1
|
Alonso R, Arroyo-Olivares R, Díaz-Díaz JL, Fuentes-Jiménez F, Arrieta F, de Andrés R, Gonzalez-Bustos P, Argueso R, Martin-Ordiales M, Martinez-Faedo C, Illán F, Saenz P, Donate JM, Sanchez Muñoz-Torrero JF, Martinez-Hervas S, Mata P. Improved lipid-lowering treatment and reduction in cardiovascular disease burden in homozygous familial hypercholesterolemia: The SAFEHEART follow-up study. Atherosclerosis 2024; 393:117516. [PMID: 38523000 DOI: 10.1016/j.atherosclerosis.2024.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
AIM We aimed to describe clinical and genetic characteristics, lipid-lowering treatment and atherosclerotic cardiovascular disease (ASCVD) outcomes over a long-term follow-up in homozygous familial hypercholesterolemia (HoFH). METHODS SAFEHEART (Spanish Familial Hypercholesterolaemia Cohort Study) is a long-term study in molecularly diagnosed FH. Data analyzed in HoFH were prospectively obtained from 2004 until 2022. ASCVD events, lipid profile and lipid-lowering treatment were determined. RESULTS Thirty-nine HoFH patients were analyzed. The mean age was 42 ± 20 years and nineteen (49%) were women. Median follow-up was 11 years (IQR 6,18). Median age at genetic diagnosis was 24 years (IQR 8,42). At enrolment, 33% had ASCVD and 18% had aortic valve disease. Patients with new ASCVD events and aortic valve disease at follow-up were six (15%), and one (3%), respectively. Median untreated LDL-C levels were 555 mg/dL (IQ 413,800), and median LDL-C levels at last follow-up was 122 mg/dL (IQR 91,172). Most patients (92%) were on high intensity statins and ezetimibe, 28% with PCSK9i, 26% with lomitapide, and 23% with lipoprotein-apheresis. Fourteen patients (36%) attained an LDL-C level below 100 mg/dL, and 10% attained an LDL-C below 70 mg/dL in secondary prevention. Patients with null/null variants were youngers, had higher untreated LDL-C and had the first ASCVD event earlier. Free-event survival is longer in patients with defective variant compared with those patients with at least one null variant (p=0.02). CONCLUSIONS HoFH is a severe life threating disease with a high genetic and phenotypic variability. The improvement in lipid-lowering treatment and LDL-C levels have contributed to reduce ASCVD events.
Collapse
Affiliation(s)
- Rodrigo Alonso
- Fundación Hipercolesterolemia Familiar, Madrid, Spain; Center for Advanced Metabolic Medicine and Nutrition, Santiago, Chile.
| | | | | | - Francisco Fuentes-Jiménez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, CIBERObn, Córdoba, Spain
| | | | | | - Pablo Gonzalez-Bustos
- Department of Internal Medicine, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Rosa Argueso
- Department of Endocrinology, Hospital Universitario de Lugo, Lugo, Spain
| | | | | | - Fátima Illán
- Department of Endocrinology, Hospital Morales Meseguer, Murcia, Spain
| | - Pedro Saenz
- Department of Internal Medicine, Hospital de Mérida, Mérida, Spain
| | - José María Donate
- Department of Pediatric Endocrinology, Hospital General Universitario Santa Lucía, Murcia, Spain
| | | | - Sergio Martinez-Hervas
- Department of Endocrinology, Hospital Clínico Universitario de Valencia INCLIVA, CIBER de Diabetes, Spain
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain.
| |
Collapse
|
2
|
Reijman MD, Kusters DM, Groothoff JW, Arbeiter K, Dann EJ, de Boer LM, de Ferranti SD, Gallo A, Greber-Platzer S, Hartz J, Hudgins LC, Ibarretxe D, Kayikcioglu M, Klingel R, Kolovou GD, Oh J, Planken RN, Stefanutti C, Taylan C, Wiegman A, Schmitt CP. Clinical practice recommendations on lipoprotein apheresis for children with homozygous familial hypercholesterolaemia: An expert consensus statement from ERKNet and ESPN. Atherosclerosis 2024; 392:117525. [PMID: 38598969 DOI: 10.1016/j.atherosclerosis.2024.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is used for decades, lowering serum LDL-C levels by more than 70% directly after the treatment. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment goals and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.
Collapse
Affiliation(s)
- M Doortje Reijman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - D Meeike Kusters
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jaap W Groothoff
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Klaus Arbeiter
- Division of Paediatric Nephrology and Gastroenterology, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Eldad J Dann
- Blood Bank and Apheresis Unit Rambam Health Care Campus, Haifa, Israel
| | - Lotte M de Boer
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Sarah D de Ferranti
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Antonio Gallo
- Sorbonne Université, INSERM, UMR 1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Susanne Greber-Platzer
- Clinical Division of Paediatric Pulmonology, Allergology and Endocrinology, Department of Paediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Jacob Hartz
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lisa C Hudgins
- The Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit (UVASMET), Hospital Universitari Sant Joan, Spain; Universitat Rovira i Virgili, Spain; Institut Investigació Sanitària Pere Virgili (IISPV)-CERCA, Spain; Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Meral Kayikcioglu
- Department of Cardiology, Medical Faculty, Ege University, 35100, Izmir, Turkey
| | - Reinhard Klingel
- Apheresis Research Institute, Stadtwaldguertel 77, 50935, Cologne, Germany(†)
| | - Genovefa D Kolovou
- Metropolitan Hospital, Department of Preventive Cardiology, 9, Ethn. Makariou & 1, El. Venizelou, N. Faliro, 185 47, Athens, Greece
| | - Jun Oh
- University Medical Center Hamburg/Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Claudia Stefanutti
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital 'Sapienza' University of Rome, I-00161, Rome, Italy
| | - Christina Taylan
- Paediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Albert Wiegman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Claus Peter Schmitt
- Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, Germany
| |
Collapse
|
3
|
Watts GF, Gidding SS, Hegele RA, Raal FJ, Sturm AC, Jones LK, Sarkies MN, Al-Rasadi K, Blom DJ, Daccord M, de Ferranti SD, Folco E, Libby P, Mata P, Nawawi HM, Ramaswami U, Ray KK, Stefanutti C, Yamashita S, Pang J, Thompson GR, Santos RD. International Atherosclerosis Society guidance for implementing best practice in the care of familial hypercholesterolaemia. Nat Rev Cardiol 2023; 20:845-869. [PMID: 37322181 DOI: 10.1038/s41569-023-00892-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
This contemporary, international, evidence-informed guidance aims to achieve the greatest good for the greatest number of people with familial hypercholesterolaemia (FH) across different countries. FH, a family of monogenic defects in the hepatic LDL clearance pathway, is a preventable cause of premature coronary artery disease and death. Worldwide, 35 million people have FH, but most remain undiagnosed or undertreated. Current FH care is guided by a useful and diverse group of evidence-based guidelines, with some primarily directed at cholesterol management and some that are country-specific. However, none of these guidelines provides a comprehensive overview of FH care that includes both the lifelong components of clinical practice and strategies for implementation. Therefore, a group of international experts systematically developed this guidance to compile clinical strategies from existing evidence-based guidelines for the detection (screening, diagnosis, genetic testing and counselling) and management (risk stratification, treatment of adults or children with heterozygous or homozygous FH, therapy during pregnancy and use of apheresis) of patients with FH, update evidence-informed clinical recommendations, and develop and integrate consensus-based implementation strategies at the patient, provider and health-care system levels, with the aim of maximizing the potential benefit for at-risk patients and their families worldwide.
Collapse
Affiliation(s)
- Gerald F Watts
- School of Medicine, University of Western Australia, Perth, WA, Australia.
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia.
| | | | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine, Western University, London, ON, Canada
| | - Frederick J Raal
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amy C Sturm
- Department of Genomic Health, Geisinger, Danville, PA, USA
- 23andMe, Sunnyvale, CA, USA
| | - Laney K Jones
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Mitchell N Sarkies
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Khalid Al-Rasadi
- Medical Research Centre, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Dirk J Blom
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Hapizah M Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM) and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Specialist Lipid and Coronary Risk Prevention Clinics, Hospital Al-Sultan Abdullah (HASA) and Clinical Training Centre, Puncak Alam and Sungai Buloh Campuses, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Uma Ramaswami
- Royal Free London NHS Foundation Trust, University College London, London, UK
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Claudia Stefanutti
- Department of Molecular Medicine, Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Regional Centre for Rare Diseases, Immunohematology and Transfusion Medicine, Umberto I Hospital, 'Sapienza' University of Rome, Rome, Italy
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | - Jing Pang
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | | | - Raul D Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
4
|
Reijman MD, Kusters DM, Groothoff JW, Arbeiter K, Dann EJ, de Boer LM, de Ferranti SD, Gallo A, Greber-Platzer S, Hartz J, Hudgins LC, Ibarretxe D, Kayikcioglu M, Klingel R, Kolovou GD, Oh J, Planken RN, Stefanutti C, Taylan C, Wiegman A, Schmitt CP. Clinical practice recommendations on lipoprotein apheresis for children with homozygous familial hypercholesterolemia: an expert consensus statement from ERKNet and ESPN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.14.23298547. [PMID: 38014132 PMCID: PMC10680892 DOI: 10.1101/2023.11.14.23298547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is well established since three decades, lowering serum LDL-C levels by more than 70% per session. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment targets and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.
