1
|
Gao H, Kosins AE, Cook-Mills JM. Mechanisms for initiation of food allergy by skin pre-disposed to atopic dermatitis. Immunol Rev 2024; 326:151-161. [PMID: 39007725 DOI: 10.1111/imr.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Food allergy can be life-threatening and often develops early in life. In infants and children, loss-of-function mutations in skin barrier genes associate with food allergy. In a mouse model with skin barrier mutations (Flakey Tail, FT+/- mice), topical epicutaneous sensitization to a food allergen peanut extract (PNE), an environmental allergen Alternaria alternata (Alt) and a detergent induce food allergy and then an oral PNE-challenge induces anaphylaxis. Exposures to these allergens and detergents can occur for infants and children in a household setting. From the clinical and preclinical studies of neonates and children with skin barrier mutations, early oral exposure to allergenic foods before skin sensitization may induce tolerance to food allergens and thus protect against development of food allergy. In the FT+/- mice, oral food allergen prior to skin sensitization induce tolerance to food allergens. However, when the skin of FT+/- pups are exposed to a ubiquitous environmental allergen at the time of oral consumption of food allergens, this blocks the induction of tolerance to the food allergen and the mice can then be skin sensitized with the food allergen. The development of food allergy in neonatal FT+/- mice is mediated by altered skin responses to allergens with increases in skin expression of interleukin 33, oncostatin M and amphiregulin. The development of neonate food allergy is enhanced when born to an allergic mother, but it is inhibited by maternal supplementation with α-tocopherol. Moreover, preclinical studies suggest that food allergen skin sensitization can occur before manifestation of clinical features of atopic dermatitis. Thus, these parameters may impact design of clinical studies for food allergy, when stratifying individuals by loss of skin barrier function or maternal atopy before offspring development of atopic dermatitis.
Collapse
Affiliation(s)
- Haoran Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Allison E Kosins
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joan M Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Hartman TJ, Gebretsadik T, Adgent MA, Nickelberry M, Moore PE, Carlson H, Gross M, Zhao Q, Alcala CS, Zhang X, Bush NR, LeWinn KZ, Wright RJ, Carroll KN. Association of prenatal vitamin E levels with child asthma and wheeze. Pediatr Allergy Immunol 2024; 35:e14208. [PMID: 39087502 DOI: 10.1111/pai.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND We investigated the individual and interaction effects of maternal plasma 𝛂- and ϒ-tocopherol levels (vitamin E isomers) on child asthma and wheeze at age 8-9. METHODS Mother-child dyads were enrolled between 2006 and 2011 into the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) prenatal cohort. Maternal second-trimester samples were analyzed for tocopherol and lipid concentrations. We assessed child asthma/wheeze using the International Study of Asthma and Allergies in Childhood (ISAAC) and other self-reported Ent wheeze. In multivariable logistic regression analyses, we assessed associations between vitamin E isomers and child asthma/wheeze outcomes (n = 847 mother-child dyads) and tested for prespecified interaction terms. RESULTS Median cholesterol-corrected tocopherol levels (interquartile range (IQR)) were 5.0 (4.3-5.7) and 0.8 (0.7-0.9) (umol/mmol) for 𝛂- and ϒ-tocopherol, respectively. Associations between 𝛂-tocopherol and asthma outcome variables were inverse but not statistically significant. In contrast, for ϒ-tocopherol, associations were in the positive direction, but also nonsignificant. Interactions analysis between tocopherols did not reach statistical significance for any outcome. Among children of women with a history of asthma, the likelihood of ever asthma in the child appears to be decreasing with increasing maternal 𝛂-tocopherol levels, whereas this trend was not observed among those without a history of asthma (p-interaction = .05). CONCLUSION We observed no associations for prenatal 𝛂- or ϒ-tocopherol concentrations with child asthma/wheeze. We detected some evidence of effect modification by maternal asthma history in associations between 𝛂-tocopherol and child asthma.
