1
|
Higham A, Beech A, Singh D. The relevance of eosinophils in chronic obstructive pulmonary disease: inflammation, microbiome, and clinical outcomes. J Leukoc Biol 2024; 116:927-946. [PMID: 38941350 DOI: 10.1093/jleuko/qiae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024] Open
Abstract
Chronic obstructive pulmonary disease is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction, and poorly reversible airflow obstruction. A subgroup of patients with chronic obstructive pulmonary disease has higher blood eosinophil counts, associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 inflammation. Emerging evidence shows that patients with chronic obstructive pulmonary disease with increased pulmonary eosinophil counts have an altered airway microbiome. Higher blood eosinophil counts are also associated with increased lung function decline, implicating type 2 inflammation in progressive pathophysiology in chronic obstructive pulmonary disease. We provide a narrative review of the role of eosinophils and type 2 inflammation in the pathophysiology of chronic obstructive pulmonary disease, encompassing the lung microbiome, pharmacological targeting of type 2 pathways in chronic obstructive pulmonary disease, and the clinical use of blood eosinophil count as a chronic obstructive pulmonary disease biomarker.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
- Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, M23 9QZ, United Kingdom
| |
Collapse
|
2
|
Piszczatowska K, Czerwaty K, Dżaman K, Jermakow N, Brzost J, Kantor I, Ludwig N, Szczepański MJ. Evaluation of CNPase and TGFβ1/Smad Signalling Pathway Molecule Expression in Sinus Epithelial Tissues of Patients with Chronic Rhinosinusitis with (CRSwNP) and without Nasal Polyps (CRSsNP). J Pers Med 2024; 14:894. [PMID: 39338148 PMCID: PMC11433593 DOI: 10.3390/jpm14090894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP, respectively) is a chronic inflammatory disease affecting almost 5 to 12% of the population and exhibiting high recurrence rates after functional endoscopic sinus surgery (FESS). TGFβ1-related pathways contribute to tissue remodelling, which is one of the key aspects of CRS pathogenesis. Additionally, adenosine signalling participates in inflammatory processes, and CNPase was shown to elevate adenosine levels by metabolizing cyclic monophosphates. Thus, the aim of this study was to assess the expression levels of Smad2, pSmad3, TGFβ1, and CNPase protein via immunohistochemistry in sinus epithelial tissues from patients with CRSwNP (n = 20), CRSsNP (n = 23), and non-CRS patients (n = 8). The expression of Smad2, pSmad3, TGFβ1, and CNPase was observed in the sinus epithelium and subepithelial area of all three groups of patients, and their expression correlated with several clinical symptoms of CRS. Smad2 expression was increased in CRSsNP patients compared to CRSwNP patients and controls (p = 0.001 and p < 0.001, respectively), pSmad3 expression was elevated in CRSwNP patients compared to controls (p = 0.007), TGFβ1 expression was elevated in CRSwNP patients compared to controls (p = 0.009), and CNPase was decreased in CRSsNP patients compared to controls (p = 0.03). To the best of our knowledge, we are the first to demonstrate CNPase expression in the upper airway epithelium of CRSwNP, CRSsNP, and non-CRS patients and point out a putative synergy between CNPase and TGFβ1/Smad signalling in CRS pathogenesis that emerges as a novel still undiscovered aspect of CRS pathogenesis; further studies are needed to explore its function in the course of the chronic inflammation of the upper airways.
Collapse
Affiliation(s)
- Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Natalia Jermakow
- Department of Hyperbaric Medicine, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland;
| | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Ireneusz Kantor
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| | - Nils Ludwig
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.P.); (N.L.)
