1
|
Zhang Y, Yan H, Han Y, Shan X, Li H, Liu F, Li P, Zhao J, Guo W. Influence of panic disorder and paroxetine on brain functional hubs in drug-free patients. J Psychopharmacol 2024; 38:1083-1094. [PMID: 39310938 DOI: 10.1177/02698811241278780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND The effects of panic disorder (PD) and pharmacotherapy on brain functional hubs in drug-free patients, and the utility of their degree centrality (DC) in diagnosing and predicting treatment response (TR) for PD, remained unclear. AIMS This study aimed to assess the effects of PD and paroxetine on brain functional hubs in drug-free patients and to identify neuroimaging biomarkers for diagnosing and predicting TR in patients with PD. METHODS Imaging data from 54 medication-free PD patients and 54 matched healthy controls (HCs) underwent DC and functional connectivity (FC) analyses before and after a 4-week paroxetine treatment. Diagnosis and prediction of TR models for PD were constructed using support vector machine (SVM) and support vector regression (SVR), with DC as features. RESULTS Patients with PD showed aberrant DC and FC in the anterior cingulum, temporal, and occipital areas compared with HCs at baseline. After treatment, DC of the patients increased in the calcarine cortex, lingual gyrus, and cerebellum IV/V, along with improved clinical symptoms. Utilizing voxel-wise DC values at baseline, the SVM effectively distinguished patients with PD from HCs with an accuracy of 83.33%. In SVR, the predicted TR significantly correlated with the observed TR (correlation coefficient (r) = 0.893, Mean Squared Error = 0.009). CONCLUSION Patients with PD exhibited abnormal DC and FC, notably in the limbic network, temporal, and occipital regions. Paroxetine ameliorated patients' symptoms while altering their brain FC. SVM and SVR models, utilizing baseline DC, effectively distinguished the patients from HCs and accurately predicted TR.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Braga JD, Komaru T, Umino M, Nagao T, Matsubara K, Egusa A, Yanaka N, Nishimura T, Kumrungsee T. Histidine-containing dipeptide deficiency links to hyperactivity and depression-like behaviors in old female mice. Biochem Biophys Res Commun 2024; 729:150361. [PMID: 38972141 DOI: 10.1016/j.bbrc.2024.150361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Carnosine, anserine, and homocarnosine are histidine-containing dipeptides (HCDs) abundant in the skeletal muscle and nervous system in mammals. To date, studies have extensively demonstrated effects of carnosine and anserine, the predominant muscular HCDs, on muscular functions and exercise performance. However, homocarnosine, the predominant brain HCD, is underexplored. Moreover, roles of homocarnosine and its related HCDs in the brain and behaviors remain poorly understood. Here, we investigated potential roles of endogenous brain homocarnosine and its related HCDs in behaviors by using carnosine synthase-1-deficient (Carns1-/-) mice. We found that old Carns1-/- mice (female 12 months old) exhibited hyperactivity- and depression-like behaviors with higher plasma corticosterone levels on light-dark transition and forced swimming tests, but had no defects in spontaneous locomotor activity, repetitive behavior, olfactory functions, and learning and memory abilities, as compared with their age-matched wild-type (WT) mice. We confirmed that homocarnosine and its related HCDs were deficient across brain areas of Carns1-/- mice. Homocarnosine deficiency exhibited small effects on its constituent γ-aminobutyric acid (GABA) in the brain, in which GABA levels in hypothalamus and olfactory bulb were higher in Carns1-/- mice than in WT mice. In WT mice, homocarnosine and GABA were highly present in hypothalamus, thalamus, and olfactory bulb, and their brain levels did not decrease in old mice when compared with younger mice (3 months old). Our present findings provide new insights into roles of homocarnosine and its related HCDs in behaviors and neurological disorders.
Collapse
Affiliation(s)
- Jason D Braga
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan; Institute of Food Science and Technology, College of Agriculture, Food, Environment and Natural Resources, Cavite State University, Indang, Cavite, 4122, Philippines
| | - Takumi Komaru
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Mitsuki Umino
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Tomoka Nagao
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Ai Egusa
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | - Noriyuki Yanaka
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan
| | - Toshihide Nishimura
- Department of Food Nutrition, Kagawa Nutrition University, Saitama, 350-0214, Japan
| | - Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8527, Japan; Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, 739-8527, Japan.
