silico functional prediction tools (Varsome and MutationTaster2) but was absent in the gnomAD database. This mutation resulted in a frameshift and premature termination (p.C527fs), which disrupted the protein structure. The mother was heterozygous at the mutation site, confirming her carrier status. Flow cytometric analysis of monocyte BTK expression showed it to be absent in the patient and bimodal in the mother. This study describes a novel BTK mutation in a defined hotspot and an atypical fungal phenotype in XLA. Further studies are required to understand the pathogenesis of fungal infection in XLA.
Collapse
Affiliation(s)
- Chai Teng Chear
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Revathy Nallusamy
- Pediatric Department, Penang General Hospital, Ministry of Health, Penang, Malaysia
| | - Kwai Cheng Chan
- Pediatric Department, Penang General Hospital, Ministry of Health, Penang, Malaysia
| | - Ratna Mohd Tap
- Medical Mycology Laboratory, Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Mohd Farid Baharin
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Sharifah Nurul Husna Syed Yahya
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Prasobhan Bala Krishnan
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), University of Malaya, Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia.
| |
Collapse
|
45
|
Seymour BJ, Singh S, Certo HM, Sommer K, Sather BD, Khim S, Clough C, Hale M, Pangallo J, Ryu BY, Khan IF, Adair JE, Rawlings DJ. Effective, safe, and sustained correction of murine XLA using a UCOE-BTK promoter-based lentiviral vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:635-651. [PMID: 33718514 PMCID: PMC7907679 DOI: 10.1016/j.omtm.2021.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
X-linked agammaglobulinemia (XLA) is an immune disorder caused by mutations in Bruton’s tyrosine kinase (BTK). BTK is expressed in B and myeloid cells, and its deficiency results in a lack of mature B cells and protective antibodies. We previously reported a lentivirus (LV) BTK replacement therapy that restored B cell development and function in Btk and Tec double knockout mice (a phenocopy of human XLA). In this study, with the goal of optimizing both the level and lineage specificity of BTK expression, we generated LV incorporating the proximal human BTK promoter. Hematopoietic stem cells from Btk−/−Tec−/− mice transduced with this vector rescued lineage-specific expression and restored B cell function in Btk−/−Tec−/− recipients. Next, we tested addition of candidate enhancers and/or ubiquitous chromatin opening elements (UCOEs), as well as codon optimization to improve BTK expression. An Eμ enhancer improved B cell rescue, but increased immunoglobulin G (IgG) autoantibodies. Addition of the UCOE avoided autoantibody generation while improving B cell development and function and reducing vector silencing. An optimized vector containing a truncated UCOE upstream of the BTK promoter and codon-optimized BTK cDNA resulted in stable, lineage-regulated BTK expression that mirrored endogenous BTK, making it a strong candidate for XLA therapy.
Collapse
Affiliation(s)
- Brenda J Seymour
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Swati Singh
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Hannah M Certo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Blythe D Sather
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Socheath Khim
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Courtnee Clough
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Joseph Pangallo
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Byoung Y Ryu
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Iram F Khan
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jennifer E Adair
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medical Oncology, University of Washington, Seattle, WA 98195, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Departments of Pediatrics and Immunology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
46
|
Demirdag YY, Gupta S. Update on Infections in Primary Antibody Deficiencies. Front Immunol 2021; 12:634181. [PMID: 33643318 PMCID: PMC7905085 DOI: 10.3389/fimmu.2021.634181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.
