1
|
He X, Liu P, Luo Y, Fu X, Yang T. STATs, promising targets for the treatment of autoimmune and inflammatory diseases. Eur J Med Chem 2024; 277:116783. [PMID: 39180944 DOI: 10.1016/j.ejmech.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Cytokines play a crucial role in the pathophysiology of autoimmune and inflammatory diseases, with over 50 cytokines undergoing signal transduction through the Signal Transducers and Activators of Transcription (STAT) signaling pathway. Recent studies have solidly confirmed the pivotal role of STATs in autoimmune and inflammatory diseases. Therefore, this review provides a detailed summary of the immunological functions of STATs, focusing on exploring their mechanisms in various autoimmune and inflammatory diseases. Additionally, with the rapid advancement of structural biology in the field of drug discovery, many STAT inhibitors have been identified using structure-based drug design strategies. In this review, we also examine the structures of STAT proteins and compile the latest research on STAT inhibitors currently being tested in animal models and clinical trials for the treatment of immunological diseases, which emphasizes the feasibility of STATs as promising therapeutic targets and provides insights into the design of the next generation of STAT inhibitors.
Collapse
Affiliation(s)
- Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Yoo SA, Kim KC, Lee JH. Efficacy and Potential Mechanisms of Naringin in Atopic Dermatitis. Int J Mol Sci 2024; 25:11064. [PMID: 39456844 PMCID: PMC11507659 DOI: 10.3390/ijms252011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent chronic inflammatory skin diseases. Topical treatments are recommended for all patients regardless of severity, making it essential to develop an effective topical AD treatment with minimal side effects; We investigated the efficacy of topical application of naringin in AD and explored the possible mechanisms using an AD mouse model induced by 1-chloro-2,4-dinitrobenzene (DNCB). Clinical, histological, and immunological changes related to AD and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling proteins in the skin tissues were measured as outcomes; Naringin treatment resulted in a significant improvement in dermatitis severity score and reduced epidermal thickness and mast cell count in the skin (p < 0.05). Naringin also demonstrated the ability to inhibit DNCB-induced changes in interleukin (IL) 4, chemokine (C-C motif) ligand (CCL) 17, CCL22, IL1β, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) levels by quantitative real-time polymerase chain reaction (qRT-PCR) and IL13 by enzyme-linked immunosorbent assay (ELISA) (p < 0.05). Western blot results exhibited the decreased JAK1, JAK2, STAT1, STAT3, phospho-STAT3, and STAT6 expression in the naringin-treated groups (p < 0.05); The findings of this study suggest that topical naringin may effectively improve the symptoms of AD and could be used as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Seung-Ah Yoo
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ki-Chan Kim
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ji-Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
3
|
Virtanen A, Spinelli FR, Telliez JB, O'Shea JJ, Silvennoinen O, Gadina M. JAK inhibitor selectivity: new opportunities, better drugs? Nat Rev Rheumatol 2024; 20:649-665. [PMID: 39251770 DOI: 10.1038/s41584-024-01153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Cytokines function as communication tools of the immune system, serving critical functions in many biological responses and shaping the immune response. When cytokine production or their biological activity goes awry, the homeostatic balance of the immune response is altered, leading to the development of several pathologies such as autoimmune and inflammatory disorders. Cytokines bind to specific receptors on cells, triggering the activation of intracellular enzymes known as Janus kinases (JAKs). The JAK family comprises four members, JAK1, JAK2, JAK3 and tyrosine kinase 2, which are critical for intracellular cytokine signalling. Since the mid-2010s multiple JAK inhibitors have been approved for inflammatory and haematological indications. Currently, approved JAK inhibitors have demonstrated clinical efficacy; however, improved selectivity for specific JAKs is likely to enhance safety profiles, and different strategies have been used to accomplish enhanced JAK selectivity. In this update, we discuss the background of JAK inhibitors, current approved indications and adverse effects, along with new developments in this field. We address the issue of JAK selectivity and its relevance in terms of efficacy, and describe new modalities of JAK targeting, as well as new aspects of JAK inhibitor action.