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.C.); (K.D.); (I.K.)
| |
Collapse
|
3
|
Yuan C, Lin X, Liao R. Decoding the genetic landscape of allergic rhinitis: a comprehensive network analysis revealing key genes and potential therapeutic targets. J Asthma 2024; 61:823-834. [PMID: 38266128 DOI: 10.1080/02770903.2024.2306619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Allergic Rhinitis (AR), an inflammatory affliction impacting the upper respiratory tract, has been registering a substantial surge in incidence across the globe. METHODS We embarked on examination of differentially expressed genes (DEGs) and the Weighted Gene Co-Expression Network Analysis (WGCNA). With this armory of genes identified, we engaged the tools of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Our study continued with the establishment of a protein-protein interaction (PPI) network and the application of LASSO regression. Finally, we leveraged a docking model to elucidate potential drug-gene interactions involving these key genes. RESULTS Through WGCNA and different express genes screening, PPI network was performed, identifying top 20 key genes, including CD44, CD69, CD274. LASSO regression identified three independent factors, STARD5, CST1, and CHAC1, that were significantly associated with AR. A predictive model was developed with an AUC value over 0.75. Also, 105 potential therapeutic agents were discovered, including Fluorouracil, Cyclophosphamide, Doxorubicin, and Hydrocortisone, offering promising therapeutic strategies for AR. CONCLUSION By fuzing DEGs with key genes derived from WGCNA, this study has illuminated a comprehensive network of gene interactions involved in the pathogenesis of AR, paving the way for future biomarker and therapeutic target discovery in AR.
Collapse
Affiliation(s)
- Chile Yuan
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaohong Lin
- WEN Ziyuan Pediatric Academic School Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruosha Liao
- Department of Pediatrics, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Yan B, Lan F, Li J, Wang C, Zhang L. The mucosal concept in chronic rhinosinusitis: Focus on the epithelial barrier. J Allergy Clin Immunol 2024; 153:1206-1214. [PMID: 38295881 DOI: 10.1016/j.jaci.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Chronic rhinosinusitis (CRS) is a common chronic nasal cavity and sinus disease affecting a growing number of individuals worldwide. Recent advances have shifted our understanding of CRS pathophysiology from a physical obstruction model of ventilation and drainage to a mucosal concept that recognizes the complexities of mucosal immunologic variations and cellular aberrations. A growing number of studies have demonstrated the alteration of the epithelial barrier during inflammatory states. Therefore, the current review has focused on the crucial role of epithelial cells within this mucosal framework in CRS, detailing the perturbed epithelial homeostasis, impaired epithelial cell barrier, dysregulated epithelial cell repair processes, and enhanced interactions between epithelial cells and immune cells. Notably, the utilization of novel technologies, such as single-cell transcriptomics, has revealed the novel functions of epithelial barriers, such as inflammatory memory and neuroendocrine functions. Therefore, this review also emphasizes the importance of epithelial inflammatory memory and the necessity of further investigations into neuroendocrine epithelial cells and neurogenic inflammation in CRS. We conclude by contemplating the prospective benefits of epithelial cell-oriented biological treatments, which are currently under investigation in rigorous randomized, double-blind clinical trials in patients with CRS with nasal polyps.
Collapse
Affiliation(s)
- Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Lan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Wipperman MF, Gayvert KM, Atanasio A, Wang CQ, Corren J, Covarrubias A, Setliff I, Chio E, Laws E, Wolfe K, Harel S, Maloney J, Herman G, Orengo JM, Lim WK, Hamon SC, Hamilton JD, O'Brien MP. Differential modulation of allergic rhinitis nasal transcriptome by dupilumab and allergy immunotherapy. Allergy 2024; 79:894-907. [PMID: 38279910 DOI: 10.1111/all.16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Nasal epithelial cells are important regulators of barrier function and immune signaling; however, in allergic rhinitis (AR) these functions can be disrupted by inflammatory mediators. We aimed to better discern AR disease mechanisms using transcriptome data from nasal brushing samples from individuals with and without AR. METHODS Data were drawn from a feasibility study of individuals with and without AR to Timothy grass and from a clinical trial evaluating 16 weeks of treatment with the following: dupilumab, a monoclonal antibody that binds interleukin (IL)-4Rα and inhibits type 2 inflammation by blocking signaling of both IL-4/IL-13; subcutaneous immunotherapy with Timothy grass (SCIT), which inhibits allergic responses through pleiotropic effects; SCIT + dupilumab; or placebo. Using nasal brushing samples from these studies, we defined distinct gene signatures in nasal tissue of AR disease and after nasal allergen challenge (NAC) and assessed how these signatures were modulated by study drug(s). RESULTS Treatment with dupilumab (normalized enrichment score [NES] = -1.73, p = .002) or SCIT + dupilumab (NES = -2.55, p < .001), but not SCIT alone (NES = +1.16, p = .107), significantly repressed the AR disease signature. Dupilumab (NES = -2.55, p < .001), SCIT (NES = -2.99, p < .001), and SCIT + dupilumab (NES = -3.15, p < .001) all repressed the NAC gene signature. CONCLUSION These results demonstrate type 2 inflammation is an important contributor to the pathophysiology of AR disease and that inhibition of the type 2 pathway with dupilumab may normalize nasal tissue gene expression.