Collapse
Affiliation(s)
- Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
47
|
Sá A, Palha V, Condez E, Oliveira N. Skin cancer in congenital X-linked agammaglobulinaemia. BMJ Case Rep 2021; 14:e240523. [PMID: 33547107 PMCID: PMC7871248 DOI: 10.1136/bcr-2020-240523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ana Sá
- Internal Medicine, Hospital de Braga, Braga, Portugal
| | - Vanessa Palha
- Internal Medicine, Hospital de Braga, Braga, Portugal
| | - Elisa Condez
- Internal Medicine, Hospital de Braga, Braga, Portugal
| | | |
Collapse
|
48
|
Rawat A, Jindal AK, Suri D, Vignesh P, Gupta A, Saikia B, Minz RW, Banday AZ, Tyagi R, Arora K, Joshi V, Mondal S, Shandilya JK, Sharma M, Desai M, Taur P, Pandrowala A, Gowri V, Sawant-Desai S, Gupta M, Dalvi AD, Madkaikar M, Aggarwal A, Raj R, Uppuluri R, Bhattad S, Jayaram A, Lashkari HP, Rajasekhar L, Munirathnam D, Kalra M, Shukla A, Saka R, Sharma R, Garg R, Imai K, Nonoyama S, Ohara O, Lee PP, Chan KW, Lau YL, Singh S. Clinical and Genetic Profile of X-Linked Agammaglobulinemia: A Multicenter Experience From India. Front Immunol 2021; 11:612323. [PMID: 33584693 PMCID: PMC7873890 DOI: 10.3389/fimmu.2020.612323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background There is paucity of literature on XLA from developing countries. Herein we report the clinical and molecular profile and outcome in a multicenter cohort of patients with XLA from India. Methods Data on XLA from all regional centers supported by the Foundation for Primary Immunodeficiency Diseases (FPID), USA and other institutions providing care to patients with PIDs were collated. Diagnosis of XLA was based on European Society for Immunodeficiencies (ESID) criteria. Results We received clinical details of 195 patients with a provisional diagnosis of XLA from 12 centers. At final analysis, 145 patients were included (137 'definite XLA' and eight 'probable/possible XLA'). Median age at onset of symptoms was 12.0 (6.0, 36.0) months and median age at diagnosis was 60.0 (31.5, 108) months. Pneumonia was the commonest clinical manifestation (82.6%) followed by otitis media (50%) and diarrhea (42%). Arthritis was seen in 26% patients while 23% patients developed meningitis. Bronchiectasis was seen in 10% and encephalitis (likely viral) in 4.8% patients. Pseudomonas aeruginosa was the commonest bacterial pathogen identified followed by Streptococcus pneumoniae, Staphylococcus aureus and Klebsiella pneumoniae. Molecular analysis revealed 86 variants in 105 unrelated cases. Missense variants in BTK gene were the most common (36%) followed by frameshift (22%) and nonsense variants (21%). Most pathogenic gene variants (53%) were clustered in the distal part of gene encompassing exons 14-19 encoding for the tyrosine kinase domain. Follow-up details were available for 108 patients. Of these, 12% had died till the time of this analysis. The 5-year and 10-year survival was 89.9% and 86.9% respectively. Median duration of follow-up was 61 months and total duration of follow-up was 6083.2 patient-months. All patients received intravenous immunoglobulin (IVIg) replacement therapy. However, in many patients IVIg could not be given at recommended doses or intervals due to difficulties in accessing this therapy because of financial reasons and lack of universal health insurance in India. Hematopoietic stem cell transplant was carried out in four (2.8%) patients. Conclusion There was a significant delay in the diagnosis and facilities for molecular diagnosis were not available at many centers. Optimal immunoglobulin replacement is still a challenge.
Collapse
Affiliation(s)
- Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anju Gupta
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W. Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aaqib Zaffar Banday
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Tyagi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Arora
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vibhu Joshi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjib Mondal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitendra Kumar Shandilya
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mukesh Desai
- Department of Immunology, B. J. Wadia Hospital, Mumbai, India
| | - Prasad Taur
- Department of Immunology, B. J. Wadia Hospital, Mumbai, India
| | | | - Vijaya Gowri
- Department of Immunology, B. J. Wadia Hospital, Mumbai, India
| | - Sneha Sawant-Desai
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohematology, K.E.M Hospital, Mumbai, India
| | - Maya Gupta
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohematology, K.E.M Hospital, Mumbai, India
| | - Aparna Dhondi Dalvi
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohematology, K.E.M Hospital, Mumbai, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohematology, K.E.M Hospital, Mumbai, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Sagar Bhattad
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Aster CMI Hospital, Bengaluru, India
| | | | - Harsha Prasad Lashkari
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Liza Rajasekhar
- Department of Clinical Immunology and Rheumatology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Deenadayalan Munirathnam
- Department of Pediatric Hematology Oncology and Bone Marrow Transplant, Kanchi Kamakoti Childs Trust Hospital, Chennai, India
| | - Manas Kalra
- Department of Pediatric Hematology, Oncology and BMT, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Ruchi Saka
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravinder Garg
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Pamela P. Lee
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
49
|
Cinicola B, Uva A, Leonardi L, Moratto D, Giliani S, Carsetti R, Ferrari S, Zicari AM, Duse M. Case Report: A Case of X-Linked Agammaglobulinemia With High Serum IgE Levels and Allergic Rhinitis. Front Immunol 2020; 11:582376. [PMID: 33224144 PMCID: PMC7674281 DOI: 10.3389/fimmu.2020.582376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
X-linked Agammaglobulinemia (XLA) is a rare genetic disorder of B-lymphocyte differentiation, characterized by the absence or paucity of circulating B cells, markedly reduced levels of all serum immunoglobulin isotypes and lack of specific antibody production. Bruton Tyrosine Kinase (BTK) gene encodes a cytoplasmic tyrosine kinase involved in the B cell maturation and its mutation, blocking B cell differentiation at the pre-B cell stage, and is responsible for XLA. All domains may be affected by the mutation, and the many genotypes are associated with a wide range of clinical presentations. Little is known about genotype-phenotype correlation in this disorder, and factors influencing the phenotype of XLA are not clearly understood. In this report we present a unique case of a young patient affected by XLA. The disease was genetically diagnosed at birth due to a family history of XLA, but during follow up, it was characterized by a CD19+ B cell percentage consistently greater than 2%. He never suffered severe infections, but at two years of age, he developed persistent rhinitis. Thus, total serum IgE levels were measured and detected over the normal range, and specific allergic investigations showed sensitization to dust mites. Further immunological tests (BTK expression, functional “in vitro” B cell proliferation upon CpG stimulation, B cell subset analysis) explained these findings as possible manifestations of a mild XLA phenotype. XLA patients rarely present with allergic manifestations, which could warrant further investigation. High serum IgE levels could be a sign of a mild phenotype, but their role and the mechanisms underlying their production in XLA need to be clarified.