Collapse
Affiliation(s)
- Anniina Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Francesca Romana Spinelli
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Sapienza Universitá di Roma, Rome, Italy
| | | | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Fimlab laboratories, Tampere, Finland
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Lin YC, Hong YK, Aala WJF, Hitomi K, Akiyama M, McGrath JA, Hsu CK. Tofacitinib ameliorates skin inflammation in a patient with severe autosomal recessive congenital ichthyosis. Clin Exp Dermatol 2024; 49:887-892. [PMID: 38469681 DOI: 10.1093/ced/llae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a genetically heterogeneous disorder with aberrant skin scaling and increased transepidermal water loss (TEWL). Current treatments for ARCI are limited and suboptimal. We present the case of a 27-year-old man with ARCI resulting from a homozygous missense variant in TGM1. RNA-sequencing of lesional skin revealed aberrant Janus kinase-signal transducer and activator of transcription signalling, providing a rationale for innovative treatment with a Janus kinase inhibitor. We prescribed oral tofacitinib (11 mg daily) for 26 weeks. Rapid improvements in erythema and fissuring occurred within the first month. Sustained reductions in 5-D itch scale and Dermatology Life Quality Index scores were also observed. TEWL decreased for the first 10 weeks but increased thereafter. Tofacitinib downregulated inflammatory genes and pathways, while enhancing skin barrier markers. Moreover, transglutaminase 1 distribution was normalized although enzymatic activity remained deficient. This study suggests that oral tofacitinib may be a useful therapy to consider for patients with ARCI.
Collapse
Affiliation(s)
- Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wilson Jr F Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kiyotaka Hitomi
- Cellular Biochemistry Laboratory, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Maitiyaer M, Liu Y, Keyimu N, Wen Y, Liu Z, Huang W, Yu S. A novel approach with tofacitinib for the management of keratoderma blennorrhagicum in reactive arthritis: a case report. Front Immunol 2024; 15:1399249. [PMID: 39015574 PMCID: PMC11249543 DOI: 10.3389/fimmu.2024.1399249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Reactive arthritis(ReA), a form of arthritis occurring post-infection, manifests with antecedent infection symptoms, arthritis, and extra-articular manifestations, categorizing it as spondyloarthritis. "Keratoderma blennorrhagicum" (characterized by pustular hyperkeratosis on palms and soles, resembling pustular psoriasis) represents the most typical skin manifestation of ReA, occurring in acute or chronic phases. Severe lesions necessitate systemic disease modifying anti-rheumatic drugs (DMARDs) or biologic therapies. This article reports a case of ReA with sacroiliitis and widespread pustular eruptions following a urinary tract infection. Treatment with sulfasalazine and thalidomide significantly improved sacroiliitis, but the skin rash remained persistent and recurring. Subsequent use of adalimumab and secukinumab resulted in worsening skin rash, prompting a switch to tofacitinib, leading to a remarkable improvement in pustular eruptions after 20 days of treatment. This case demonstrates successful application of tofacitinib in treating severe keratoderma blennorrhagicum refractory to conventional DMARDs and biologics, offering insights into JAK inhibition for challenging rheumatic diseases with skin involvement.
Collapse
Affiliation(s)
- Maierhaba Maitiyaer
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu Liu
- Department of Clinical Medicine, The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Nueramina Keyimu
- Department of Medical Imaging, The Second School of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yueqiang Wen
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiping Liu
- Ophthalmic Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenhui Huang
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuilian Yu
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Shim KS, Song HK, Park M, Kim HJ, Jang S, Kim T, Kim KM. Reynoutria japonica consisted of emodin-8-β-D-glucoside ameliorates Dermatophagoides farinae extract-induced atopic dermatitis-like skin inflammation in mice by inhibiting JAK/STAT signaling. Biomed Pharmacother 2024; 176:116765. [PMID: 38788600 DOI: 10.1016/j.biopha.2024.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin barrier dysfunction and chronic inflammatory responses. Reynoutria japonica, known as Huzhang in traditional Chinese Medicine, can enhance blood circulation to eliminate wind pathogens and terminate coughing. Despite pharmacological evidence supporting the efficacy of R. japonica in suppressing edema-induced skin inflammation or connective tissue diseases, its pharmaceutical potential for treating AD-like skin inflammation remains unexplored. This study investigated the possible effects of R. japonica ethanol extract (RJE) on Dermatophagoides farinae extract (DfE)-induced AD-like skin inflammation in NC/Nga mice. To elucidate the underlying mechanisms by which RJE inhibits skin inflammation, we examined the effect of RJE on IFN-γ/TNF-α-induced signal transducer and activator of transcription (STAT) signaling in human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Our findings revealed that RJE mitigates DfE-induced AD-like symptoms and skin barrier disruptions in mouse skin lesions. Moreover, RJE attenuated DfE-induced mast cell infiltration and serum levels of inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-23, IFN-γ, TNF-α, and GM-CSF). RJE also inhibited IFN-γ/TNF-α-induced chemokine levels and STAT3 phosphorylation in HEKs and HDFs. Virtual binding analysis of the RJE components suggested that emodin-8-β-D-glucoside binds to Janus kinase (JAK) 1/2, thereby suppressing STAT signaling, which was confirmed by Western blot analysis. In conclusion, our results suggest that RJE may alleviate DfE-induced skin barrier dysfunction by inhibiting JAK/STAT signaling and the proinflammatory immune response through the suppression of inflammatory mediators in AD-like skin disease. These findings suggest that RJE has potential as an effective therapy for AD management.