Collapse
Affiliation(s)
- M. Doortje Reijman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - D. Meeike Kusters
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Jaap W. Groothoff
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Klaus Arbeiter
- Division of Paediatric Nephrology and Gastroenterology, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Eldad J. Dann
- Blood Bank and apheresis unit Rambam Health care campus, Haifa, Israel
| | - Lotte M. de Boer
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Sarah D. de Ferranti
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Antonio Gallo
- Sorbonne Université, INSERM, UMR 1166, Lipidology and cardiovascular prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpêtrière F-75013 Paris, France
| | - Susanne Greber-Platzer
- Clinical Division of Paediatric Pulmonology, Allergology and Endocrinology, Department of Paediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Jacob Hartz
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lisa C. Hudgins
- The Rogosin Institute, Weill Cornell Medical College, New York, New York, USA
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit (UVASMET), Hospital Universitari Sant Joan; Universitat Rovira i Virgili; Institut Investigació Sanitària Pere Virgili (IISPV)-CERCA, Spain; Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Meral Kayikcioglu
- Department of Cardiology, Medical Faculty, Ege University, 35100 Izmir, Turkey
| | - Reinhard Klingel
- Apheresis Research Institute, Stadtwaldguertel 77, 50935 Cologne, Germany (www.apheresis-research.org)
| | - Genovefa D. Kolovou
- Metropolitan Hospital, Department of Preventive Cardiology. 9, Ethn. Makariou & 1, El. Venizelou, N. Faliro, 185 47, Athens, Greece
| | - Jun Oh
- University Medical Center Hamburg/Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - R. Nils Planken
- Department of Radiology and nuclear medicine, Amsterdam UMC, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Claudia Stefanutti
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, ‘Umberto I’ Hospital ‘Sapienza’ University of Rome, I-00161 Rome, Italy
| | - Christina Taylan
- Paediatric Nephrology, Children’s and Adolescents’ Hospital, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Albert Wiegman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Claus Peter Schmitt
- Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, Germany
| |
Collapse
|
5
|
de Boer LM, Wiegman A, Swerdlow DI, Kastelein JJP, Hutten BA. Pharmacotherapy for children with elevated levels of lipoprotein(a): future directions. Expert Opin Pharmacother 2022; 23:1601-1615. [PMID: 36047306 DOI: 10.1080/14656566.2022.2118522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Elevated lipoprotein(a) [Lp(a)] is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). With the advent of the antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) targeted at LPA, the gene encoding apolipoprotein(a), that are highly effective for lowering Lp(a) levels, this risk factor might be managed in the near future. Given that Lp(a) levels are mostly genetically determined and once elevated, present from early age, we have evaluated future directions for the treatment of children with high Lp(a) levels. AREAS COVERED In the current review, we discuss different pharmacological treatments in clinical development and provide an in-depth overview of the effects of ASOs and siRNAs targeted at LPA. EXPERT OPINION Since high Lp(a) is an important risk factor for ASCVD and given the promising effects of both ASOs and siRNAs targeted at apo(a), there is an urgent need for well-designed prospective studies to assess the impact of elevated Lp(a) in childhood. If the Lp(a)-hypothesis is confirmed in adults, and also in children, the rationale might arise for treating children with high Lp(a) levels. However, we feel that this should be limited to children with the highest cardiovascular risk including familial hypercholesterolemia and potentially pediatric stroke.
Collapse
Affiliation(s)
- Lotte M de Boer
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - John J P Kastelein
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Barbara A Hutten
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Is Liver Transplant Curative in Homozygous Familial Hypercholesterolemia? A Review of Nine Global Cases. Adv Ther 2022; 39:3042-3057. [PMID: 35471728 PMCID: PMC9122866 DOI: 10.1007/s12325-022-02131-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Homozygous familial hypercholesterolemia (HoFH) is a rare, life-threatening, inherited condition characterized by extremely elevated levels of low-density lipoprotein cholesterol (LDL-C). Patients are at high risk of atherosclerotic cardiovascular disease, adverse cardiovascular events, and associated early mortality. Liver transplant is sometimes used with curative intent. The objective of the current case series was to evaluate the follow-up of a range of patients who have undergone liver transplant for the treatment of HoFH. METHODS Patients with clinical and/or genetic diagnoses of HoFH were treated according to local practices in four units in Europe and the Middle East. All patients underwent liver transplantation. Baseline and long-term follow-up data were collected, including LDL-C levels, DNA mutations, lipid-lowering medications, and complications due to surgery and immunosuppressive therapy. RESULTS Nine patients were included with up to 22 years' follow-up (mean ± SD 11.7 ± 11.7 years; range 0.5-28 years). Three of the patients died as a result of complications of transplant surgery (mortality rate 33%). Among the surviving six patients, four required continued lipid-lowering therapy (LLT) to maintain LDL-C levels and two patients show signs of increasing LDL-C levels that require management. One case (11%) required two consecutive transplants to achieve a viable graft and is awaiting a third transplant because of graft failure. CONCLUSIONS Liver transplant did not enable attainment of recommended LDL-C targets in most patients with HoFH, and the majority of patients still required post-transplant LLT. Liver transplant was not curative in most of the patients with HoFH followed. Guidelines suggest that transplant is a treatment of last resort if contemporary treatments are not available or possible.
Collapse
|
7
|
Ferraro RA, Leucker T, Martin SS, Banach M, Jones SR, Toth PP. Contemporary Management of Dyslipidemia. Drugs 2022; 82:559-576. [PMID: 35303294 PMCID: PMC8931779 DOI: 10.1007/s40265-022-01691-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/30/2022]
Abstract
The treatment of dyslipidemia continues to be a dynamic and controversial topic. Even the most appropriate therapeutic range for lipid levels-including that of triglycerides and low-density lipoprotein cholesterol-remain actively debated. Furthermore, with ever-increasing options and available treatment modalities, the management of dyslipidemia has progressed in both depth and complexity. An understanding of appropriate lipid-lowering therapy remains an essential topic of review for practitioners across medical specialties. The goal of this review is to provide an overview of recent research developments and recommendations for patients with dyslipidemia as a means of better informing the clinical practice of lipid management. By utilizing a guideline-directed approach, we provide a reference point on optimal lipid-lowering therapies across the spectrum of dyslipidemia. Special attention is paid to long-term adherence to lipid-lowering therapies, and the benefits derived from instituting appropriate medications in a structured manner alongside monitoring. Novel therapies and their impact on lipid lowering are discussed in detail, as well as potential avenues for research going forward. The prevention of cardiovascular disease remains paramount, and this review provides a roadmap for instituting appropriate therapies in cardiovascular disease prevention.
Collapse
Affiliation(s)
- Richard A Ferraro
- From the Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thorsten Leucker
- From the Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth S Martin
- From the Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
| | - Steven R Jones
- From the Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter P Toth
- From the Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- CGH Medical Center, 101 East Miller Road, Sterling, IL, 61081, USA.