Collapse
Affiliation(s)
| | | | | | - Claire Q Wang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Jonathan Corren
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Angelica Covarrubias
- Clinical Research Division, Jonathan Corren, MD. Inc., Los Angeles, California, USA
| | - Ian Setliff
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Erica Chio
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | | | | - Sivan Harel
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | | - Gary Herman
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Jamie M Orengo
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Sara C Hamon
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | | | |
Collapse
|
6
|
Sima Y, Wang X, Zhang L. Interaction of eosinophilic and neutrophilic inflammation in patients with chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2024; 24:25-31. [PMID: 37966141 DOI: 10.1097/aci.0000000000000956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
PURPOSE OF REVIEW In the past year, the endotype of chronic rhinosinusitis (CRS) has been studied from a new perspective. Eosinophilic and neutrophilic inflammation are not independent processes in the pathogenesis of CRS. In this review, we will focus on recent research on mixed eosinophilic-neutrophilic inflammation in CRS and discuss the mechanism and potential treatments. RECENT FINDINGS Traditionally, patients with eosinophilic CRS (ECRS) present with severe clinical manifestations, comorbidities, and a higher recurrence rate. Recent studies have found that approximately 40% of patients with ECRS present with neutrophilic infiltration, while patients with predominantly eosinophilic infiltration along with neutrophilic inflammation present with more complex inflammation, clinical manifestations and exhibit refractory characteristics. SUMMARY The complex inflammatory profile and refractory clinical characteristics of mixed eosinophilic-neutrophilic inflammation in CRS are current challenges for clinicians. We summarize the features of eosinophilic and neutrophilic inflammation and current studies on the mechanisms of mixed eosinophilic-neutrophilic inflammation and suggest potentially effective therapeutic methods. We hope that this review will help with determining precise treatment options for patients.
Collapse
Affiliation(s)
- Yutong Sima
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Hoyer A, Chakraborty S, Lilienthal I, Konradsen JR, Katayama S, Söderhäll C. The functional role of CST1 and CCL26 in asthma development. Immun Inflamm Dis 2024; 12:e1162. [PMID: 38270326 PMCID: PMC10797655 DOI: 10.1002/iid3.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Asthma is the most common chronic disease in children with an increasing prevalence. Its development is caused by genetic and environmental factors and allergic sensitization is a known trigger. Dog allergens affect up to 30% of all children and dog dander-sensitized children show increased expression of cystatin-1 (CST1) and eotaxin-3 (CCL26) in nasal epithelium. The aim of our study was to investigate the functional mechanism of CST1 and CCL26 in the alveolar basal epithelial cell line A549. METHODS A549 cells were transfected with individual overexpression vectors for CST1 and CCL26 and RNA sequencing was performed to examine the transcriptomics. edgeR was used to identify differentially expressed genes (= DEG, |log2 FC | ≥ 2, FDR < 0.01). The protein expression levels of A549 cells overexpressing CST1 and CCL26 were analyzed using the Target 96 inflammation panel from OLINK (antibody-mediated proximity extension-based assay; OLINK Proteomics). Differentially expressed proteins were considered with a |log2 FC| ≥ 1, p < .05. RESULTS The overexpression of CST1 resulted in a total of 27 DEG (1 upregulated and 26 downregulated) and the overexpression of CCL26 in a total of 137 DEG (0 upregulated and 137 downregulated). The gene ontology enrichment analysis showed a significant downregulation of type I and III interferon signaling pathway genes as well as interferon-stimulated genes. At the protein level, overexpression of CST1 induced a significantly increased expression of CCL3, whereas CCL26 overexpression led to increased expression of HGF, and a decrease of CXCL11, CCL20, CCL3 and CXCL10. CONCLUSION Our results indicate that an overexpression of CST1 and CCL26 cause a downregulation of interferon related genes and inflammatory proteins. It might cause a higher disease susceptibility, mainly for allergic asthma, as CCL26 is an agonist for CCR-3-carrying cells, such as eosinophils and Th2 lymphocytes, mostly active in allergic asthma.