Collapse
Affiliation(s)
- Terryl J Hartman
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Margaret A Adgent
- Division of General Pediatrics, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marshae Nickelberry
- Department of Environmental Health, Harvard Chan School of Public Health, Boston, Massachusetts, USA
| | - Paul E Moore
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hannah Carlson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Cecelia S Alcala
- Department of Pediatrics and Environmental Medicine & Climate Science, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xueying Zhang
- Department of Pediatrics and Environmental Medicine & Climate Science, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicole R Bush
- Department of Pediatrics, University of California, San Francisco, California, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California, USA
| | - Rosalind J Wright
- Department of Public Health and Environmental Medicine and Climate Science, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kecia N Carroll
- Department of Pediatrics and Environmental Medicine & Climate Science, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Switkowski KM, Kronsteiner-Gicevic S, Rifas-Shiman SL, Lightdale JR, Oken E. Evaluation of the Prime Diet Quality Score from Early Childhood Through Mid-Adolescence. J Nutr 2024; 154:1890-1906. [PMID: 38614240 PMCID: PMC11217026 DOI: 10.1016/j.tjnut.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Few diet quality indices have been developed and validated for use among children and adolescents. Additionally, many available indices require completion of burdensome dietary assessments. OBJECTIVES We aimed to calculate and evaluate the performance of a modified version of the food-based Prime Diet Quality Score (PDQS) derived from different diet assessment methods conducted at 4 time points in a single study population from childhood through adolescence. METHODS Among 1460 child participants in the Project Viva cohort, we calculated the PDQS in early and mid-childhood and early and mid-adolescence using dietary data obtained from food frequency questionnaire (early childhood: parent report), PrimeScreen (mid-childhood: parent report; early adolescence: self-report) and 24-h recall (mid-adolescence: self-report). We evaluated construct and relative validity and internal reliability of the score in each life stage. RESULTS The PDQS showed a range of scores at all life stages and higher scores were associated with intake of many health-promoting macronutrients and micronutrients (e.g., protein, fiber, and vitamins) in early childhood and mid-adolescence. The PDQS performed similarly to the Youth Healthy Eating Index/Healthy Eating Index (Spearman r = 0.63-0.85) in various assessments. Higher PDQS was associated with expected characteristics including more frequent breakfast eating, family dinners, and vigorous physical activity; with less frequent TV viewing and fast food intake; and with more sleep and higher maternal diet scores during pregnancy. Cross-sectional associations of the PDQS with various anthropometric measurements and biomarkers were inconsistent but generally in the expected directions (e.g., higher PDQS associated with lower triglycerides and insulin and higher HDL cholesterol). Internal reliability was consistent with what has been found for other diet quality indices. CONCLUSIONS The PDQS can be calculated from data collected using different and brief dietary assessment methods and appears to be a valid and useful measure of overall diet quality in children and adolescents. Project Viva was registered at clinicaltrials.gov as NCT02820402.
Collapse
Affiliation(s)
- Karen M Switkowski
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States.
| | - Selma Kronsteiner-Gicevic
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria; Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Jenifer R Lightdale
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
4
|
Lobo LMDC, Hadler MCCM. Vitamin E deficiency in childhood: a narrative review. Nutr Res Rev 2023; 36:392-405. [PMID: 35929460 DOI: 10.1017/s0954422422000142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vitamin E is an important nutrient from the earliest stages of life. It plays key roles as an antioxidant and in the maintenance of the immune system, among others. Vitamin E deficiency (VED), which occurs more frequently in children, is rarely addressed in the literature. This narrative review aims to summarise the chemistry, biology, serum indicators and clinical trials that have evaluated the impact of fortification and other relevant aspects of vitamin E, in addition to the prevalence of its deficiency, in children worldwide. Vitamin E intake in recommended amounts is essential for this nutrient to perform its functions in the body. Serum α-tocopherol is the most widely used biochemical indicator to assess the prevalence of VED. VED has been associated with symptoms secondary to fat malabsorption and may lead to peripheral neuropathy and increased erythrocyte haemolysis. Reduced concentrations of α-tocopherol may be caused by the combination of diets with low amounts of vitamin E and inadequate consumption of fats, proteins and calories. The lowest prevalence of VED was found in Asia and the highest in North America and Brazil. High proportions of VED provide evidence that this nutritional deficiency is a public health problem in children and still little addressed in the international scientific literature. The planning, evaluation and implementation of health policies aimed at combatting VED in the paediatric population are extremely important.