Collapse
Affiliation(s)
- Ki-Shuk Shim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Practical Research Division, Honam National Institute of Biological Resources, Gohadoan-gil 99, Mokpo, Jeollanam-do 58762, Republic of Korea
| | - Musun Park
- KM Data Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Ki Mo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea.
| |
Collapse
|
7
|
Lacouture ME, Goleva E, Shah N, Rotemberg V, Kraehenbuehl L, Ketosugbo KF, Merghoub T, Maier T, Bang A, Gu S, Salvador T, Moy AP, Lyubchenko T, Xiao O, Hall CF, Berdyshev E, Crooks J, Weight R, Kern JA, Leung DY. Immunologic Profiling of Immune-Related Cutaneous Adverse Events with Checkpoint Inhibitors Reveals Polarized Actionable Pathways. Clin Cancer Res 2024; 30:2822-2834. [PMID: 38652814 PMCID: PMC11215405 DOI: 10.1158/1078-0432.ccr-23-3431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Immune-related cutaneous adverse events (ircAE) occur in ≥50% of patients treated with checkpoint inhibitors, but the underlying mechanisms for ircAEs are poorly understood. EXPERIMENTAL DESIGN Phenotyping/biomarker analyses were conducted in 200 patients on checkpoint inhibitors [139 with ircAEs and 61 without (control group)] to characterize their clinical presentation and immunologic endotypes. Cytokines were evaluated in skin biopsies, skin tape strip extracts, and plasma using real-time PCR and Meso Scale Discovery multiplex cytokine assays. RESULTS Eight ircAE phenotypes were identified: pruritus (26%), maculopapular rash (MPR; 21%), eczema (19%), lichenoid (11%), urticaria (8%), psoriasiform (6%), vitiligo (5%), and bullous dermatitis (4%). All phenotypes showed skin lymphocyte and eosinophil infiltrates. Skin biopsy PCR revealed the highest increase in IFNγ mRNA in patients with lichenoid (P < 0.0001) and psoriasiform dermatitis (P < 0.01) as compared with patients without ircAEs, whereas the highest IL13 mRNA levels were detected in patients with eczema (P < 0.0001, compared with control). IL17A mRNA was selectively increased in psoriasiform (P < 0.001), lichenoid (P < 0.0001), bullous dermatitis (P < 0.05), and MPR (P < 0.001) compared with control. Distinct cytokine profiles were confirmed in skin tape strip and plasma. Analysis determined increased skin/plasma IL4 cytokine in pruritus, skin IL13 in eczema, plasma IL5 and IL31 in eczema and urticaria, and mixed-cytokine pathways in MPR. Broad inhibition via corticosteroids or type 2 cytokine-targeted inhibition resulted in clinical benefit in these ircAEs. In contrast, significant skin upregulation of type 1/type 17 pathways was found in psoriasiform, lichenoid, bullous dermatitis, and type 1 activation in vitiligo. CONCLUSIONS Distinct immunologic ircAE endotypes suggest actionable targets for precision medicine-based interventions.
Collapse
Affiliation(s)
- Mario E. Lacouture
- Dermatology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado.
| | - Neil Shah
- Genitourinary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Veronica Rotemberg
- Dermatology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Lukas Kraehenbuehl
- Dermatology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
- Ludwig Collaborative and Swim Across America Laboratory, Parker Institute for Cancer Immunotherapy, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Kwami F. Ketosugbo
- Dermatology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Taha Merghoub
- Dermatology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
- Ludwig Collaborative and Swim Across America Laboratory, Parker Institute for Cancer Immunotherapy, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Tara Maier
- Dermatology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Alexander Bang
- Dermatology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Stephanie Gu
- Dermatology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Trina Salvador
- Dermatology Service, Division of Subspecialty Medicine, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Andrea P. Moy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Taras Lyubchenko
- Department of Pediatrics, National Jewish Health, Denver, Colorado.
| | - Olivia Xiao
- Department of Pediatrics, National Jewish Health, Denver, Colorado.
| | - Clifton F. Hall
- Department of Pediatrics, National Jewish Health, Denver, Colorado.
| | - Evgeny Berdyshev
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado.