| |
Collapse
|
3
|
Langhammer T, Hilbert K, Adolph D, Arolt V, Bischoff S, Böhnlein J, Cwik JC, Dannlowski U, Deckert J, Domschke K, Evens R, Fydrich T, Gathmann B, Hamm AO, Heinig I, Herrmann MJ, Hollandt M, Junghoefer M, Kircher T, Koelkebeck K, Leehr EJ, Lotze M, Margraf J, Mumm JLM, Pittig A, Plag J, Richter J, Roesmann K, Ridderbusch IC, Schneider S, Schwarzmeier H, Seeger F, Siminski N, Straube T, Ströhle A, Szeska C, Wittchen HU, Wroblewski A, Yang Y, Straube B, Lueken U. Resting-state functional connectivity in anxiety disorders: a multicenter fMRI study. Mol Psychiatry 2024:10.1038/s41380-024-02768-2. [PMID: 39367057 DOI: 10.1038/s41380-024-02768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Anxiety disorders (AD) are associated with altered connectivity in large-scale intrinsic brain networks. It remains uncertain how much these signatures overlap across different phenotypes due to a lack of well-powered cross-disorder comparisons. We used resting-state functional magnetic resonance imaging (rsfMRI) to investigate differences in functional connectivity (FC) in a cross-disorder sample of AD patients and healthy controls (HC). Before treatment, 439 patients from two German multicenter clinical trials at eight different sites fulfilling a primary diagnosis of panic disorder and/or agoraphobia (PD/AG, N = 154), social anxiety disorder (SAD, N = 95), or specific phobia (SP, N = 190) and 105 HC underwent an 8 min rsfMRI assessment. We performed categorical and dimensional regions of interest (ROI)-to-ROI analyses focusing on connectivity between regions of the defensive system and prefrontal regulation areas. AD patients showed increased connectivity between the insula and the thalamus compared to controls. This was mainly driven by PD/AG patients who showed increased (insula/hippocampus/amygdala-thalamus) and decreased (dorsomedial prefrontal cortex/periaqueductal gray-anterior cingulate cortex) positive connectivity between subcortical and cortical areas. In contrast, SAD patients showed decreased negative connectivity exclusively in cortical areas (insula-orbitofrontal cortex), whereas no differences were found in SP patients. State anxiety associated with the scanner environment did not explain the FC between these regions. Only PD/AG patients showed pronounced connectivity changes along a widespread subcortical-cortical network, including the midbrain. Dimensional analyses yielded no significant results. The results highlighting categorical differences between ADs at a systems neuroscience level are discussed within the context of personalized neuroscience-informed treatments. PROTECT-AD's registration at NIMH Protocol Registration System: 01EE1402A and German Register of Clinical Studies: DRKS00008743. SpiderVR's registration at ClinicalTrials.gov: NCT03208400.
Collapse
Affiliation(s)
- Till Langhammer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychology, HMU Health and Medical University Erfurt, Erfurt, Germany
| | - Dirk Adolph
- Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sophie Bischoff
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jan C Cwik
- Department of Clinical Psychology and Psychotherapy, University of Cologne, Cologne, Germany
- Department of Psychology and Psychotherapy, Witten/Herdecke University, Witten, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ricarda Evens
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Fydrich
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
| | - Ingmar Heinig
- Institute for Clinical Psychology and Psychotherapy, Technical University of Dresden, Dresden, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Maike Hollandt
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
- Department of Clinical Psychology and Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Markus Junghoefer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy and Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg, Marburg, Germany
| | - Katja Koelkebeck
- LVR-University Hospital Essen, Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, Duisburg, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martin Lotze
- Functional Imaging Unit, Diagnostic Radiology, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen Margraf
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jennifer L M Mumm
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andre Pittig
- Translational Psychotherapy, Institute of Psychology, University of Goettingen, Göttingen, Germany
| | - Jens Plag
- Department of Medicine, Institute for Mental Health and Behavioral Medicine, HMU Health and Medical University, Potsdam, Germany
| | - Jan Richter
- Department of Experimental Psychopathology, University of Hildesheim, Hildesheim, Germany
| | - Kati Roesmann
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Institute for Psychology, Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrueck, Osnabruck, Germany
| | - Isabelle C Ridderbusch
- Department of Psychiatry and Psychotherapy and Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg, Marburg, Germany
| | - Silvia Schneider
- Department of Clinical Child and Adolescent Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Hanna Schwarzmeier
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Fabian Seeger
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Niklas Siminski
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Szeska
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
- Department of Biological Psychology and Affective Science, University of Potsdam, Potsdam, Germany
| | - Hans-Ulrich Wittchen
- Institute for Clinical Psychology and Psychotherapy, Technical University of Dresden, Dresden, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU) Muenchen, Munich, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy and Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg, Marburg, Germany
| | - Yunbo Yang
- Department of Psychiatry and Psychotherapy and Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg, Marburg, Germany
- Department of Experimental Psychopathology, University of Hildesheim, Hildesheim, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy and Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg, Marburg, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| |
Collapse
|
4
|
