1
|
Wadström BN, Wulff AB, Pedersen KM, Nordestgaard BG. Small Remnants versus Large Triglyceride-Rich Lipoproteins in Risk of Atherosclerotic Cardiovascular Disease. Clin Chem 2025:hvae222. [PMID: 39882976 DOI: 10.1093/clinchem/hvae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/18/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Small remnants may penetrate the arterial intima more efficiently compared to large triglyceride-rich lipoproteins (TGRL). We tested the hypothesis that the importance of remnant cholesterol for the risk of atherosclerotic cardiovascular disease (ASCVD) may depend on the size of the remnants and TGRL carrying cholesterol. METHODS The cholesterol content of small remnants and large TGRL were measured in 25 572 individuals from the Copenhagen General Population Study (2003-2015) and in 222 721 individuals from the UK Biobank (2006-2010) using nuclear magnetic resonance spectroscopy. In the Copenhagen cohort during up to 15 years of follow-up and in the UK Biobank cohort during up to 16 years of follow-up, the numbers of individuals diagnosed with ASCVD (=myocardial infarction, ischemic stroke, and peripheral artery disease) in national health registries were 3869 and 11 424, respectively. RESULTS Compared to individuals with low cholesterol content in both small remnants and large TGRL (cutpoints were median cholesterol content), multivariable-adjusted hazard ratios for risk of ASCVD were 1.21 (95% confidence interval: 1.07-1.37) for individuals with high cholesterol content in small remnants only and 0.94 (0.83-1.07) for individuals with high cholesterol content in large TGRL only; the multivariable-adjusted hazard ratio for risk of ASCVD per 10 percentile-units higher cholesterol content in small remnants vs that in large TGRL was 1.04 (1.01-1.07). In the UK Biobank cohort, corresponding hazard ratios were 1.11 (1.03-1.20), 1.01 (0.93-1.09), and 1.05 (1.04-1.07), respectively. CONCLUSION The importance of remnant cholesterol for the risk of ASCVD may depend on the size of the TGRL and remnants carrying cholesterol.
Collapse
Affiliation(s)
- Benjamin N Wadström
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Wulff
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Ye Y, Markussen B, Engelsen SB, Khakimov B. The quality, uniqueness, and causality of NMR-based prediction models for low-density lipoprotein cholesterol subfractions in human blood plasma. Comput Biol Med 2025; 184:109379. [PMID: 39602980 DOI: 10.1016/j.compbiomed.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Low-density lipoprotein (LDL) cholesterol (chol) subfractions are risk biomarkers for cardiovascular diseases (CVD). A reference analysis, ultracentrifugation (UC), is laborious and may be replaced with a rapid prediction using proton NMR spectra of human blood plasma. However, the quality and uniqueness of these prediction models of biologically related subfractions remains unknown. This study, using two independent cohorts (n = 277), investigates the inter-correlations between LDL cholesterol in the main fraction and five subfractions, as well as the independence of their NMR-based prediction models. The results reveal that the prediction models utilize both shared and unique spectral information from the NMR spectra to determine concentrations of LDL subfractions. Analysis of variance contributions for prediction and causality assessments demonstrate that the NMR spectra contain unique predictive information for the LDL1chol, LDL2chol, and LDL5chol subfractions. In contrast, the spectral signatures for LDL3chol and LDL4chol are either insufficient or confounded. Our findings indicate that these five CVD biomarkers represent two independent clusters, reflecting their biosynthetic pathways, and confirm the presence of causal relationships between certain LDL chol subfractions. This highlights the importance of employing caution when interpreting the concentrations of specific LDL subfractions as standalone biomarkers for CVD risk.