| |
Collapse
|
8
|
Alothman L, Bélanger AM, Ruel I, Brunham LR, Hales L, Genest J, Akioyamen LE. Health-related quality of life in homozygous familial hypercholesterolemia: A systematic review and meta-analysis. J Clin Lipidol 2021; 16:52-65. [PMID: 35027327 DOI: 10.1016/j.jacl.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disease characterized by extreme elevations of low-density lipoprotein cholesterol (LDL-C) and extremely premature atherosclerotic cardiovascular disease. To date, impacts of HoFH and its treatment on the psychosocial wellbeing of patients have been poorly characterized. OBJECTIVES We performed a systematic review of the association between HoFH and health-related quality of life (HRQL). METHODS This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) consensus guidelines. We searched MEDLINE, Embase, The Cochrane Controlled Register of Trials (CENTRAL), Pubmed, Scopus, AfricaWide (via EBSCO), and six trial registries and grey-literature databases from inception to May 2021 for published English-language literature examining HRQL and its determinants in HoFH. Studies were eligible if they included patients with confirmed HoFH and evaluated HRQL using validated tools. We performed a narrative synthesis of qualitative findings from included studies and, where data permitted, random-effects meta-analysis reporting standardized mean differences (SMD) and 95% confidence intervals (CIs). RESULTS Our review identified seven eligible studies examining HRQL in HoFH participants. Pooling data from two included studies, we found that relative to the general population, HoFH patients demonstrated significantly poorer HRQL in multiple dimensions of the 36-item Short-Form Health Survey (SF-36) with lower scores in physical functioning (SMD -0.37; 95% CI: -0.60, -0.15), role limitations due to physical health (SMD -0.63; 95% CI: -1.24, -0.02), social functioning (SMD -0.61; 95% CI: -1.19, -0.03), bodily pain (SMD -0.24; 95% CI: -0.46, -0.01), and general health (SMD -1.55; 95% CI: -1.80, -1.31). No differences were observed in domains of energy and vitality, mental health and emotional well-being, or role limitations due to emotional problems. Patients suffered high treatment burdens related to lipoprotein apheresis that compromised educational attainment and employment. However, few patients received psychological support in navigating their treatment challenges. No studies evaluated the association of HoFH with incident anxiety, depression, or other psychopathology. CONCLUSIONS Limited data are available on quality of life for patients with HoFH. The available data suggest that these patients may suffer disease-related impairments in quality of life. Future work should aim to elucidate relationships between HoFH and mental health outcomes and develop interventions to improve quality of life in this population.
Collapse
Affiliation(s)
- Latifah Alothman
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Alexandre M Bélanger
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Isabelle Ruel
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Liam R Brunham
- Department of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada; Centre for Heart Lung Innovation, University of British Columbia, Vancouver, V6Z 1Y6, Canada
| | - Lindsay Hales
- McGill University Health Center Medical Libraries, Montreal QC, H3G 1A4, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Montreal QC H4A 3J1, Canada
| | - Leo E Akioyamen
- Department of Medicine, University of Toronto, Toronto ON, M5S 1A8, Canada.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Lipoprotein apheresis has been first line therapy for homozygous familial hypercholesterolaemia (FH) and other severe and refractory forms of dyslpidaemia for over 40 years but the recent advent of novel and potent LDL-lowering compounds necessitates a reappraisal of its role. RECENT FINDINGS During the past decade a substantial amount of evidence has accumulated describing the effect of LDL-lowering with apheresis and conventional drug therapy upon the cardiovascular outcomes associated with homozygous and statin-refractory heterozygous FH. This has necessitated re-defining the target levels of LDL cholesterol needed to arrest progression of atherosclerosis in these situations. At the same time, evidence has accrued regarding the pathogenicity of raised levels of lipoprotein (a) and the promising role of apheresis in mitigating the adverse effects of the latter. The latest advance in treatment has been the introduction of three classes of novel and potent LDL-lowering compounds in the shape of inhibitors of Propertin convertase subtilisin kexin 9 (PCSK9), microsomal triglyceride transfer protein and angiopoietin-like 3. SUMMARY These recent developments raise the question of whether these compounds will be used as adjuvants to bolster lipoprotein apheresis in FH homozygotes or whether they will render it obsolete, as is already occurring with PCSK9 inhibitors in FH heterozygotes.
Collapse
Affiliation(s)
- Gilbert R Thompson
- Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, United Kingdom
| |
Collapse
|
10
|
Mlinaric M, Bratanic N, Dragos V, Skarlovnik A, Cevc M, Battelino T, Groselj U. Case Report: Liver Transplantation in Homozygous Familial Hypercholesterolemia (HoFH)-Long-Term Follow-Up of a Patient and Literature Review. Front Pediatr 2020; 8:567895. [PMID: 33163465 PMCID: PMC7581712 DOI: 10.3389/fped.2020.567895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 01/15/2023] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare inherited metabolic disorder, frequently leading to an early cardiovascular death if not adequately treated. Since standard medications usually fail to reduce LDL-cholesterol (LDL-C) levels satisfactorily, LDL-apheresis is a mainstay of managing HoFH patients but, at the same time, very burdensome and suboptimally effective. Liver transplantation (LT) has been previously shown to be a promising alternative. We report on a 14 year-long follow-up after LT in a HoFH patient. At the age of 4, the patient was referred to our institution because of the gradually increasing number of xanthomas on the knees, elbows, buttocks, and later the homozygous mutation c.1754T>C (p.Ile585Thr) on the LDL-receptor gene was confirmed. Despite subsequent intensive treatment with the combination of diet, statins, bile acid sequestrant, probucol, and LDL-apheresis, the patient developed valvular aortic stenosis and aortic regurgitation by 12 years. At 16 years, the patient successfully underwent deceased-donor orthotopic LT. Nine years post-LT, we found total regression of the cutaneous xanthomas and atherosclerotic plaques and with normal endothelial function. Fourteen years post-LT, his clinical condition remained stable, but LDL-C levels have progressively risen. In addition, a systematic review of the literature and guidelines on the LT for HoFH patients was performed. Six of the 17 identified guidelines did not take LT as a treatment option in consideration at all. But still the majority of guidelines suggest LT as an exceptional therapeutic option or as the last resort option when all the other treatment options are inadequate or not tolerated. Most of the observed patients had some kind of cardiovascular disease before the LT. In 76% of LT, the cardiovascular burden did not progress after LT. According to our experience and in several other reported cases, the LDL-C levels are slowly increasing over time post LT. Most of the follow-up data were short termed; only a few case reports have followed patients for 10 or more years after LT. LT is a feasible therapeutic option for HoFH patients, reversing atherosclerotic changes uncontrollable by conservative therapy, thus importantly improving the HoFH patient's prognosis and quality of life.
Collapse
Affiliation(s)
- Matej Mlinaric
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nevenka Bratanic
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vlasta Dragos
- Department of Dermatovenereology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ajda Skarlovnik
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Cevc
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Lipoprotein apheresis efficacy, challenges and outcomes: A descriptive analysis from the UK Lipoprotein Apheresis Registry, 1989–2017. Atherosclerosis 2019; 290:44-51. [DOI: 10.1016/j.atherosclerosis.2019.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
|
12
|
Makino H, Koezuka R, Tamanaha T, Ogura M, Matsuki K, Hosoda K, Harada-Shiba M. Familial Hypercholesterolemia and Lipoprotein Apheresis. J Atheroscler Thromb 2019; 26:679-687. [PMID: 31231083 PMCID: PMC6711846 DOI: 10.5551/jat.rv17033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lipoprotein apheresis has been developed as the treatment for refractory familial hypercholesterolemia (FH) to remove low-density lipoprotein (LDL), which is the main pathogenic factor. Currently, three procedures are available in Japan, including the plasma exchange, double-membrane filtration, and selective LDL adsorption. Selective LDL adsorption, which was developed in Japan, has been one of the most common treatment methods in the world. Lipoprotein apheresis enabled the prevention of atherosclerosis progression even in homozygous FH (HoFH) patients. However, in our observational study, HoFH patients who started lipoprotein apheresis in adulthood had a poorer prognosis than those who started in childhood. Therefore, HoFH patients need to start lipoprotein apheresis as early as possible. Although the indication for lipoprotein apheresis in heterozygous FH (HeFH) patients has been decreasing with the advent of strong statins, our observational study showed that HeFH patients who discontinued lipoprotein apheresis had a poorer prognosis than patients who continued apheresis therapy. These results suggest that it is beneficial for very-high-risk HeFH patients to be treated by lipoprotein apheresis even if their LDL cholesterol is controlled well by lipid-lowering agents. Since launching a new class of lipid-lowering agents, proprotein convertase subtilisin/kexin type 9 (PCSK9) antibody and microsome triglyceride transfer protein inhibitors, the indication for lipoprotein apheresis in FH has been changing. However, despite the development of these drugs, lipoprotein apheresis is still an option with a high therapeutic effect for FH patients with severe atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Hisashi Makino