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado.
| | - Ryan Weight
- The Melanoma and Skin Cancer Institute, Denver, Colorado.
| | - Jeffrey A. Kern
- Division of Oncology, Department of Medicine, National Jewish Health, Denver, Colorado.
| | | |
Collapse
|
8
|
Sun Y, Xu T, Zhu S, Xu H. Abrocitinib-associated adverse events: a real-world pharmacovigilance study using the FAERS database. Expert Opin Drug Saf 2024. [PMID: 38739473 DOI: 10.1080/14740338.2024.2355336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Janus kinase (JAK) modulates cytokines involved in AD pathophysiology, and JAK inhibitors have emerged as effective pharmacotherapeutic remedies for AD. Abrocitinib, an oral selective inhibitor of JAK1, is indicated for the management of moderate-to-severe AD. The current study evaluated the adverse events (AEs) associated with abrocitinib in a real-world setting. METHODS To quantify the signals of abrocitinib-associated AEs, we used the US Food and Drug Administration Adverse Event Reporting System (FAERS) for this pharmacovigilance study with two established pharmacovigilance methods. RESULTS A total of 1071 AEs of abrocitinib were investigated as the primary suspected from the FAERS to detect and characterize relevant safety signals. The analysis revealed 85 signals for abrocitinib. The most common AE for abrocitinib was drug ineffective. The signal strength of eczema herpeticum was 515.87 (277.80-957.98) and 510.59 (5148.65) and exhibited the highest strength for abrocitinib. Rare AEs such as aggravated condition, pruritus, and hypersensitivity were not listed on the label, and attention to these AEs is required. CONCLUSION The analysis of the AE signals may provide support for clinical monitoring and risk identification of abrocitinib.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Tao Xu
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Suyan Zhu
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Hongbin Xu
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Schuler CF, Tsoi LC, Billi AC, Harms PW, Weidinger S, Gudjonsson JE. Genetic and Immunological Pathogenesis of Atopic Dermatitis. J Invest Dermatol 2024; 144:954-968. [PMID: 38085213 PMCID: PMC11040454 DOI: 10.1016/j.jid.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
Type 2 immune-mediated diseases give a clear answer to the issue of nature (genetics) versus nurture (environment). Both genetics and environment play vital complementary roles in the development of atopic dermatitis (AD). As a key component of the atopic march, AD demonstrates the interactive nature of genetic and environmental contributions to atopy. From sequence variants in the epithelial barrier gene encoding FLG to the hygiene hypothesis, AD combines a broad array of contributions into a single syndrome. This review will focus on the genetic contribution to AD and where genetics facilitates the elicitation or enhancement of AD pathogenesis.
Collapse
Affiliation(s)
- Charles F Schuler
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul W Harms
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephan Weidinger
- Department of Dermatology, Venereology, and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johann E Gudjonsson
- Mary H. Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Jia J, Zhou X, Chu Q. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer. Mol Cell Biochem 2024:10.1007/s11010-024-04983-5. [PMID: 38519710 DOI: 10.1007/s11010-024-04983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
Liver cancer (LC) poses a significant global health challenge due to its high incidence and poor prognosis. Current systemic treatment options, such as surgery, chemotherapy, radiofrequency ablation, and immunotherapy, have shown limited effectiveness for advanced LC patients. Moreover, owing to the heterogeneous nature of LC, it is crucial to uncover more in-depth pathogenic mechanisms and develop effective treatments to address the limitations of the existing therapeutic modalities. Increasing evidence has revealed the crucial role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in the pathogenesis of LC. The specific mechanisms driving the JAK-STAT pathway activation in LC, participate in a variety of malignant biological processes, including cell differentiation, evasion, anti-apoptosis, immune escape, and treatment resistance. Both preclinical and clinical investigations on the JAK-STAT pathway inhibitors have exhibited potential in LC treatment, thereby opening up avenues for the development of more targeted therapeutic strategies for LC. In this study, we provide an overview of the JAK-STAT pathway, delving into the composition, activation, and dynamic interplay within the pathway. Additionally, we focus on the molecular mechanisms driving the aberrant activation of the JAK-STAT pathway in LC. Furthermore, we summarize the latest advancements in targeting the JAK-STAT pathway for LC treatment. The insights presented in this review aim to underscore the necessity of research into the JAK-STAT signaling pathway as a promising avenue for LC therapy.