Collapse
Affiliation(s)
- Bianca Cinicola
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Lucia Leonardi
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Daniele Moratto
- Cytogenetic and Medical Genetics Unit, "A. Nocivelli" Institute for Molecular Medicine Spedali Civili Hospital, Brescia, Italy.,Flow Cytometry Unit, Clinical Chemistry Laboratory, Spedali Civili Hospital, Brescia, Italy
| | - Silvia Giliani
- Cytogenetic and Medical Genetics Unit, "A. Nocivelli" Institute for Molecular Medicine Spedali Civili Hospital, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Simona Ferrari
- Medical Genetics Unit, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Anna Maria Zicari
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
50
|
Yeh YH, Hsieh MY, Lee WI, Huang JL, Chen LC, Yeh KW, Ou LS, Yao TC, Wu CY, Lin SJ. Distinct Clinical Features and Novel Mutations in Taiwanese Patients With X-Linked Agammaglobulinemia. Front Immunol 2020; 11:2001. [PMID: 33013854 PMCID: PMC7498534 DOI: 10.3389/fimmu.2020.02001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Background: X-linked agammaglobulinemia (XLA) is caused by a mutation of the Bruton's tyrosine kinase (BTK) gene and is the most common genetic mutation in patients with congenital agammaglobulinemia. The aim of this study was to analyze the clinical features, genetic defects, and/or BTK expression in patients suspected of having XLA who were referred from the Taiwan Foundation of Rare Disorders (TFRD). Methods: Patients with recurrent bacterial infections in the first 2 years of life, serum IgG/A/M below 2 standard deviations of the normal range, and ≦2% CD19+B cells were enrolled during the period of 2004-2019. The frequency of infections, pathogens, B-lymphocyte subsets, and family pedigree were recorded. Peripheral blood samples were sent to our institute for BTK expression and genetic analysis. Results: Nineteen (from 16 families) out of 29 patients had BTK mutations, including 7 missense mutations, 7 splicing mutations, 1 nonsense mutation, 2 huge deletions, and 2 nucleotide deletions. Six novel mutations were detected: c.504G>T [p.K168N], c.895-2A>G [p.Del K290 fs 23*], c.910T>G [p.F304V], c.1132T>C [p.T334H], c.1562A>T [p.D521V], and c.1957delG [Del p.D653 fs plus 45 a.a.]. All patients with BTK mutations had obviously decreased BTK expressions. Pseudomonas sepsis developed in 14 patients and led to both Shanghai fever and recurrent hemophagocytic lymphohistiocytosis (HLH). Recurrent sinopulmonary infections and bronchiectasis occurred in 11 patients. One patient died of pseudomonas sepsis and another died of hepatocellular carcinoma before receiving optimal treatment. Two patients with contiguous gene deletion syndrome (CGS) encompassing the TIMM8A/DDP1 gene presented with early-onset progressive post-lingual sensorineural Deafness, gradual Dystonia, and Optic Neuronopathy syndrome (DDON) or Mohr-Tranebjaerg syndrome (MTS). Conclusion: Pseudomonas sepsis was more common (74%) than recurrent sinopulmonary infections in Taiwanese XLA patients, and related to Shanghai fever and recurrent HLH, both of which were prevented by regular immunoglobulin infusions. Approximately 10% of patients belonged to CGS involving the TIMM8A/DDP1 gene and presented with the DDON/MTS phenotype in need of aggressive psychomotor therapy.
Collapse
Affiliation(s)
- Yu-Hsin Yeh
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-I Lee
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Primary Immunodeficiency Care and Research (PICAR) Institute and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jing-Long Huang
- Primary Immunodeficiency Care and Research (PICAR) Institute and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, New Taipei Municipal TuChen Hospital, New Taipei City, Taiwan
| | - Li-Chen Chen
- Department of Pediatrics, New Taipei Municipal TuChen Hospital, New Taipei City, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Liang-Shiou Ou
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Syh-Jae Lin
- Division of Allergy, Asthma, and Rheumatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|