Collapse
Affiliation(s)
- Yongxin Ye
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| | - Bo Markussen
- Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen OE, Denmark
| | - Søren Balling Engelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Jin D, Trichia E, Islam N, Bešević J, Lewington S, Lacey B. Lipoprotein Characteristics and Incident Coronary Heart Disease: Prospective Cohort of Nearly 90 000 Individuals in UK Biobank. J Am Heart Assoc 2023; 12:e029552. [PMID: 37815053 PMCID: PMC10757541 DOI: 10.1161/jaha.123.029552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Background Associations of coronary heart disease (CHD) with plasma lipids are well described, but the associations with characteristics of lipoproteins (which transport lipids) remain unclear. Methods and Results UK Biobank is a prospective study of 0.5 million adults. Analyses were restricted to 89 422 participants with plasma lipoprotein and apolipoprotein measures from Nightingale nuclear magnetic resonance spectroscopy and without CHD at baseline. CHD risk was positively associated with concentrations of very-low-density lipoproteins, intermediate-density lipoproteins, and low-density lipoproteins (LDL), and inversely associated with high-density lipoproteins. Hazard ratios (99% CIs) per SD were 1.22 (1.17-1.28), 1.16 (1.11-1.21), 1.20 (1.15-1.25), and 0.90 (0.86-0.95), respectively. Larger subclasses of very-low-density lipoproteins were less strongly associated with CHD risk, but associations did not materially vary by size of LDL or high-density lipoprotein. Given lipoprotein particle concentrations, lipid composition (including cholesterol) was not strongly related to CHD risk, except for triglyceride in LDL particles. Apolipoprotein B was highly correlated with LDL concentration (r=0.99), but after adjustment for apolipoprotein B, concentrations of very-low-density lipoprotein and high-density lipoprotein particles remained strongly related to CHD risk. Conclusions This large-scale study reliably quantifies the associations of nuclear magnetic resonance-defined lipoprotein characteristics with CHD risk. CHD risk was most strongly related to particle concentrations, and separate measurements of lipoprotein concentrations may be of greater value than the measurement by apolipoprotein B, which was largely determined by LDL concentration alone. Furthermore, there was strong evidence of positive association with mean triglyceride molecules per LDL particle but little evidence of associations with total triglycerides or other lipid and lipoprotein fractions after accounting for lipoprotein concentrations.
Collapse
Affiliation(s)
- Danyao Jin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Eirini Trichia
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUnited Kingdom
| | - Nazrul Islam
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
- Faculty of MedicineUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Jelena Bešević
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
- UK BiobankStockportGreater ManchesterUnited Kingdom
| | - Sarah Lewington
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUnited Kingdom
| | - Ben Lacey
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
- UK BiobankStockportGreater ManchesterUnited Kingdom
| |
Collapse
|
4
|
Hamilton F, Pedersen KM, Ghazal P, Nordestgaard BG, Smith GD. Low levels of small HDL particles predict but do not influence risk of sepsis. Crit Care 2023; 27:389. [PMID: 37814277 PMCID: PMC10563213 DOI: 10.1186/s13054-023-04589-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Low levels of high-density lipoprotein (HDL) cholesterol have been associated with higher rates and severity of infection. Alterations in inflammatory mediators and infection are associated with alterations in HDL cholesterol. It is unknown whether the association between HDL and infection is present for all particle sizes, and whether the observed associations are confounded by IL-6 signalling. METHODS In the UK Biobank, ~ 270,000 individuals have data on HDL subclasses derived from nuclear magnetic resonance analysis. We estimated the association of particle count of total HDL and HDL subclasses (small, medium, large, and extra-large HDL) with sepsis, sepsis-related death, and critical care admission in a Cox regression model. We subsequently utilised genetic data from UK Biobank and FinnGen to perform Mendelian randomisation (MR) of each HDL subclass and sepsis to test for a causal relationship. Finally, we explored the role of IL-6 signalling as a potential causal driver of changes in HDL subclasses. RESULTS In observational analyses, higher particle count of small HDL was associated with protection from sepsis (Hazard ratio, HR 0.80; 95% CI 0.74-0.86, p = 4 × 10-9 comparing Quartile 4, highest quartile of HDL to Quartile 1, lowest quartile of HDL), sepsis-related death (HR 0.80; 95% CI 0.74-0.86, p = 2 × 10-4), and critical care admission with sepsis (HR 0.72 95% CI 0.60-0.85, p = 2 × 10-4). Parallel associations with other HDL subclasses were likely driven by changes in the small HDL compartment. MR analyses did not strongly support causality of small HDL particle count on sepsis incidence (Odds ratio, OR 0.98; 95% CI 0.89-1.07, p = 0.6) or death (OR 0.94, 95% CI 0.75-1.17, p = 0.56), although the estimate on critical care admission with sepsis supported protection (OR 0.73, 95% CI 0.57-0.95, p = 0.02). Bidirectional MR analyses suggested that increased IL-6 signalling was associated with reductions in both small (beta on small HDL particle count - 0.16, 95% CI - 0.10 to - 0.21 per natural log change in SD-scaled CRP, p = 9 × 10-8).and total HDL particle count (beta - 0.13, 95% CI - 0.09 to - 0.17, p = 7 × 10-10), but that the reverse effect of HDL on IL-6 signalling was largely null. CONCLUSIONS Low number of small HDL particles are associated with increased hazard of sepsis, sepsis-related death, and sepsis-related critical care admission. However, genetic analyses did not strongly support this as causal. Instead, we demonstrate that increased IL-6 signalling, which is known to alter infection risk, could confound associations with reduced HDL particle count, and suggest this may explain part of the observed association between (small) HDL particle count and sepsis.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Road, Bristol, BS8 2PS, UK.