- Department of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center
| | - Ryo Koezuka
- Department of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center
| | - Tamiko Tamanaha
- Department of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Kota Matsuki
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Kiminori Hosoda
- Department of Diabetes and Lipid Metabolism, National Cerebral and Cardiovascular Center
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| |
Collapse
|
13
|
Kayikcioglu M, Kuman-Tunçel O, Pirildar S, Yílmaz M, Kaynar L, Aktan M, Durmuş RB, Gökçe C, Temizhan A, Özcebe OI, Akyol TK, Okutan H, Sağ S, Oz Gul O, Salcioglu Z, Yenercag M, Altunkeser BB, Kuku I, Yasar HY, Kurtoğlu E, Demir M, Demircioğlu S, Pekkolay Z, Ílhan O, Tokgozoglu L. Clinical management, psychosocial characteristics, and quality of life in patients with homozygous familial hypercholesterolemia undergoing LDL-apheresis in Turkey: Results of a nationwide survey (A-HIT1 registry). J Clin Lipidol 2019; 13:455-467. [DOI: 10.1016/j.jacl.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 01/18/2023]
|
14
|
Pascoal C, Brasil S, Francisco R, Marques-da-Silva D, Rafalko A, Jaeken J, Videira PA, Barros L, Dos Reis Ferreira V. Patient and observer reported outcome measures to evaluate health-related quality of life in inherited metabolic diseases: a scoping review. Orphanet J Rare Dis 2018; 13:215. [PMID: 30486833 PMCID: PMC6263554 DOI: 10.1186/s13023-018-0953-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/14/2018] [Indexed: 12/25/2022] Open
Abstract
Background Health-related Quality of Life (HrQoL) is a multidimensional measure, which has gained clinical and social relevance. Implementation of a patient-centred approach to both clinical research and care settings, has increased the recognition of patient and/or observer reported outcome measures (PROMs or ObsROMs) as informative and reliable tools for HrQoL assessment. Inherited Metabolic Diseases (IMDs) are a group of heterogeneous conditions with phenotypes ranging from mild to severe and mostly lacking effective therapies. Consequently, HrQoL evaluation is particularly relevant. Objectives We aimed to: (1) identify patient and/or caregiver-reported HrQoL instruments used among IMDs; (2) identify the main results of the application of each HrQoL tool and (3) evaluate the main limitations of HrQoL instruments and study design/methodology in IMDs. Methods A scoping review was conducted using methods outlined by Arksey and O’Malley. Additionally, we critically analysed each article to identify the HrQoL study drawbacks. Results Of the 1954 studies identified, 131 addressed HrQoL of IMDs patients using PROMs and/or ObsROMs, both in observational or interventional studies. In total, we identified 32 HrQoL instruments destined to self- or proxy-completion; only 2% were disease-specific. Multiple tools (both generic and disease-specific) proved to be responsive to changes in HrQoL; the SF-36 and PedsQL questionnaires were the most frequently used in the adult and pediatric populations, respectively. Furthermore, proxy data often demonstrated to be a reliable approach complementing self-reported HrQoL scores. Nevertheless, numerous limitations were identified especially due to the rarity of these conditions. Conclusions HrQoL is still not frequently assessed in IMDs. However, our results show successful examples of the use of patient-reported HrQoL instruments in this field. The importance of HrQoL measurement for clinical research and therapy development, incites to further research in HrQoL PROMs’ and ObsROMs’ creation and validation in IMDs. Electronic supplementary material The online version of this article (10.1186/s13023-018-0953-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Lisbon, Portugal
| | - Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Lisbon, Portugal
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Lisbon, Portugal
| | - Dorinda Marques-da-Silva
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Lisbon, Portugal
| | - Agnes Rafalko
- Glycomine, Inc, 953 Indiana St, San Francisco, CA, 94107, USA
| | - Jaak Jaeken
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Lisbon, Portugal
| | - Luísa Barros
- CDG & Allies - Professionals and Patient Associations International Network (PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Faculdade de Psicologia, Universidade de Lisboa, 1649-013, Lisbon, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal. .,CDG & Allies - Professionals and Patient Associations International Network (PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
15
|
Abstract
Purpose of Review To create awareness for the devastating influence of high cholesterol in familial hypercholesterolaemia (FH) on vessel walls. Persons with high LDL-C and a known mutation associated with FH have a 22-fold increase in CVD compared with those with a normal LDL-C and no genetic mutation. If the awareness of the need to diagnose and treat this genetic disorder at an early stage increases, great atherosclerotic impact later in life could be avoided. Every minute a child with heterozygous FH is born somewhere in the world and every day a child with homozygous FH is born. Recent Findings Recent findings include effective therapy on statins from the age of 6 years, with already normalization of the intima-media thickness within 2 years. Newer types of drugs, with the same safety profile and perhaps even more effective, will become available in childhood in the near future. Open for discussion will be whom to treat and with what type of treatment. Next generation sequencing will perhaps easily select those in need of treatment and those at risk of adverse effects. Summary At the end of this review, statements and recommendations for children and adolescents with heterozygous FH are listed.
Collapse
Affiliation(s)
- Albert Wiegman
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Klaus G, Taylan C, Büscher R, Schmitt CP, Pape L, Oh J, Driemeyer J, Galiano M, König J, Schürfeld C, Spitthöver R, Schaefer JR, Weber LT, Heibges A, Klingel R. Multimodal lipid-lowering treatment in pediatric patients with homozygous familial hypercholesterolemia-target attainment requires further increase of intensity. Pediatr Nephrol 2018; 33:1199-1208. [PMID: 29502162 DOI: 10.1007/s00467-018-3906-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) causes premature cardiovascular disease (CVD). Lipoprotein apheresis (LA) is recommended as first-line lipid-lowering treatment (LLT) for homozygous (ho) FH. METHODS Efficacy of multimodal LLT including lifestyle counseling, drug treatment, and LA was analyzed in 17 pediatric hoFH or compound heterozygous (c-het) FH patients, who commenced chronic LA in Germany before the age of 18. RESULTS At time of diagnosis, mean low-density lipoprotein cholesterol (LDL-C) concentration was 19.6 mmol/l (756 mg/dl). Multimodal LLT resulted in 73% reduction of mean LDL-C concentration including a 62% contribution of LA. Only three children (18%) achieved mean LDL-C concentrations below the recommended pediatric target of 3.5 mmol/l (135 mg/dl). In 13 patients (76%) during chronic LA, neither cardiovascular events occurred nor was CVD progression detected clinically or by routine imaging techniques. In four patients (24%), cardiovascular events documented progression of CVD despite weekly LA, including one death due to coronary and cerebrovascular CVD which was not stabilized after commencing LA. Based on the mutational status, only 6 out of the 17 children were candidates for proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibition. Two already responded with further LDL-C decrease by 40%. CONCLUSIONS Next to drug therapy, regular LA is an essential component of LLT for approaching LDL-C targets in children with hoFH or c-hetFH, which was successful only in a minority of children. Progression of CVD morbidity and resulting mortality remain unresolved issues. Early and intensified multimodal LLT guided by risk factors beyond LDL-C concentration is needed to improve outcome.
Collapse
Affiliation(s)
- Günter Klaus
- Renal Unit, KfH Pediatric Kidney Centre, and Centre for Undiagnosed and Rare Diseases, Marburg, Germany
| | - Christina Taylan
- Pediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Cologne, Germany
| | - Rainer Büscher
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Essen University Hospital, Essen, Germany
| | - Claus Peter Schmitt
- Pediatric Nephrology, University Hospital for Pediatric and Adolescent Medicine, Heidelberg, Germany
| | - Lars Pape
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine and Dermatology, Hannover Medical School, Hannover, Germany
| | - Jun Oh
- Center for Obstetrics and Pediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Joenna Driemeyer
- Center for Obstetrics and Pediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Galiano
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Erlangen University Hospital, Erlangen, Germany
| | - Jens König
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Münster University Hospital, Münster, Germany
| | | | | | - Juergen R Schaefer
- Renal Unit, KfH Pediatric Kidney Centre, and Centre for Undiagnosed and Rare Diseases, Marburg, Germany
| | - Lutz T Weber
- Pediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Cologne, Germany
| | - Andreas Heibges
- Apheresis Research Institute, Stadtwaldguertel 77, 50935, Cologne, Germany
| | - Reinhard Klingel
- Apheresis Research Institute, Stadtwaldguertel 77, 50935, Cologne, Germany.