Collapse
Affiliation(s)
- JunJun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| | - Xuelian Zhou
- Division of Endocrinology, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
11
|
Chang EH, Gabalski AH, Huerta TS, Datta-Chaudhuri T, Zanos TP, Zanos S, Grill WM, Tracey KJ, Al-Abed Y. The Fifth Bioelectronic Medicine Summit: today's tools, tomorrow's therapies. Bioelectron Med 2023; 9:21. [PMID: 37794457 PMCID: PMC10552422 DOI: 10.1186/s42234-023-00123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
The emerging field of bioelectronic medicine (BEM) is poised to make a significant impact on the treatment of several neurological and inflammatory disorders. With several BEM therapies being recently approved for clinical use and others in late-phase clinical trials, the 2022 BEM summit was a timely scientific meeting convening a wide range of experts to discuss the latest developments in the field. The BEM Summit was held over two days in New York with more than thirty-five invited speakers and panelists comprised of researchers and experts from both academia and industry. The goal of the meeting was to bring international leaders together to discuss advances and cultivate collaborations in this emerging field that incorporates aspects of neuroscience, physiology, molecular medicine, engineering, and technology. This Meeting Report recaps the latest findings discussed at the Meeting and summarizes the main developments in this rapidly advancing interdisciplinary field. Our hope is that this Meeting Report will encourage researchers from academia and industry to push the field forward and generate new multidisciplinary collaborations that will form the basis of new discoveries that we can discuss at the next BEM Summit.
Collapse
Affiliation(s)
- Eric H Chang
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Arielle H Gabalski
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Tomas S Huerta
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Timir Datta-Chaudhuri
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Theodoros P Zanos
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Fitzpatrick CIEMAS, Duke University, Room 1427, 101 Science Drive, Box 90281, Durham, NC, 27708, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| |
Collapse
|
12
|
Bakic M, Klisic A, Karanikolic V. Comparative Study of Hematological Parameters and Biomarkers of Immunity and Inflammation in Patients with Psoriasis and Atopic Dermatitis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1622. [PMID: 37763741 PMCID: PMC10535769 DOI: 10.3390/medicina59091622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: There are no studies regarding comparative analysis of hematological parameters in patients with psoriasis (PsO) and atopic dermatitis (AD), whereas studies examining serum biomarkers of immunity and inflammation in these entities are scarce and contradictory. We aimed to compare such parameters in patients with PsO and AD. Materials and Methods: Patients with PsO (n = 40) and AD (n = 40) were consecutively included in this cross-sectional study. Hematological parameters and biomarkers of immunity and inflammation (interferon-gamma (IFN-γ), interleukine (IL)-22 and C-reactive protein (CRP)) were determined. Results: While the mean corpuscular volume (MCV) was higher in the PsO group vs. the AD group (p < 0.05), there was no difference in the other examined parameters between groups. A higher neutrophil-to-lymphocyte ratio (NLR) was found in patients with AD > 50 years vs. patients with PsO of similar age (p < 0.05). Higher IL-22 levels were found in patients with AD < 50 years vs. patients with PsO of similar age (p < 0.05). Lower IL-22 levels were found in patients with AD > 50 years vs. patients with AD < 50 years (p < 0.05). Patients with PsO and with comorbidities had lower platelets (PLT), plateletcrit (PCT) and platelet-to-lymphocyte ratio (PLR), whereas lymphocytes, red cell distribution width-to-PLT ratio (RPR) and mean platelet volume/PLT ratio (MPR) were higher vs. PsO patients without comorbidities. Patients with AD and with comorbidities had lower PCT and PLR, whereas RPR was higher vs. AD patients without comorbidities. Conclusions: A higher pro-inflammatory state (i.e., higher NLR and IL-22) was found in AD vs. PsO in age-specific groups. A higher pro-inflammatory state (i.e., as reflected by platelet indexes) was found in both diseases with comorbidities.
Collapse
Affiliation(s)
- Mirjana Bakic
- Clinic for Dermatovenerology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro;
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Vesna Karanikolic
- Clinic for Skin Diseases of the Clinical Center Nis, School of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|