Hegdé J. Neural Mechanisms of High-Level Vision.
Compr Physiol 2018;
8:903-953. [PMID:
29978891 DOI:
10.1002/cphy.c160035]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The last three decades have seen major strides in our understanding of neural mechanisms of high-level vision, or visual cognition of the world around us. Vision has also served as a model system for the study of brain function. Several broad insights, as yet incomplete, have recently emerged. First, visual perception is best understood not as an end unto itself, but as a sensory process that subserves the animal's behavioral goal at hand. Visual perception is likely to be simply a side effect that reflects the readout of visual information processing that leads to behavior. Second, the brain is essentially a probabilistic computational system that produces behaviors by collectively evaluating, not necessarily consciously or always optimally, the available information about the outside world received from the senses, the behavioral goals, prior knowledge about the world, and possible risks and benefits of a given behavior. Vision plays a prominent role in the overall functioning of the brain providing the lion's share of information about the outside world. Third, the visual system does not function in isolation, but rather interacts actively and reciprocally with other brain systems, including other sensory faculties. Finally, various regions of the visual system process information not in a strict hierarchical manner, but as parts of various dynamic brain-wide networks, collectively referred to as the "connectome." Thus, a full understanding of vision will ultimately entail understanding, in granular, quantitative detail, various aspects of dynamic brain networks that use visual sensory information to produce behavior under real-world conditions. © 2017 American Physiological Society. Compr Physiol 8:903-953, 2018.
Collapse