Collapse
Affiliation(s)
- Angela Hoyer
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Sandip Chakraborty
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Ingrid Lilienthal
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
| | - Jon R. Konradsen
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| | - Shintaro Katayama
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Stem Cells and Metabolism Research ProgramUniversity of HelsinkiHelsinkiFinland
- Folkhälsan Research CenterHelsinkiFinland
| | - Cilla Söderhäll
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children's HospitalKarolinska University HospitalSolnaSweden
| |
Collapse
|
8
|
Kim J, Kwak S, Lee J, Park IH, Lee SH, Shin JM, Kim TH. Eosinophilic Chronic Rhinosinusitis and Pathogenic Role of Protease. Int J Mol Sci 2023; 24:17372. [PMID: 38139201 PMCID: PMC10744023 DOI: 10.3390/ijms242417372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is an inflammation of the nasal and paranasal sinus mucosa, and eosinophilic CRS (eCRS) is a subtype characterized by significant eosinophil infiltration and immune response by T-helper-2 cells. The pathogenesis of eCRS is heterogeneous and involves various environmental and host factors. Proteases from external sources, such as mites, fungi, and bacteria, have been implicated in inducing type 2 inflammatory reactions. The balance between these proteases and endogenous protease inhibitors (EPIs) is considered important, and their imbalance can potentially lead to type 2 inflammatory reactions, such as eCRS. In this review, we discuss various mechanisms by which exogenous proteases influence eCRS and highlight the emerging role of endogenous protease inhibitors in eCRS pathogenesis.
Collapse
Affiliation(s)
- Jaehyeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sooun Kwak
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Juhyun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
| | - Jae Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (J.K.); (S.K.); (J.L.); (I.-H.P.); (S.H.L.); (J.M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Zhang Z, Zhan F. Type 2 Cystatins and Their Roles in the Regulation of Human Immune Response and Cancer Progression. Cancers (Basel) 2023; 15:5363. [PMID: 38001623 PMCID: PMC10670837 DOI: 10.3390/cancers15225363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cystatins are a family of intracellular and extracellular protease inhibitors that inhibit cysteine cathepsins-a group of lysosomal cysteine proteases that participate in multiple biological processes, including protein degradation and post-translational cleavage. Cysteine cathepsins are associated with the development of autoimmune diseases, tumor progression, and metastasis. Cystatins are categorized into three subfamilies: type 1, type 2, and type 3. The type 2 cystatin subfamily is the largest, containing 10 members, and consists entirely of small secreted proteins. Although type 2 cystatins have many shared biological roles, each member differs in structure, post-translational modifications (e.g., glycosylation), and expression in different cell types. These distinctions allow the type 2 cystatins to have unique biological functions and properties. This review provides an overview of type 2 cystatins, including their biological similarities and differences, their regulatory effect on human immune responses, and their roles in tumor progression, immune evasion, and metastasis.