| |
Collapse
|
17
|
Blom DJ, Cuchel M, Ager M, Phillips H. Target achievement and cardiovascular event rates with Lomitapide in homozygous Familial Hypercholesterolaemia. Orphanet J Rare Dis 2018; 13:96. [PMID: 29925433 PMCID: PMC6011273 DOI: 10.1186/s13023-018-0841-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Homozygous familial hypercholesterolaemia (HoFH) is characterized by a markedly increased risk of premature cardiovascular (CV) events and cardiac death. Lomitapide reduces low-density lipoprotein cholesterol (LDL-C) levels; however, the probable impact on LDL-C goals and CV events is unknown. Methods We used data collected in the first 26 weeks of the lomitapide pivotal phase 3 study (NCT00730236) to evaluate achievement of European Atherosclerosis Society (EAS) LDL-C targets. We used publicly available data reporting major adverse CV events (MACE) rates from other cohorts of HoFH patients to compare event rates for an equivalent number of patient years of exposure (98) in the lomitapide extension trial (NCT00943306). Results Twenty-nine patients were included in the phase 3 study. During the first 26 weeks, 15 (51%) and eight (28%) reached LDL-C targets of 100 mg/dL and 70 mg/dL, respectively, at least once. Fourteen (74%) and 11 (58%) of the 19 patients who remained in the extension study after week 126 reached LDL-C targets of 100 mg/dL and 70 mg/dL at least once during the entire study period. Only two MACE were reported in the lomitapide trials (one cardiac death and one coronary artery bypass graft (CABG)) – equivalent to 1.7 events per 1000 patient months of treatment. MACE rates were 21.7, 9.5 and 1.8 per 1000 patient-months respectively in cohorts of HoFH patients pre- and post-mipomersen, and receiving evolocumab. On treatment LDL-C levels were 166, 331 and 286 mg/dL for lomitapide, mipomersen and evolocumab, respectively. Conclusions Approximately three quarters and half of patients who took lomitapide for at least 2 years reached LDL-C goals of 100 mg/dL and 70 mg/dL, respectively. There were fewer major CV events per 1000 patient months of treatment in patients taking lomitapide, mipomersen or evolocumab than reported in the mipomersen cohort prior to starting mipomersen. These results support the hypothesis that novel lipid-lowering therapies may reduce CV events in HoFH patients by lowering LDL-C further. Trial registration NCT00730236 (registered 8 Aug 2008) and NCT00943306 (registered 22 July 2009).
Collapse
Affiliation(s)
- Dirk J Blom
- Division of Lipidology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Marina Cuchel
- Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
18
|
De Gucht V, Cromm K, Vogt A, Julius U, Hohenstein B, Spitthöver RM, Ramlow W, Schettler VJJ, Maes S. Treatment-related and health-related quality of life in lipoprotein apheresis patients. J Clin Lipidol 2018; 12:1225-1233. [PMID: 29921556 DOI: 10.1016/j.jacl.2018.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/27/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND There is evidence for beneficial effects of lipoprotein apheresis (LA) in terms of reduction of cardiovascular events and interventions, but quality of life (QOL) in LA patients has only been explored in small samples. OBJECTIVE In this study, both LA- or treatment-related and health-related QOL (HRQOL) were assessed in 206 LA patients. METHODS Mental and physical HRQOL of the LA patients was assessed by means of the SF-12 as well as the EQ-5D. Physical complaints were assessed by the Patient Health Questionnaire-15 and LA- or treatment-related QOL by the Apheresis Quality of Life Form, developed for this study. RESULTS Comparison with general population norms showed that LA patients scored significantly lower on HRQOL and significantly higher on physical complaints. A higher perceived impact of the treatment proved to have a significant negative association with HRQOL and a positive one with physical complaints. CONCLUSION Previous studies reported higher levels of QOL in LA patients. This study showed that treatment-related QOL contributes to HRQOL and physical complaints in LA patients. While many patients do not experience LA as a real burden and report positive effects of the treatment, there is also an important group of patients for whom this is not the case. Although the impact on QOL of LA patients does most probably not outweigh the cardiovascular benefits of the treatment, it is important to screen treatment-related QOL in LA patients to optimize care in a personalized way. Future research is needed to compare QOL in LA with non-LA patients with similar medical conditions.
Collapse
Affiliation(s)
- V De Gucht
- Department of Health and Medical Psychology, Leiden University, Leiden, The Netherlands.
| | - K Cromm
- Fresenius Medical Care, Bad Homburg, Germany
| | - A Vogt
- Stoffwechselambulanz, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - U Julius
- Lipidology, Department of Internal Medicine III, University hospital at the Technische Universität Dresden, Dresden, Germany
| | - B Hohenstein
- Lipidology, Department of Internal Medicine III, University hospital at the Technische Universität Dresden, Dresden, Germany
| | | | - W Ramlow
- Apheresis Center Rostock (ACR), Rostock, Germany
| | | | - S Maes
- Department of Health and Medical Psychology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
19
|
Mundal LJ, Igland J, Veierød MB, Holven KB, Ose L, Selmer RM, Wisloff T, Kristiansen IS, Tell GS, Leren TP, Retterstøl K. Impact of age on excess risk of coronary heart disease in patients with familial hypercholesterolaemia. Heart 2018; 104:1600-1607. [PMID: 29622598 PMCID: PMC6161660 DOI: 10.1136/heartjnl-2017-312706] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022] Open
Abstract
Objective The primary objective was to study the risk of acute myocardial infarction (AMI) and coronary heart disease (CHD) in patients with familial hypercholesterolaemia (FH) and compare with the risk in the general population. Methods Patients with an FH mutation but without prior AMI (n=3071) and without prior CHD (n=2795) were included in the study sample during 2001–2009. We obtained data on all AMI and CHD hospitalisations in Norway. We defined incident cases as first time hospitalisation or out-of-hospital death due to AMI or CHD. We estimated standardised incidence ratios (SIRs) with 95% CIs with indirect standardisation using incidence rates for the total Norwegian population stratified by sex, calendar year and 1 year age groups as reference rates. Results SIRs for AMI (95% CIs) were highest in the age group 25–39 years; 7.5 (3.7 to 14.9) in men and 13.6 (5.1 to 36.2) in women and decreased with age to 0.9 (0.4 to 2.1) in men and 1.8 (0.9 to 3.7) in women aged 70–79 years. Similarly, SIRs for CHD were highest among patients 25–39 years old; 11.1 (7.1–17.5) in men and 17.3 (9.6–31.2) in women and decreased 2.4 (1.4–4.2) in men and 3.2 (1.5–7.2) in women at age 70–79. For all age groups, combined SIRs for CHD were 4.2 (3.6–5.0) in men and 4.7 (3.9–5.7) in women. Conclusion Patients with FH are at severely increased risk of AMI and CHD compared with the general population. The highest excess risk was in the youngest group aged 25–39 years, in both sexes.
Collapse
Affiliation(s)
- Liv J Mundal
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Lipid Clinic, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jannicke Igland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Marit B Veierød
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten Bjørklund Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,National Advisory Unit for Familial Hypercholesterolemia, Oslo University Hospital, Oslo, Norway
| | - Leiv Ose
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Lipid Clinic, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Randi Marie Selmer
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Torbjorn Wisloff
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Ivar S Kristiansen
- Department of Health Management and Health Economics, University of Oslo, Oslo, Norway
| | - Grethe S Tell
- Department of Health Registries, Norwegian Institute of Public Health, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Lipid Clinic, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS. Familial hypercholesterolaemia. Nat Rev Dis Primers 2017; 3:17093. [PMID: 29219151 DOI: 10.1038/nrdp.2017.93] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Familial hypercholesterolaemia is a common inherited disorder characterized by abnormally elevated serum levels of low-density lipoprotein (LDL) cholesterol from birth, which in time can lead to cardiovascular disease (CVD). Most cases are caused by autosomal dominant mutations in LDLR, which encodes the LDL receptor, although mutations in other genes coding for proteins involved in cholesterol metabolism or LDLR function and processing, such as APOB and PCSK9, can also be causative, although less frequently. Several sets of diagnostic criteria for familial hypercholesterolaemia are available; common diagnostic features are an elevated LDL cholesterol level and a family history of hypercholesterolaemia or (premature) CVD. DNA-based methods to identify the underlying genetic defect are desirable but not essential for diagnosis. Cascade screening can contribute to early diagnosis of the disease in family members of an affected individual, which is crucial because familial hypercholesterolaemia can be asymptomatic for decades. Clinical severity depends on the nature of the gene that harbours the causative mutation, among other factors, and is further modulated by the type of mutation. Lifelong LDL cholesterol-lowering treatment substantially improves CVD-free survival and longevity. Statins are the first-line therapy, but additional drugs, such as ezetimibe, bile acid sequestrants, PCSK9 inhibitors and other emerging therapies, are often required.