- Infection Science, North Bristol NHS Trust, Bristol, UK.
| | - Kasper Mønsted Pedersen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Road, Bristol, BS8 2PS, UK
| |
Collapse
|
5
|
Masuda R, Wist J, Lodge S, Kimhofer T, Hunter M, Hui J, Beilby JP, Burnett JR, Dwivedi G, Schlaich MP, Bong SH, Loo RL, Holmes E, Nicholson JK, Yeap BB. Plasma lipoprotein subclass variation in middle-aged and older adults: Sex-stratified distributions and associations with health status and cardiometabolic risk factors. J Clin Lipidol 2023; 17:677-687. [PMID: 37442713 DOI: 10.1016/j.jacl.2023.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Circulating lipids and lipoproteins mediate cardiovascular risk, however routine plasma lipid biochemistry provides limited information on pro-atherogenic remnant particles. OBJECTIVE We analysed plasma lipoprotein subclasses including very low-density and intermediate-density lipoprotein (VLDL and IDL); and assessed their associations with health and cardiometabolic risk. METHODS From 1,976 community-dwelling adults aged 45-67 years, 114/1071 women (10.6%) and 153/905 men (16.9%) were categorised as very healthy. Fasting plasma lipoprotein profiles comprising 112 parameters were measured using 1H nuclear magnetic resonance (NMR) spectroscopy, and associations with health status and cardiometabolic risk factors examined. RESULTS HDL cholesterol was higher, and IDL and VLDL cholesterol and triglycerides lower, in very healthy women compared to other women, and women compared to men. IDL and VLDL cholesterol and triglyceride were lower in very healthy men compared to other men. HDL cholesterol and apolipoprotein (apo) A-I were inversely, and IDL and VLDL cholesterol, apoB-100, and apoB-100/apoA-I ratio directly associated with body mass index (BMI) in women and men. In women, LDL, IDL and VLDL cholesterol increased with age. Women with diabetes and cardiovascular disease had higher cholesterol, triglycerides, phospholipids and free cholesterol across IDL and VLDL fractions, with similar trends for men with diabetes. CONCLUSION Lipoprotein subclasses and density fractions, and their lipid and apolipoprotein constituents, are differentially distributed by sex, health status and BMI. Very healthy women and men are distinguished by favorable lipoprotein profiles, particularly lower concentrations of VLDL and IDL, providing reference intervals for comparison with general populations and adults with cardiometabolic risk factors.
Collapse
Affiliation(s)
- Reika Masuda
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Julien Wist
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Chemistry Department, Universidad del Valle, 76001, Cali, Colombia
| | - Samantha Lodge
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Torben Kimhofer
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Michael Hunter
- School of Population and Global Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - John P Beilby
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - John R Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital & Fiona Stanley Hospital Network, Perth, WA, 6000, Australia; Medical School, University of Western Australia, Perth, WA, 6009, Australia
| | - Girish Dwivedi
- Medical School, University of Western Australia, Perth, WA, 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA, 6150, Australia; Department of Cardiology, Fiona Stanley Hospital, Perth, WA, 6150, Australia
| | - Markus P Schlaich
- Medical School, University of Western Australia, Perth, WA, 6009, Australia; Dobney Hypertension Centre, Royal Perth Hospital Medical Research Foundation, University of Western Australia, Perth, WA, 6000, Australia; Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, WA, 6000, Australia
| | - Sze-How Bong
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Ruey Leng Loo
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, 6150, Australia; Medical School, University of Western Australia, Perth, WA, 6009, Australia; Institute of Global Health Innovation, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth, WA, 6009, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth WA, 6150, Australia.