Collapse
Affiliation(s)
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
10
|
Yang Y, Guo J, Yao Y, Wang J, Yin J, Guo Y, Wang C, Zhang Y, Song X. Proteomics and metabolomics analysis of nasal lavage fluid in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2023; 13:1966-1970. [PMID: 36898695 DOI: 10.1002/alr.23151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
KEY POINTS An integrated proteomics and metabolomics were used to investigate the pathogenesis of CRSwNP. Amino acid metabolism and mitochondrial dysfunction play key roles in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jing Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yao Yao
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jianwei Wang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Cai Wang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
11
|
Laidlaw TM, Menzies-Gow A, Caveney S, Han JK, Martin N, Israel E, Lee JK, Llanos JP, Martin N, Megally A, Parikh B, Vong S, Welte T, Corren J. Tezepelumab Efficacy in Patients with Severe, Uncontrolled Asthma with Comorbid Nasal Polyps in NAVIGATOR. J Asthma Allergy 2023; 16:915-932. [PMID: 37692126 PMCID: PMC10488831 DOI: 10.2147/jaa.s413064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose Tezepelumab, a human monoclonal antibody, blocks thymic stromal lymphopoietin. In the phase 3 NAVIGATOR study (NCT03347279), tezepelumab reduced annualized asthma exacerbation rates (AAERs) versus placebo, irrespective of baseline disease characteristics, and improved lung function and symptom control versus placebo in adults and adolescents with severe, uncontrolled asthma. We assessed the efficacy of tezepelumab in patients with severe asthma with or without nasal polyps (NPs) in the 2 years before randomization in NAVIGATOR. Methods Patients with severe asthma (N=1059) were randomized (1:1) and received tezepelumab 210 mg or placebo every 4 weeks subcutaneously for 52 weeks. Prespecified exploratory analyses included: AAER over 52 weeks and changes from baseline to week 52 in pre-bronchodilator forced expiratory volume in 1 second, Sino-Nasal Outcome Test (SNOT)-22 scores, and asthma control and health-related quality life (HRQoL) outcomes in NP subgroups. Changes from baseline in fractional exhaled nitric oxide (FeNO), blood eosinophil counts, total immunoglobulin E (IgE), eosinophil-derived neurotoxin (EDN), matrix metalloproteinase-10 (MMP-10), and serum interleukin (IL)-5, IL-6, IL-8 and IL-13 were assessed (post hoc). Results Tezepelumab reduced the AAER over 52 weeks versus placebo by 85% (95% confidence interval [CI]: 72, 92; n=118) and 51% (95% CI: 40, 60; n=941) in patients with and without NPs, respectively. At week 52, tezepelumab improved lung function, asthma control and HRQoL versus placebo in patients with and without NPs. Tezepelumab reduced SNOT-22 total scores (least-squares mean difference versus placebo [95% CI]) in patients with NPs at 28 weeks (-12.57 points [-19.40, -5.73]) and 52 weeks (-10.58 points [-17.75, -3.41]). At week 52, tezepelumab reduced blood eosinophil counts and FeNO, IgE, IL-5, IL-13, EDN and MMP-10 levels versus placebo, irrespective of NP status. Conclusion Tezepelumab resulted in clinically meaningful improvements in sino-nasal symptoms and asthma outcomes in patients with severe asthma with comorbid NPs.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Jeff and Penny Vinik Center for Allergic Diseases Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrew Menzies-Gow
- Royal Brompton and Harefield Hospitals, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Scott Caveney
- Global Development, Inflammation, R&D, Amgen, Thousand Oaks, CA, USA
| | - Joseph K Han
- Department of Otolaryngology, Head and Neck Surgery, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nicole Martin
- Biometrics, Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
- Cytel Inc, Waltham, MA, USA
| | - Elliot Israel
- Divisions of Pulmonary and Critical Care Medicine and Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason K Lee
- Evidence Based Medical Educator Inc., Toronto, ON, Canada
- Toronto Allergy and Asthma Clinic, Toronto, ON, Canada
| | | | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
- University of Leicester, Leicester, UK
| | - Ayman Megally
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Bhavini Parikh
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sylvia Vong
- Translational Science and Experimental Medicine, Early Respiratory and Immunology, AstraZeneca, Gaithersburg, MD, USA
| | - Tobias Welte
- Department of Respiratory Medicine and German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Jonathan Corren
- David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
12
|
Chua AJ, Francesco VD, Huang D, D'Souza A, Bleier BS, Amiji MM. Nanotechnology-enabled topical delivery of therapeutics in chronic rhinosinusitis. Nanomedicine (Lond) 2023; 18:1399-1415. [PMID: 37800470 DOI: 10.2217/nnm-2023-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the paranasal sinuses which represents a significant health burden due to its widespread prevalence and impact on patients' quality of life. As the molecular pathways driving and sustaining inflammation in CRS become better elucidated, the diversity of treatment options is likely to widen significantly. Nanotechnology offers several tools to enhance the effectiveness of topical therapies, which has been limited by factors such as poor drug retention, mucosal permeation and adhesion, removal by epithelial efflux pumps and the inability to effectively penetrate biofilms. In this review, we highlight the successful application of nanomedicine in the field of CRS therapeutics, discuss current limitations and propose opportunities for future work.