Collapse
Affiliation(s)
| | - Maria Claret Costa Monteiro Hadler
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia, Goiás, Brazil
- Graduate Program in Nutrition and Health, Faculty of Nutrition, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
5
|
Bloodworth JC, Hoji A, Wolff G, Mandal RK, Schmidt NW, Deshane JS, Morrow CD, Kloepfer KM, Cook-Mills JM. Dysbiotic lung microbial communities of neonates from allergic mothers confer neonate responsiveness to suboptimal allergen. FRONTIERS IN ALLERGY 2023; 4:1135412. [PMID: 36970065 PMCID: PMC10036811 DOI: 10.3389/falgy.2023.1135412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
In humans and animals, offspring of allergic mothers have increased responsiveness to allergens. This is blocked in mice by maternal supplementation with α-tocopherol (αT). Also, adults and children with allergic asthma have airway microbiome dysbiosis with increased Proteobacteria and may have decreased Bacteroidota. It is not known whether αT alters neonate development of lung microbiome dysbiosis or whether neonate lung dysbiosis modifies development of allergy. To address this, the bronchoalveolar lavage was analyzed by 16S rRNA gene analysis (bacterial microbiome) from pups of allergic and non-allergic mothers with a basal diet or αT-supplemented diet. Before and after allergen challenge, pups of allergic mothers had dysbiosis in lung microbial composition with increased Proteobacteria and decreased Bacteroidota and this was blocked by αT supplementation. We determined whether intratracheal transfer of pup lung dysbiotic microbial communities modifies the development of allergy in recipient pups early in life. Interestingly, transfer of dysbiotic lung microbial communities from neonates of allergic mothers to neonates of non-allergic mothers was sufficient to confer responsiveness to allergen in the recipient pups. In contrast, neonates of allergic mothers were not protected from development of allergy by transfer of donor lung microbial communities from either neonates of non-allergic mothers or neonates of αT-supplemented allergic mothers. These data suggest that the dysbiotic lung microbiota is dominant and sufficient for enhanced neonate responsiveness to allergen. Importantly, infants within the INHANCE cohort with an anti-inflammatory profile of tocopherol isoforms had an altered microbiome composition compared to infants with a pro-inflammatory profile of tocopherol isoforms. These data may inform design of future studies for approaches in the prevention or intervention in asthma and allergic disease early in life.
Collapse
Affiliation(s)
- Jeffery C. Bloodworth
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aki Hoji
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Garen Wolff
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rabindra K. Mandal
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nathan W. Schmidt
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jessy S. Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kirsten M. Kloepfer
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joan M. Cook-Mills
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Cui A, Xiao P, Fan Z, Zeng Y, Wang H, Zhuang Y. Associations between vitamin E status and bone mineral density in children and adolescents aged 8-19 years: Evidence based on NHANES 2005-2006, 2017-2018. PLoS One 2023; 18:e0283127. [PMID: 36928218 PMCID: PMC10019693 DOI: 10.1371/journal.pone.0283127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Bone mineral density (BMD) in adolescence is a crucial determinant in osteoporosis and fragility fractures in older age. Vitamin E is the most abundant lipid-soluble antioxidant present in the blood. However, the association of vitamin E status with BMD in children and adolescents remains unclear. METHODS We first measured the association of vitamin E status (serum α- and γ tocopherol) with BMD in children and adolescents with the National Health and Nutrition Examination Survey (NHANES). Multiple linear regression models were performed to evaluate their relationship after adjusting for a large range of covariates. Stratified analyses and interaction tests were used to explore their effects on different genders, ages, and races/ethnicities. RESULTS 13,606 children and adolescents from NHANES (2005-2006, 2017-2018) were included in our analysis. Compared with the lowest α-tocopherol quartile, individuals in the highest α-tocopherol quartile are likelier to be Non-Hispanic White and have a higher value of poverty income ratio (PIR). They have a lower value of serum phosphorus and lumbar spine BMD. Every 1umol/L increase in serum α- and γ- tocopherol, the lumbar spine BMD decreased by -0.0016 and -0.0068 g/cm2. Compared with the lowest quartile serum α- and γ- tocopherol concentration, individuals in the highest quartile have a -0.0223 and -0.0329 g/cm2 lower mean BMD, respectively. Interaction effects suggest that the negative effect is more prominent among female youth, individuals aged 8-13 years, non-Hispanic whites, Mexican Americans, and non-Hispanic blacks. CONCLUSIONS Our study indicates serum α- and γ-tocopherol are negatively correlated with lumbar BMD. Age, gender, and race may have a modifying effect on this relationship. Our study has an important clinical implication. A higher vitamin E status for children and adolescents could not improve BMD, even decrease BMD. More prospective research with stronger evidence is needed to verify our findings and their underlying mechanisms.