Collapse
Affiliation(s)
- Joep C Defesche
- Department of Clinical Genetics, Academic Medical Centre, PO Box 22 660, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Samuel S Gidding
- Nemours Cardiac Center, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,Robarts Research Institute, 4288A 1151 Richmond Street North, University of Western Ontario, N6A 5B7 London, Ontario, Canada
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil.,Preventive Medicine Centre and Cardiology Program Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Anthony S Wierzbicki
- Metabolic Medicine and Chemical Pathology, Guy's and St. Thomas' Hospitals, London, UK
| |
Collapse
|
21
|
|
22
|
Increased risk of heart failure and atrial fibrillation in heterozygous familial hypercholesterolemia. Atherosclerosis 2017; 266:69-73. [PMID: 28992466 DOI: 10.1016/j.atherosclerosis.2017.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Heart failure (HF) and atrial fibrillation/flutter (AF) are important causes of morbidity and mortality. Subjects with familial hypercholesterolemia (FH) carry a high risk of coronary artery disease (CAD) but it is not known if the risk of HF and AF is increased in FH. The present study investigated the incidence of hospitalization for HF and AF in a genetically verified FH cohort, age 25 years and older, compared to the general population. METHODS Incidence rates of hospitalization for HF and AF were estimated from national registry data. Standardized incidence ratios (SIRs) were calculated. RESULTS 4273 genotyped FH patients (51.7% women) with a total observation period of 18,300 patient years were studied. Overall, the expected number of FH patients with HF was 27.7 and the observed number of cases was 54 (SIR (95% CI) 2.0 (1.5-2.6)). The highest excess risk was observed in the age group 25-49 years, where SIRs were 3.8 (1.2-11.8) and 4.2 (2.0-8.8) in women and men, respectively. The total expected number of FH patients with AF was 39.4 while the observed number of cases was 77 (SIR 2.0 (1.6-2.4)). Among FH patients with an incident event of HF, nearly 90% had a previous diagnosis of CAD, and nearly 40% had suffered from a myocardial infarction. CONCLUSIONS We demonstrate a doubling of the risk of hospitalization for HF or AF in patients with FH. This is could have an important prognostic impact for patients and economic impact for the society.
Collapse
|
23
|
Bláha V, Bláha M, Lánská M, Solichová D, Kujovská Krčmová L, Havel E, Vyroubal P, Zadák Z, Žák P, Sobotka L. Lipoprotein apheresis in the treatment of dyslipidaemia - the Czech Republic experience. Physiol Res 2017; 66:S91-S100. [PMID: 28379034 DOI: 10.33549/physiolres.933584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In 1984, we started using therapeutic plasmapheresis (plasma exchange) as a method of extracorporeal lipoprotein elimination for the treatment of hypercholesterolemic patients. We evaluated the results of long-term therapy in 14 patients, 8 men and 6 women. The average age was 55.6+/-13.2 (range 28-70), median 59.5 years. 14 patients were diagnosed with familial hypercholesterolemia (FH): 5 homozygous, 9 heterozygous. Ten patients in the group were treated using immunoadsorption lipoprotein apheresis and 4 using hemorheopheresis. Immunoapheretic interventions decreased LDL-cholesterol (82+/-1 %), ApoB (73+/-13 %) and even Lp(a) by 82+/-19 %, respectively. Selected non-invasive methods are important for long-term and repeated follow-up. Carotid intima-media thickness showed improvement or stagnation in 75 % of the patients. Biomarkers of endothelial dysfunction such as endoglin (in the control group: 3.85+/-1.25 microg/l, in lipoprotein apheresis-treated hypercholesterolemic individuals 5.74+/-1.47 microg/l), CD40 ligand (before lipoprotein apheresis: 6498+/-2529 ng/l, after lipoprotein apheresis: 4057+/-2560 ng/l) and neopterin (before lipoprotein apheresis: 5.7+/-1.1 nmol/l, after lipoprotein apheresis: 5.5+/-1.3 nmol/l) related to the course of atherosclerosis, but did not reflect the actual activity of the disease nor facilitate the prediction or planning of therapy. Hemorheopheresis may improve blood flow in microcirculation in familial hypercholesterolemia and also in some other microcirculation disorders via significantly decreased activity of thrombomodulin (p<0.0001), tissue factor (p<0.0001), aggregation of thrombocytes (p<0.0001) and plasma and whole blood viscosity (p<0.0001). In conclusion, lipoprotein apheresis and hemorheopheresis substantially lowered LDL-cholesterol in severe hypercholesterolemia. Our experience with long-term therapy also shows good tolerance and a small number of complications (6.26 % non-serious clinical complications).
Collapse
Affiliation(s)
- V Bláha
- Third Department of Internal Medicine, Metabolism and Gerontology, University Hospital Hradec Králové and Charles University Faculty of Medicine in Hradec Králové, Hradec Králové, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Toward an international consensus—Integrating lipoprotein apheresis and new lipid-lowering drugs. J Clin Lipidol 2017; 11:858-871.e3. [DOI: 10.1016/j.jacl.2017.04.114] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022]
|
25
|
Holmsen ST, Bakkebø T, Seferowicz M, Retterstøl K. Statins and breastfeeding in familial hypercholesterolaemia. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2017; 137:686-687. [PMID: 28551957 DOI: 10.4045/tidsskr.16.0838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
26
|
Bruckert E, Kalmykova O, Bittar R, Carreau V, Béliard S, Saheb S, Rosenbaum D, Bonnefont-Rousselot D, Thomas D, Emery C, Khoshnood B, Carrié A. Long-term outcome in 53 patients with homozygous familial hypercholesterolaemia in a single centre in France. Atherosclerosis 2017; 257:130-137. [DOI: 10.1016/j.atherosclerosis.2017.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 01/09/2023]
|
27
|
Vogt A. The Italian Consensus Conferences on low density lipoprotein-cholesterol apheresis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:1-3. [PMID: 27416572 PMCID: PMC5269421 DOI: 10.2450/2016.0058-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Anja Vogt
- Medizinische Klinik und Poliklinik IV, Klinikum der Unversitat Munchen, Germany
| |
Collapse
|
28
|
France M, Rees A, Datta D, Thompson G, Capps N, Ferns G, Ramaswami U, Seed M, Neely D, Cramb R, Shoulders C, Barbir M, Pottle A, Eatough R, Martin S, Bayly G, Simpson B, Halcox J, Edwards R, Main L, Payne J, Soran H. HEART UK statement on the management of homozygous familial hypercholesterolaemia in the United Kingdom. Atherosclerosis 2016; 255:128-139. [DOI: 10.1016/j.atherosclerosis.2016.10.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/03/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
|
29
|
Abstract
Homozygous familial hypercholesterolaemia (HoFH) is an inherited disease causing an approximately fourfold increase in blood low-density lipoprotein cholesterol (LDLC) from birth compared with the age-matched normal population owing to reduced low-density lipoprotein receptor (LDLR) activity. Such elevated cholesterol is associated with accelerated atheromatous disease, particularly of the aortic root and coronary arteries. However, HoFH is clinically heterogeneous, reflecting residual low-density lipoprotein receptor (LDLR) activity. The main objective in treating children may be stated to be the avoidance of irreversible cardiac damage requiring heart transplantation by sufficient lowering of blood cholesterol. Lipoprotein apheresis or plasmapheresis are safe means of lowering cholesterol but may be insufficient on their own. Statin drugs, PCSK9 inhibitors ezetimibe and bile acid sequestrants are relatively ineffective if LDLR activity is lacking, but should be used if effective. Two new drugs, lomitapide and mipomersen, have been licensed specifically for HoFH by some regulatory authorities. They work by reducing LDL production rate. They have been associated with fatty liver in adults. Evidence of safety in children is lacking. An alternative is liver transplantation, which replaces the missing LDLR and normalises cholesterol. Clinicians are faced with a dilemma in choosing between these options or deferring such treatment associated with potential harm. Individual case descriptions are an important means of informing clinical judgement. Management of the two cases described in this issue is discussed in the light of modern developments in transplantation and pharmacotherapy.