Collapse
Affiliation(s)
- Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
- Department of Otorhinolaryngology - Head & Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore
| | - Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA
| |
Collapse
|
13
|
Favier V, Charriot J, Crampette L, Bourdin A, Ahmed E. What place will tezepelumab hold in the treatment paradigm in chronic rhinosinusitis? Expert Rev Clin Immunol 2023; 19:821-825. [PMID: 37194702 DOI: 10.1080/1744666x.2023.2215986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Affiliation(s)
- Valentin Favier
- Department of ENT Surgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Jérémy Charriot
- Department of Respiratory Diseases, Univ Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| | - Louis Crampette
- Department of ENT Surgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Univ Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| | - Engi Ahmed
- Department of Respiratory Diseases, Univ Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
14
|
Du L, Xu C, Tang K, Shi J, Tang L, Lisha X, Lei C, Liu H, Liang Y, Guo Y. Epithelial CST1 Promotes Airway Eosinophilic Inflammation in Asthma via the AKT Signaling Pathway. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:374-394. [PMID: 37075800 DOI: 10.4168/aair.2023.15.3.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 05/17/2023]
Abstract
PURPOSE Epithelial cystatin SN (CST1), a type 2 cysteine protease inhibitor, was significantly upregulated in asthma. In this study, we aimed to investigate the potential role and mechanism of CST1 in eosinophilic inflammation in asthma. METHODS Bioinformatics analysis on Gene Expression Omnibus datasets were used to explore the expression of CST1 in asthma. Sputum samples were collected from 76 asthmatics and 22 control subjects. CST1 mRNA and protein expression in the induced sputum were measured by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. The possible function of CST1 was explored in ovalbumin (OVA)-induced eosinophilic asthma. Transcriptome sequencing (RNA-seq) was used to predict the possible regulated mechanism of CST1 in bronchial epithelial cells. Overexpression or knockdown of CST1 was further used to verify potential mechanisms in bronchial epithelial cells. RESULTS CST1 expression was significantly increased in the epithelial cells and induced sputum of asthma. Increased CST1 was significantly associated with eosinophilic indicators and T helper cytokines. CST1 aggravated airway eosinophilic inflammation in the OVA-induced asthma model. In addition, overexpression of CST1 significantly enhanced the phosphorylation of AKT and the expression of serpin peptidase inhibitor, clade B, member 2 (SERPINB2), while knockdown using anti-CST1 siRNA reversed the trend. Furthermore, AKT had a positive effect on SERPINB2 expression. CONCLUSIONS Increased sputum CST1 may play a key role in the pathogenesis of asthma through involvement in eosinophilic and type 2 inflammation through activation of the AKT signaling pathway, further promoting SERPINB2 expression. Therefore, targeting CST1 might be of therapeutic value in treating asthma with severe and eosinophilic phenotypes.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Changyi Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Kun Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Jia Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Lu Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Xiao Lisha
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Chengcheng Lei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Huicong Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Yuxia Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China.