Collapse
Affiliation(s)
- Aiyong Cui
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an, China
| | - Peilun Xiao
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Zhiqiang Fan
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an, China
| | - Yuan Zeng
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an, China
| | - Hu Wang
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an, China
- * E-mail: (HW); (YZ)
| | - Yan Zhuang
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an, China
- * E-mail: (HW); (YZ)
| |
Collapse
|
7
|
Cook-Mills JM, Averill SH, Lajiness JD. Asthma, allergy and vitamin E: Current and future perspectives. Free Radic Biol Med 2022; 179:388-402. [PMID: 34785320 PMCID: PMC9109636 DOI: 10.1016/j.freeradbiomed.2021.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 02/03/2023]
Abstract
Asthma and allergic disease result from interactions of environmental exposures and genetics. Vitamin E is one environmental factor that can modify development of allergy early in life and modify responses to allergen after allergen sensitization. Seemingly varied outcomes from vitamin E are consistent with the differential functions of the isoforms of vitamin E. Mechanistic studies demonstrate that the vitamin E isoforms α-tocopherol and γ-tocopherol have opposite functions in regulation of allergic inflammation and development of allergic disease, with α-tocopherol having anti-inflammatory functions and γ-tocopherol having pro-inflammatory functions in allergy and asthma. Moreover, global differences in prevalence of asthma by country may be a result, at least in part, of differences in consumption of these two isoforms of tocopherols. It is critical in clinical and animal studies that measurements of the isoforms of tocopherols be determined in vehicles for the treatments, and in the plasma and/or tissues before and after intervention. As allergic inflammation is modifiable by tocopherol isoforms, differential regulation by tocopherol isoforms provide a foundation for development of interventions to improve lung function in disease and raise the possibility of early life dietary interventions to limit the development of lung disease.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Samantha H Averill
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jacquelyn D Lajiness
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
8
|
Miller RL, Grayson MH, Strothman K. Advances in asthma: New understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol 2021; 148:1430-1441. [PMID: 34655640 DOI: 10.1016/j.jaci.2021.10.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The last 2 years yielded a proliferation of high-quality asthma research. These include new understandings of the incidence and natural history of asthma, findings on the effects of exposure to air pollution, allergens, and intake of acetaminophen, soy isoflavones, and polyunsaturated fatty acids, and exposure to microbial products. The past 2 years have benefited from great strides in determining potential mechanisms of asthma development and asthma exacerbations. These novel understandings led to identification and development of exciting new avenues for potential therapeutic intervention. Finally, there has been significant progress made in the development of tools to facilitate the diagnosis of asthma and measurement of airway physiology and in precision diagnostic approaches. Asthma guidelines were updated and new insights into the pharmacologic management of patients, including biologics, were reported. We review the most notable advances in the natural history of asthma, risk factors for the development of asthma, underlying mechanisms, diagnostic approaches, and treatments. Although greater knowledge of the mechanisms underlying responses and nonresponses to novel therapeutics and across asthma phenotypes would be beneficial, the progress over just the past 2 years has been immense and impactful.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio; Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kasey Strothman
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
9
|
Alkandari S, Al-Hassawi F, Aldughpassi A, Sidhu JS, Al-Amiri HA, Al-Othman A, Ahmed N, Ahmad A. Pilot scale production of functional foods using red palm olein: Antioxidant, vitamins' stability and sensory quality during storage. Saudi J Biol Sci 2021; 28:5547-5554. [PMID: 34588864 PMCID: PMC8459047 DOI: 10.1016/j.sjbs.2021.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