Collapse
Key Words
- ADH, autosomal dominant hypercholesterolaemia, refers to hypercholesterolaemia owing to a single mutation of an allele of a gene affecting LDLR activity
- APOB, apolipoprotein B, is the main protein component of LDL and is the ligand for LDL receptors in the liver
- ARH, autosomal recessive hypercholesterolaemia, refers to hypercholesterolaemia owing to a mutation of both alleles of a single gene affecting LDLR activity
- Evolucomab
- FH, familial hypercholesterolaemia, is an inherited condition causing reduced LDLR activity with consequent hypercholesterolaemia
- HeFH, heterozygous familial hypercholesterolaemia, is caused by one mutant allele of genes affecting LDLR activity
- HoFH, homozygous familial hypercholesterolaemia is caused by two mutant alleles of genes affecting LDLR activity
- Homozygous familial hypercholesterolaemia
- LDL, low-density lipoprotein, is a complex of cholesterol attached to a lipoprotein particle which is removed from blood mainly by the liver
- LDLC, LDL cholesterol, refers to the cholesterol component of LDL
- LDLR, LDL receptors, mediate LDL uptake by the liver
- LDLRAP1, a protein called LDLR adaptor protein 1, facilitates LDLR function
- Lipoprotein apheresis
- Liver transplantation
- Lomitapide
- Microsomal triglyceride transfer protein is an enzyme involved in the hepatic assembly of triglyceride, cholesterol and APOB into triglyceride-rich particles which are secreted by the liver. These particles are metabolised to LDL
- PCSK9
- PCSK9, a protein called proprotein convertase subtilisin/kexin type 9, increases the rate of degradation of LDLR
Collapse
Affiliation(s)
- Michael France
- a Cardiovascular Trials Unit , Central Manchester University Hospitals Foundation Trust and Cardiovascular Research Group, University of Manchester , Manchester , UK
| |
Collapse
|
30
|
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare, genetic disorder characterized by an absence or impairment of low-density lipoprotein receptor (LDLR) function resulting in significantly elevated low-density lipoprotein cholesterol (LDL-C) levels. The cholesterol exposure burden beginning in utero greatly increases the risk for atherosclerotic cardiovascular disease (ASCVD) and premature death. The genetic heterogeneity of HoFH results in a wide range of LDL-C levels among both untreated and treated patients. Diagnosis of HoFH should, therefore, be based on a comprehensive evaluation of clinical criteria and not exclusively LDL-C levels. As treatment goals, the European Atherosclerosis Society and International FH Foundation suggest target LDL-C levels of <100 mg/dL (<2.5 mmol/L) in adults or <70 mg/dL (<1.8 mmol/L) in adults with clinical coronary artery disease or diabetes. The National Lipid Association (NLA) recommends that LDL-C levels be reduced to <100 mg/dL (<2.5 mmol/L) or by at least ≥50 % from pretreatment levels. Conventional therapy combinations that lower atherogenic lipoproteins levels in the blood, such as statins, ezetimibe, bile acid sequestrants and niacin, as well as lipoprotein apheresis, are usually unable to reduce LDL-C levels to recommended targets. Two recently approved agents that reduce lipoprotein synthesis and secretion by the liver are lomitapide, a microsomal triglyceride transfer protein inhibitor, and mipomersen, an apolipoprotein B antisense oligonucleotide. The newly approved inhibitor of proprotein convertase subtilisin/kexin type 9 (PCSK9), evolocumab, also shows promise for the management of FH. Because of the extremely high risk for ASCVD, HoFH patients should be identified early.
Collapse
Affiliation(s)
- Matthew K Ito
- Oregon Health and Science University College of Pharmacy, Oregon State University, 2730 SW Moody Ave., CL5CP, Portland, OR, 97201-5042, USA.
| | - Gerald F Watts
- Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
| |
Collapse
|
31
|
Wang A, Richhariya A, Gandra SR, Calimlim B, Kim L, Quek RGW, Nordyke RJ, Toth PP. Systematic Review of Low-Density Lipoprotein Cholesterol Apheresis for the Treatment of Familial Hypercholesterolemia. J Am Heart Assoc 2016; 5:e003294. [PMID: 27385428 PMCID: PMC5015370 DOI: 10.1161/jaha.116.003294] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/07/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Apheresis is an important treatment for reducing low-density lipoprotein cholesterol (LDL-C) in patients with familial hypercholesterolemia (FH). We systematically reviewed the current literature surrounding LDL-C apheresis for FH. METHODS AND RESULTS Electronic databases were searched for publications of LDL-C apheresis in patients with FH. Inclusion criteria include articles in English published in 2000-2013 that provide descriptions of practice patterns, efficacy/effectiveness, and costs related to LDL-C apheresis in patients with FH. Data were stratified by country and FH genotype where possible. Thirty-eight studies met the inclusion criteria: 8 open-label clinical trials, 11 observational studies, 17 reviews/guidelines, and 2 health technology assessments. The prevalence of FH was not well characterized by country, and underdiagnosis was a barrier to FH treatment. Treatment guidelines varied by country, with some guidelines recommending LDL-C apheresis as first-line treatment in patients with homozygous FH and after drug therapy failure in patients with heterozygous FH. Additionally, guidelines typically recommended weekly or biweekly LDL-C apheresis treatments conducted at apheresis centers that may last 2 to >3 hours per session. Studies reported a range for mean LDL-C reduction after apheresis: 57-75% for patients with homozygous FH and 58-63% for patients with heterozygous FH. Calculated annual costs (in US$2015) may reach US$66 374 to US$228 956 per patient for weekly treatment. CONCLUSIONS LDL-C apheresis treatment may be necessary for patients with FH when drug therapy is inadequate in reducing LDL-C to target levels. While apheresis reduces LDL-C, high per-session costs and the frequency of guideline-recommended treatment result in substantial annual costs, which are barriers to the optimal treatment of FH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter P Toth
- University of Illinois College of Medicine, Peoria, IL Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
32
|
Clinical and molecular characteristics of homozygous familial hypercholesterolemia patients: Insights from SAFEHEART registry. J Clin Lipidol 2016; 10:953-961. [DOI: 10.1016/j.jacl.2016.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/24/2022]
|
33
|
Blom DJ, Fayad ZA, Kastelein JJ, Larrey D, Makris L, Schwamlein C, Bloeden L, Underberg J. LOWER, a registry of lomitapide-treated patients with homozygous familial hypercholesterolemia: Rationale and design. J Clin Lipidol 2016; 10:273-82. [DOI: 10.1016/j.jacl.2015.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/09/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022]
|
34
|
Rosada A, Kassner U, Banisch D, Bender A, Steinhagen-Thiessen E, Vogt A. Quality of life in patients treated with lipoprotein apheresis. J Clin Lipidol 2016; 10:323-9.e6. [DOI: 10.1016/j.jacl.2015.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 10/22/2022]
|
35
|
Pang J, Lansberg PJ, Watts GF. International Developments in the Care of Familial Hypercholesterolemia: Where Now and Where to Next? J Atheroscler Thromb 2016; 23:505-19. [DOI: 10.5551/jat.34108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jing Pang
- School of Medicine and Pharmacology, University of Western Australia
| | - Peter J Lansberg
- Center for Translational Molecular Medicine - Translational Research Infrastructure (CTMM-TraIT)
- Department of Vascular Medicine, Academic Medical Center
| | - Gerald F Watts
- School of Medicine and Pharmacology, University of Western Australia
- Lipid Disorders Clinic, Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital
| |
Collapse
|
36
|
Gidding SS, Champagne MA, de Ferranti SD, Defesche J, Ito MK, Knowles JW, McCrindle B, Raal F, Rader D, Santos RD, Lopes-Virella M, Watts GF, Wierzbicki AS. The Agenda for Familial Hypercholesterolemia: A Scientific Statement From the American Heart Association. Circulation 2015; 132:2167-92. [PMID: 26510694 DOI: 10.1161/cir.0000000000000297] [Citation(s) in RCA: 481] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Abstract
Cardiovascular disease (CVD) is still the most prominent cause of death and morbidity in the world, and one of the major risk factors for developing CVD is hypercholesterolemia. Familial hypercholesterolemia (FH) is a dominantly inherited disorder characterized by markedly elevated plasma low-density lipoprotein cholesterol and premature coronary heart disease. Currently, several treatment options are available for children with FH. Lifestyle adjustments are the first step in treatment. If this is not sufficient, statins are the preferred initial pharmacological therapy and they have been proven effective and safe. However, treatment goals are often not achieved and, hence, there is a need for novel treatment options. Currently, several options are being studied in adults and first results are promising. However, studies in children are still to be awaited.
Collapse
Affiliation(s)
- Ilse K Luirink
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
38
|
Cuchel M, Blom DJ, Averna MR. Clinical experience of lomitapide therapy in patients with homozygous familial hypercholesterolaemia. ATHEROSCLEROSIS SUPP 2015; 15:33-45. [PMID: 25257075 DOI: 10.1016/j.atherosclerosissup.2014.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The microsomal triglyceride transfer protein (MTP) inhibitor lomitapide is a licenced adjunct to a low-fat diet and other lipid-lowering medication, with or without low-density lipoprotein apheresis, for the treatment of adults with homozygous familial hypercholesterolaemia (HoFH). In a recently published phase 3 study, patients with HoFH received lomitapide in addition to maximally tolerated lipid-lowering therapy. Treatment with lomitapide resulted in a mean approximate 50% reduction in LDL-C levels after 26 weeks compared with baseline levels (p < 0.0001). This decrease in LDL-C was maintained at Weeks 56 and 78 (44% [p < 0.0001] and 38% [p = 0.0001], respectively). This paper offers clinical perspectives based on selected case histories of patients participating in the phase 3 lomitapide study. These cases provide illustrative examples of the efficacy of lomitapide, with or without apheresis, and show that the effective management of adverse effects can enable patients to remain on effective treatment.