| | - Yubiao Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Yan B, Ren Y, Liu C, Shu L, Wang C, Zhang L. Cystatin SN in type 2 inflammatory airway diseases. J Allergy Clin Immunol 2023; 151:1191-1203.e3. [PMID: 36958985 DOI: 10.1016/j.jaci.2023.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
Cystatin SN, encoded by CST1, belongs to the type 2 (T2) cystatin protein superfamily. In the past decade, several publications have highlighted the association between cystatin SN and inflammatory airway diseases including chronic rhinosinusitis, rhinitis, asthma, chronic obstructive pulmonary disease, and chronic hypersensitivity pneumonitis. It is, therefore, crucial to understand the role of cystatin SN in the wider context of T2 inflammatory diseases. Here, we review the expression of cystatin SN in airway-related diseases with different endotypes. We also emphasize the physiological and pathological roles of cystatin SN. Physiologically, cystatin SN protects host tissues from destructive proteolysis by cysteine proteases present in the external environment or produced via internal dysregulated expression. Pathologically, the secretion of cystatin SN from airway epithelial cells initiates and amplifies T2 immunity and subsequently leads to disease. We further discuss the development of cystatin SN as a T2 immunity marker that can be monitored noninvasively and assist in airway disease management. The discovery, biology, and inhibition capability are also introduced to better understand the role of cystatin SN in airway diseases.
Collapse
Affiliation(s)
- Bing Yan
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yimin Ren
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Linping Shu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China; Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Wang M, Gong L, Luo Y, He S, Zhang X, Xie X, Li X, Feng X. Transcriptomic analysis of asthma and allergic rhinitis reveals CST1 as a biomarker of unified airways. Front Immunol 2023; 14:1048195. [PMID: 36733482 PMCID: PMC9888248 DOI: 10.3389/fimmu.2023.1048195] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Background Allergic rhinitis (AR) is an important risk factor for the development of asthma. The "unified airway" theory considers the upper and lower airways as a morphological and functional whole. However, studies exploring biomarkers linking the upper and lower airways in allergic disease are lacking, which may provide insight into the mechanisms underlying AR comorbid asthma. Purpose To integrate bioinformatics techniques to explore biomarkers in airway allergic diseases, and to provide a molecular etiology profile for preventing the development of asthma in AR patients. Methods Biomarkers were screened by identifying key genes common between AR and asthma through WGCNA and differential gene analysis. GO and KEGG analyses were performed using DAVID. Immuno-infiltration analysis was performed by CIBERSORTx. The predictive value of CST1 to distinguish Th2-high asthma was determined by ROC curves. GSEA was used to analyze the signaling pathways involved in CST1. TargetScan and miRNet were combined with GSE142237 to construct ceRNA network. CMap was used to explore potential therapeutic drugs. Results Validation of datasets showed that CST1 was the only gene that was up-regulated in both upper and lower airways in patients with AR and asthma, and correlation heatmaps showed that CST1 was the gene with the highest sum of correlation coefficients. GO and KEGG analysis demonstrated that the lower airways of AR patients were mainly involved in inflammatory and immune responses, similar to asthma. Immune infiltration showed that CST1 was mainly positively correlated with activated CD4 memory T cells. According to the ROC curve, CST1 showed excellent diagnostic efficiency for Th2-high asthma. GSEA indicated that CST1 was involved in the FcϵRI signaling pathway and O-glycan biosynthesis. A ceRNA network including the lncRNAs KCNQ1OT1 and NEAT1 was constructed. Four drugs, including verrucarin-A, had the potential to prevent the development of asthma in AR patients. In addition, corticosteroids were found to downregulate CST1 expression. Conclusion CST1 plays a key role in the development of AR comorbid asthma and may be a biomarker for airway allergic diseases. Targeted treatment of CST1 has the potential to prevent the development of asthma in AR patients and deserves further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Feng
- *Correspondence: Xin Feng, ; Xuezhong Li,
| |
Collapse
|
17
|
Bleier BS. Reply. J Allergy Clin Immunol 2023; 151:288. [PMID: 36336486 DOI: 10.1016/j.jaci.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Benjamin S Bleier
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass.