| |
Collapse
|
6
|
Bermingham KM, Mazidi M, Franks PW, Maher T, Valdes AM, Linenberg I, Wolf J, Hadjigeorgiou G, Spector TD, Menni C, Ordovas JM, Berry SE, Hall WL. Characterisation of Fasting and Postprandial NMR Metabolites: Insights from the ZOE PREDICT 1 Study. Nutrients 2023; 15:nu15112638. [PMID: 37299601 DOI: 10.3390/nu15112638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Postprandial metabolomic profiles and their inter-individual variability are not well characterised. Here, we describe postprandial metabolite changes, their correlations with fasting values and their inter- and intra-individual variability, following a standardised meal in the ZOE PREDICT 1 cohort. METHODS In the ZOE PREDICT 1 study (n = 1002 (NCT03479866)), 250 metabolites, mainly lipids, were measured by a Nightingale NMR panel in fasting and postprandial (4 and 6 h after a 3.7 MJ mixed nutrient meal, with a second 2.2 MJ mixed nutrient meal at 4 h) serum samples. For each metabolite, inter- and intra-individual variability over time was evaluated using linear mixed modelling and intraclass correlation coefficients (ICC) were calculated. RESULTS Postprandially, 85% (of 250 metabolites) significantly changed from fasting at 6 h (47% increased, 53% decreased; Kruskal-Wallis), with 37 measures increasing by >25% and 14 increasing by >50%. The largest changes were observed in very large lipoprotein particles and ketone bodies. Seventy-one percent of circulating metabolites were strongly correlated (Spearman's rho >0.80) between fasting and postprandial timepoints, and 5% were weakly correlated (rho <0.50). The median ICC of the 250 metabolites was 0.91 (range 0.08-0.99). The lowest ICCs (ICC <0.40, 4% of measures) were found for glucose, pyruvate, ketone bodies (β-hydroxybutyrate, acetoacetate, acetate) and lactate. CONCLUSIONS In this large-scale postprandial metabolomic study, circulating metabolites were highly variable between individuals following sequential mixed meals. Findings suggest that a meal challenge may yield postprandial responses divergent from fasting measures, specifically for glycolysis, essential amino acid, ketone body and lipoprotein size metabolites.
Collapse
Affiliation(s)
- Kate M Bermingham
- Department of Nutritional Sciences, King's College London, London WC2R 2LS, UK
- Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Mohsen Mazidi
- Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford OX1 3QR, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Paul W Franks
- Department of Clinical Sciences, Lund University, 21428 Malmö, Sweden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Tyler Maher
- Department of Nutritional Sciences, King's College London, London WC2R 2LS, UK
| | - Ana M Valdes
- School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
- Nottingham NIHR Biomedical Research Centre, Nottingham NG7 2UH, UK
| | - Inbar Linenberg
- Department of Nutritional Sciences, King's College London, London WC2R 2LS, UK
- ZOE Ltd., London SE1 7RW, UK
| | | | | | - Tim D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Cristina Menni
- Department of Twins Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Jose M Ordovas
- Jean Mayer USDA Human Nutrition Research Centre on Aging (JM-USDA-HNRCA), Tufts University, Boston, MA 02111, USA
- IMDEA Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London WC2R 2LS, UK
| | - Wendy L Hall
- Department of Nutritional Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
7
|
Ramos-Cáceres M, Lamiquiz-Moneo I, Cenarro A, Calmarza P, Marco-Benedí V, Bea AM, Mateo-Gallego R, Puzo J, Ordovas JM, Civeira F, Laclaustra M. Triglyceride Metabolism Modifies Lipoprotein(a) Plasma Concentration. J Clin Endocrinol Metab 2022; 107:e3594-e3602. [PMID: 35789387 DOI: 10.1210/clinem/dgac412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Lipoprotein(a) (Lp(a)) is a significant cardiovascular risk factor. Knowing the mechanisms that regulate its concentration can facilitate the development of Lp(a)-lowering drugs. This study analyzes the relationship between triglycerides (TGs) and Lp(a) concentrations, cross-sectionally and longitudinally, and the influence of the number and composition of TG-rich lipoproteins, and the APOE genotype. METHODS Data from Aragon Workers Health Study (AWHS) (n = 5467), National