Collapse
Affiliation(s)
- Marina Cuchel
- Institute for Translational Medicine and Therapeutics, and Department of Medicine, University of Pennsylvania, 8039 Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA.
| | - Dirk J Blom
- University of Cape Town, Cape Town, South Africa; Medical Research Council of South Africa, Cape Heart Group, Cape Town, South Africa
| | | |
Collapse
|
39
|
Sjouke B, Hovingh GK, Kastelein JJP, Stefanutti C. Homozygous autosomal dominant hypercholesterolaemia: prevalence, diagnosis, and current and future treatment perspectives. Curr Opin Lipidol 2015; 26:200-9. [PMID: 25950706 DOI: 10.1097/mol.0000000000000179] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Homozygous autosomal dominant hypercholesterolemia (hoADH) is a rare genetic disorder caused by mutations in LDL receptor, apolipoprotein B, and/or proprotein convertase subtilisin-kexin type 9. Both the genetic mutations and the clinical phenotype vary largely among individual patients, but patients with hoADH are typically characterized by extremely elevated LDL-cholesterol (LDL-C) levels, and a very high-risk for premature cardiovascular disease. Current lipid-lowering therapies include bile acid sequestrants, statins, and ezetimibe. To further decrease LDL-C levels in hoADH, lipoprotein apheresis is recommended, but this therapy is not available in all countries. RECENT FINDINGS Recently, the microsomal triglyceride transfer protein inhibitor lomitapide and the RNA antisense inhibitor of apolipoprotein B mipomersen were approved by the Food and Drug Administration/European Medicine Agency and the Food and Drug Administration, respectively. Several other LDL-C-lowering strategies and therapeutics targeting the HDL-C pathway are currently in the clinical stage of development. SUMMARY Novel therapies have been introduced for LDL-C-lowering and innovative drug candidates for HDL-C modulation for the treatment of hoADH. Here, we review the current available literature on the prevalence, diagnosis, and therapeutic strategies for hoADH.
Collapse
Affiliation(s)
- Barbara Sjouke
- aDepartment of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands bDepartment of Molecular Medicine, Extracorporeal Therapeutic Techniques Unit - Lipid Clinic and Atherosclerosis Prevention Centre, 'Sapienza' University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
40
|
|
41
|
Impact of LDL apheresis on aortic root atheroma in children with homozygous familial hypercholesterolemia. Atherosclerosis 2015; 239:158-62. [DOI: 10.1016/j.atherosclerosis.2015.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022]
|
42
|
Vogt A. The genetics of familial hypercholesterolemia and emerging therapies. APPLICATION OF CLINICAL GENETICS 2015; 8:27-36. [PMID: 25670911 PMCID: PMC4315461 DOI: 10.2147/tacg.s44315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Familial hypercholesterolemia (FH) results in very high levels of atherogenic low-density lipoprotein (LDL) cholesterol from the time of birth. Mutations of the genes encoding for the LDL receptor, apolipoprotein B and proprotein convertase subtilisin/kexin type 9, are causes for this autosomal dominant inherited condition. Heterozygous FH is very common, while homozygous FH is rare. Affected individuals can experience premature cardiovascular disease; most homozygous patients experience this before the age of 20 years. Since effective LDL cholesterol lowering therapies are available, morbidity and mortality are decreased. The use of statins is the first choice in therapy; combining other lipid-lowering medications is recommended to lower LDL cholesterol sufficiently. In some cases, lipoprotein apheresis is necessary. In heterozygous FH, these measures are effective to lower LDL cholesterol, but in severe cases and in homozygous FH there remains an unmet need. Emerging therapies, such as the recently approved microsomal triglyceride transfer protein inhibitor and the apolipoprotein B antisense oligonucleotide, might offer further options for these patients with very high cardiovascular risk. Early diagnosis and early treatment are important to reduce cardiovascular events and premature death.
Collapse
Affiliation(s)
- Anja Vogt
- Medizinische Klinik und Poliklinik IV, Klinikum der Unversität München, Munich, Germany
| |
Collapse
|
43
|
Stefanutti C, Thompson GR. Lipoprotein Apheresis in the Management of Familial Hypercholesterolaemia: Historical Perspective and Recent Advances. Curr Atheroscler Rep 2014; 17:465. [DOI: 10.1007/s11883-014-0465-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
Catapano AL. New strategies for the management of patients with homozygous familial hypercholesterolaemia. ATHEROSCLEROSIS SUPP 2014; 15:17-8. [PMID: 25257072 DOI: 10.1016/j.atherosclerosissup.2014.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alberico L Catapano
- Institute of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 and IRCCS Multimedica Milan, Italy.
| |
Collapse
|
45
|
Bruckert E, Saheb S, Bonté JR, Coudray-Omnès C. Daily life, experience and needs of persons suffering from homozygous familial hypercholesterolaemia: Insights from a patient survey. ATHEROSCLEROSIS SUPP 2014; 15:46-51. [DOI: 10.1016/j.atherosclerosissup.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Vuorio A, Tikkanen MJ, Kovanen PT. Inhibition of hepatic microsomal triglyceride transfer protein - a novel therapeutic option for treatment of homozygous familial hypercholesterolemia. Vasc Health Risk Manag 2014; 10:263-70. [PMID: 24851052 PMCID: PMC4018418 DOI: 10.2147/vhrm.s36641] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the low-density lipoprotein (LDL)-receptor gene (LDLR). Patients with homozygous FH (hoFH) have inherited a mutated LDLR gene from both parents, and therefore all their LDL-receptors are incapable of functioning normally. In hoFH, serum LDL levels often exceed 13 mmol/L and tendon and cutaneous xanthomata appear early (under 10 years of age). If untreated, this extremely severe form of hypercholesterolemia may cause death in childhood or in early adulthood. Based on recent data, it can be estimated that the prevalence of hoFH is about 1:500,000 or even 1:400,000. Until now, the treatment of hoFH has been based on high-dose statin treatment combined with LDL apheresis. Since the LDL cholesterol-lowering effect of statins is weak in this disease, and apheresis is a cumbersome treatment and not available at all centers, alternative novel pharmaceutical therapies are needed. Lomitapide is a newly introduced drug, capable of effectively decreasing serum LDL cholesterol concentration in hoFH. It inhibits the microsomal triglyceride transfer protein (MTTP). By inhibiting in hepatocytes the transfer of triglycerides into very low density lipoprotein particles, the drug blocks their assembly and secretion into the circulating blood. Since the very low density lipoprotein particles are precursors of LDL particles in the circulation, the reduced secretion of the former results in lower plasma concentration of the latter. The greatest concern in lomitapide treatment has been the increase in liver fat, which can be, however, counteracted by strictly adhering to a low-fat diet. Lomitapide is a welcome addition to the meager selection of drugs currently available for the treatment of refractory hypercholesterolemia in hoFH patients.
Collapse
Affiliation(s)
- Alpo Vuorio
- Health Center Mehiläinen, Vantaa, Finland ; Finnish Institute of Occupational Health, Lappeenranta, Finland
| | - Matti J Tikkanen
- Heart and Lung Center, Helsinki University Central Hospital, Folkhälsan Research Center, Biomedicum, Helsinki, Finland
| | | |
Collapse
|
47
|
Braamskamp MJAM, Hutten BA, Wiegman A, Kastelein JJP. Management of hypercholesterolemia in children. Paediatr Drugs 2014; 16:105-14. [PMID: 24385386 DOI: 10.1007/s40272-013-0060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and morbidity in our society. One of the major risk factors for CVD is hypercholesterolemia. Hypercholesterolemia in children can be caused by a hereditary disorder or can be secondary to other diseases or drugs. In order to prevent CVD later in life, children with hypercholesterolemia should be identified and treated as early as possible. Currently, several different screening strategies have been developed, using either universal screening or case finding to search for children at risk. Once those children are identified, the first step in treatment is lifestyle adjustment. If cholesterol levels remain elevated, the drugs of first choice are statins. Other pharmacological options are ezetimibe or bile acid sequestrants. These agents have all proven to be safe and effective in lowering low-density lipoprotein cholesterol levels and improving surrogate markers of CVD. However, there is a need for long-term follow-up studies to answer the question as to whether it is safe to initiate treatment at a young age to prevent CVD later in life.
Collapse
Affiliation(s)
- Marjet J A M Braamskamp
- Academic Medical Center, Department of Vascular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands,
| | | | | | | |
Collapse
|
48
|
Integrated guidance on the care of familial hypercholesterolemia from the International FH Foundation. J Clin Lipidol 2014; 8:148-72. [DOI: 10.1016/j.jacl.2014.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/04/2014] [Indexed: 12/11/2022]
|
49
|
Pang J, Chan DC, Watts GF. Critical review of non-statin treatments for dyslipoproteinemia. Expert Rev Cardiovasc Ther 2014; 12:359-71. [DOI: 10.1586/14779072.2014.888312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
France M, Schofield J, Kwok S, Soran H. Treatment of homozygous familial hypercholesterolemia. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.13.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|