| |
Collapse
|
18
|
Wang Z, He Y, Li Q, Zhao Y, Zhang G, Luo Z. Network analyses of upper and lower airway transcriptomes identify shared mechanisms among children with recurrent wheezing and school-age asthma. Front Immunol 2023; 14:1087551. [PMID: 36776870 PMCID: PMC9911682 DOI: 10.3389/fimmu.2023.1087551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
Background Predicting which preschool children with recurrent wheezing (RW) will develop school-age asthma (SA) is difficult, highlighting the critical need to clarify the pathogenesis of RW and the mechanistic relationship between RW and SA. Despite shared environmental exposures and genetic determinants, RW and SA are usually studied in isolation. Based on network analysis of nasal and tracheal transcriptomes, we aimed to identify convergent transcriptomic mechanisms in RW and SA. Methods RNA-sequencing data from nasal and tracheal brushing samples were acquired from the Gene Expression Omnibus. Combined with single-cell transcriptome data, cell deconvolution was used to infer the composition of 18 cellular components within the airway. Consensus weighted gene co-expression network analysis was performed to identify consensus modules closely related to both RW and SA. Shared pathways underlying consensus modules between RW and SA were explored by enrichment analysis. Hub genes between RW and SA were identified using machine learning strategies and validated using external datasets and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential value of hub genes in defining RW subsets was determined using nasal and tracheal transcriptome data. Results Co-expression network analysis revealed similarities in the transcriptional networks of RW and SA in the upper and lower airways. Cell deconvolution analysis revealed an increase in mast cell fraction but decrease in club cell fraction in both RW and SA airways compared to controls. Consensus network analysis identified two consensus modules highly associated with both RW and SA. Enrichment analysis of the two consensus modules indicated that fatty acid metabolism-related pathways were shared key signals between RW and SA. Furthermore, machine learning strategies identified five hub genes, i.e., CST1, CST2, CST4, POSTN, and NRTK2, with the up-regulated hub genes in RW and SA validated using three independent external datasets and qRT-PCR. The gene signatures of the five hub genes could potentially be used to determine type 2 (T2)-high and T2-low subsets in preschoolers with RW. Conclusions These findings improve our understanding of the molecular pathogenesis of RW and provide a rationale for future exploration of the mechanistic relationship between RW and SA.
Collapse
Affiliation(s)
- Zhili Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yu He
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinyuan Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guangli Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Yan B, Wang C, Zhang L. Cystatin SN-more than a type 2 immunity marker. J Allergy Clin Immunol 2023; 151:287-288. [PMID: 36336487 DOI: 10.1016/j.jaci.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Bing Yan
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China), Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing 100005, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
20
|
Roles of Exosomes in Chronic Rhinosinusitis: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911284. [PMID: 36232588 PMCID: PMC9570170 DOI: 10.3390/ijms231911284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The pathophysiology of chronic rhinosinusitis (CRS) is multifactorial and not entirely clear. The objective of the review was to examine the current state of knowledge concerning the role of exosomes in CRS. For this systematic review, we searched PubMed/MEDLINE, Scopus, CENTRAL, and Web of Science databases for studies published until 7 August 2022. Only original research articles describing studies published in English were included. Reviews, book chapters, case studies, conference papers, and opinions were excluded. The quality of the evidence was assessed with the modified Office and Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies. Of 250 records identified, 17 were eligible, all of which had a low to moderate risk of overall bias. Presented findings indicate that exosomal biomarkers, including proteins and microRNA, act as promising biomarkers in the diagnostics and prognosis of CRS patients and, in addition, may contribute to finding novel therapeutic targets. Exosomes reflecting tissue proteomes are excellent, highly available material for studying proteomic alterations noninvasively. The first steps have already been taken, but more advanced research on nasal exosomes is needed, which might open a wider door for individualized medicine in CRS.
Collapse
|