Health and Nutrition Examination Survey III phase 2 (n = 3860), and Hospital Universitario Miguel Servet (HUMS) (n = 2079) were used for cross-sectional TG and Lp(a) relationship. Lp(a) intrasubject variation was studied in AWHS participants and HUMS patients with repeated measurements. TG-rich lipoproteins were quantified by nuclear magnetic resonance in a subsample from AWHS. Apolipoproteins B and E were quantified by Luminex in very low-density lipoprotein (VLDL) isolated by ultracentrifugation, from HUMS samples. APOE genotyping was carried in AWHS and HUMS participants. Regression models adjusted for age and sex were used to study the association. RESULTS The 3 studies showed an inverse relationship between TG and Lp(a). Increased VLDL number, size, and TG content were associated with significantly lower Lp(a). There was an inverse association between the apoE concentration in VLDL and Lp(a). No significant association was observed for apolipoprotein (apo)B. Subjects carrying the apoE2/E2 genotype had significantly lower levels of Lp(a). CONCLUSION Our results show an inverse relationship Lp(a)-TG. Subjects with larger VLDL size have lower Lp(a), and lower values of Lp(a) were present in patients with apoE-rich VLDL and apoE2/E2 subjects. Our results suggest that bigger VLDLs and VLDLs enriched in apoE are inversely involved in Lp(a) plasma concentration.
Collapse
Affiliation(s)
- Maria Ramos-Cáceres
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza 50009, Spain
| | - Itziar Lamiquiz-Moneo
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza 50009, Spain
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza 50009, Spain
- Instituto Aragonés de Ciencias de la Salud, (IACS), Zaragoza 50009, Spain
| | - Pilar Calmarza
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza 50009, Spain
| | - Victoria Marco-Benedí
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza 50009, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Ana M Bea
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza 50009, Spain
| | - Rocio Mateo-Gallego
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza 50009, Spain
- Departamento de Fisiatría y Enfermería, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, Huesca 22002, Spain
| | - Jose Puzo
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza 50009, Spain
- Unidad de Lípidos, Servicio de Análisis y Bioquímica Clínica, Hospital San Jorge, Huesca 22004, Spain
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA
- Precision Nutrition and Obesity Program, IMDEA Alimentación, Madrid 28049, Spain
| | - Fernando Civeira
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza 50009, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Martin Laclaustra
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza 50009, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza 50009, Spain
| |
Collapse
|
8
|
Abstract
Intravascular catabolism of chylomicrons and very low-density lipoproteins (VLDLs) gives rise to a spectrum of partially lipolyzed remnant particles. Their plasma levels and properties are influenced by lipases, lipid transfer proteins, and content of exchangeable lipoproteins. Particularly important among the latter are apoE, which mediates hepatic binding and uptake of remnants, and apoCIII, which can retard this process. In the course of their plasma transit, remnants can acquire pathologic properties that promote the development of atherosclerotic cardiovascular disease (ASCVD) including increased cholesterol content and transport of thrombogenic and inflammatory mediators. Levels of cholesterol-enriched remnant particles determined by various analytic techniques have been significantly linked to the incidence of ASCVD, most dramatically in dyslipidemic patients homozygous for the apoE2 genetic isoform. Further research is warranted for development of clinical assays that can better capture the pathologic impact of remnant lipoprotein subspecies, and for testing the impact on ASCVD of therapies that reduce their levels.
Collapse
Affiliation(s)
- Ronald M Krauss
- University of California, San Francisco, 5700 Martin Luther King, Jr. Way, Oakland CA 94608, USA.
| | - Sarah M King
- University of California, San Francisco, 5700 Martin Luther King, Jr. Way, Oakland CA 94608, USA.
| |
Collapse
|