The objective of this research work was to produce acceptable quality functional foods, namely, extruded snacks, digestive biscuits and pan bread, on a pilot scale, using vitamin E and β-carotene-rich red palm olein (RPOL) and red palm shortening (RPS). These products were evaluated for their chemical composition and sensory quality along with the antioxidants and vitamin contents during the six months of storage at room temperature (22 ± 1 °C). Extruded snacks and digestive biscuits prepared with RPOL and RPS were found to be good sources of these antioxidant vitamins. The average β-carotene content of the control and test snacks at the end of six months of storage ranged from 26.8 to 56.1 mg/kg fat, and from 430.9 to 468.9 mg/kg fat, respectively. The total vitamin E content in control and test snacks made in Plant No. 1 decreased after six months of storage from 786.1 to 704.4 mg/kg fat, and from 765.1 to 695.4 mg/kg fat, respectively. As expected, the total tocotrienol content was four to five times higher than the total tocopherols in control biscuits. The RPOL containing 600–750 ppm of carotenes (mainly α- and β-carotenes), 710–774 ppm of vitamin E, was found to be suitable for industrial application in producing acceptable quality pan bread, digestive biscuits and snacks. These functional foods contained significant amounts of β-carotene and total vitamin E, indicating the possibility of producing such foods rich in these two of the important antioxidant vitamins coming from a natural source. The research findings strongly indicate that good-quality pan bread, extruded snacks and digestive biscuits can successfully be produced to offer healthier eating choices to the consumers of this region, thereby promoting better health and productivity among the population.
Collapse
Affiliation(s)
- Sharifa Alkandari
- Dept of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, 13060 Safat, Kuwait
| | - Fatima Al-Hassawi
- Dept of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, 13060 Safat, Kuwait
| | - Ahmed Aldughpassi
- Dept of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, 13060 Safat, Kuwait
| | - Jiwan S Sidhu
- Dept of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, 13060 Safat, Kuwait.,Food Science & Nutrition Program, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| | - Hanan A Al-Amiri
- Food Science & Nutrition Program, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| | - Amani Al-Othman
- Information and Communications Technology Dept, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| | - Nissar Ahmed
- Central Analytical Laboratory, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| | - Anwar Ahmad
- Central Analytical Laboratory, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| |
Collapse
|
10
|
The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9020357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Food by-products contain a remarkable source of bioactive molecules with many benefits for humans; therefore, their exploitation can be an excellent opportunity for the food sector. Moreover, the revalorization of these by-products to produce value-added compounds is considered pivotal for sustainable growth based on a circular economy. Traditional extraction technologies have several drawbacks mainly related to the consumption of hazardous organic solvents, and the high temperatures maintained for long extraction periods which cause the degradation of thermolabile compounds as well as a low extraction efficiency of desired compounds. In this context, supercritical fluid extraction (SFE) has been explored as a suitable green technology for the recovery of a broad range of bioactive compounds from different types of agri-food wastes. This review describes the working principle and development of SFE technology to valorize by-products from different origin (marine, fruit, vegetable, nuts, and other plants). In addition, the potential effects of the extracted active substances on human health were also approached.
Collapse
|
11
|
Sozańska B, Sikorska-Szaflik H. Diet Modifications in Primary Prevention of Asthma. Where Do We Stand? Nutrients 2021; 13:nu13010173. [PMID: 33429965 PMCID: PMC7827701 DOI: 10.3390/nu13010173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
The steep increase in asthma prevalence, observed worldwide in recent decades, has created an urgent need to search for effective methods of its prevention. Among other environmental factors, changes in diet habits and the potential influence of individual food components on immunological processes have been extensively studied as a potential method of intervention in primary prevention of asthma. The preventive role of some nutrients has been confirmed: unpasteurized milk reduced the risk of asthma in epidemiological studies, vitamin D supplementation was effective in preventing the transient forms of wheezing in small children and high maternal intake of fish oil reduced the risk of persistent wheeze and asthma in children. However, not all studies provided consistent results, and many food ingredients are still pending for defining their role in asthma development. Moreover, a novel approach looking not only at single food ingredients, but the whole dietary patterns and diversity has recently been proposed. In this paper, we discuss the current role of nutrients in asthma primary prevention and the reasons for inconsistencies in the study results. We look at single diet components, but also the whole dietary patterns. We describe the proposed mechanisms of action at different stages of life, identify the role of modifiers and delineate future perspectives on the application of nutrients in targeting strategies for asthma primary prevention.
Collapse
|