Yan H, Han Y, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Altered resting-state cerebellar-cerebral functional connectivity in patients with panic disorder before and after treatment. Neuropharmacology 2023; 240:109692. [PMID: 37652260 DOI: 10.1016/j.neuropharm.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
The study aimed to investigate the functional connectivity (FC) between the cerebellum and intrinsic cerebral networks in patients with panic disorder (PD), and to observe changes in the cerebellar-cerebral FC following pharmacotherapy. Fifty-four patients with PD and 54 healthy controls (HCs) underwent clinical assessments and functional magnetic resonance imaging scans before and after a 5-week paroxetine treatment. Seed-based cerebellar-cerebral FC was compared between the PD and HC groups, as well as between patients with PD before and after treatment. Additionally, the correlations between FC and clinical features of PD were analyzed. Compared to HCs, patients with PD had altered cerebellar-cerebral FC in the default mode, affective-limbic, and sensorimotor networks. Moreover, a negative correlation between cerebellar-insula disconnection and the severity of depressive symptoms in patients with PD (Pearson correlation, r = -0.424, p = 0.001, Bonferroni corrected) was found. After treatment, most of the enhanced FCs observed in patients with PD at baseline returned to levels similar to those observed in HCs. However, the reduced FC at baseline did not significantly change after treatment. The findings suggest that patients with PD have specific deficits in resting-state cerebellar-cerebral FC and that paroxetine may improve PD by restoring the balance of cerebellar-cerebral FC. These findings emphasize the crucial involvement of cerebellar-cerebral FC in the neuropsychological mechanisms underlying PD and in the potential pharmacological mechanisms of paroxetine for treating PD.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Zugman A, Jett L, Antonacci C, Winkler AM, Pine DS. A systematic review and meta-analysis of resting-state fMRI in anxiety disorders: Need for data sharing to move the field forward. J Anxiety Disord 2023; 99:102773. [PMID: 37741177 PMCID: PMC10753861 DOI: 10.1016/j.janxdis.2023.102773] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders. Neuroimaging findings remain uncertain, and resting state functional magnetic resonance (rs-fMRI) connectivity is of particular interest since it is a scalable functional imaging modality. Given heterogeneous past findings for rs-fMRI in anxious individuals, we characterize patterns across anxiety disorders by conducting a systematic review and meta-analysis. Studies were included if they contained at the time of scanning both a healthy group and a patient group. Due to insufficient study numbers, the quantitative meta-analysis only included seed-based studies. We performed an activation likelihood estimation (ALE) analysis that compared patients and healthy volunteers. All analyses were corrected for family-wise error with a cluster-level threshold of p < .05. Patients exhibited hypo-connectivity between the amygdala and the medial frontal gyrus, anterior cingulate cortex, and cingulate gyrus. This finding, however, was not robust to potential file-drawer effects. Though limited by strict inclusion criteria, our results highlight the heterogeneous nature of reported findings. This underscores the need for data sharing when attempting to detect reliable patterns of disruption in brain activity across anxiety disorders.
Collapse
Affiliation(s)
- André Zugman
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Laura Jett
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Child Emotion Lab, University of Wisconsin, Madison, Madison, WI, United States.
| | - Chase Antonacci
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Department of Psychology, Stanford University, Stanford, CA, United States.
| | - Anderson M Winkler
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas, United States.
| | - Daniel S Pine
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
6
|
Zhang P, Yang X, Wang Y, Liu H, Meng L, Yan Z, Zhou Y, Li Z. Increased functional connectivity of amygdala subregions in patients with drug-naïve panic disorder and without comorbidities. Chin Med J (Engl) 2023; 136:1331-1338. [PMID: 37130218 PMCID: PMC10309521 DOI: 10.1097/cm9.0000000000002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Amygdala plays an important role in the neurobiological basis of panic disorder (PD), and the amygdala contains different subregions, which may play different roles in PD. The aim of the present study was to examine whether there are common or distinct patterns of functional connectivity of the amygdala subregions in PD using resting-state functional magnetic resonance imaging and to explore the relationship between the abnormal spontaneous functional connectivity patterns of the regions of interest (ROIs) and the clinical symptoms of PD patients. METHODS Fifty-three drug-naïve, non-comorbid PD patients and 70 healthy controls (HCs) were recruited. Seed-based resting-state functional connectivity (rsFC) analyses were conducted using the bilateral amygdalae and its subregions as the ROI seed. Two samples t test was performed for the seed-based Fisher's z -transformed correlation maps. The relationship between the abnormal spontaneous functional connectivity patterns of the ROIs and the clinical symptoms of PD patients was investigated by Pearson correlation analysis. RESULTS PD patients showed increased rsFC of the bilateral amygdalae and almost all the amygdala subregions with the precuneus/posterior cingulate gyrus compared with the HC group (left amygdala [lAMY]: t = 4.84, P <0.001; right amygdala [rAMY]: t = 4.55, P <0.001; left centromedial amygdala [lCMA]: t = 3.87, P <0.001; right centromedial amygdala [rCMA]: t = 3.82, P = 0.002; left laterobasal amygdala [lBLA]: t = 4.33, P <0.001; right laterobasal amygdala [rBLA]: t = 4.97, P <0.001; left superficial amygdala [lSFA]: t = 3.26, P = 0.006). The rsFC of the lBLA with the left angular gyrus/inferior parietal lobule remarkably increased in the PD group ( t = 3.70, P = 0.003). And most of the altered rsFCs were located in the default mode network (DMN). A significant positive correlation was observed between the severity of anxiety and the rsFC between the lSFA and the left precuneus in PD patients ( r = 0.285, P = 0.039). CONCLUSIONS Our research suggested that the increased rsFC of amygdala subregions with DMN plays an important role in the pathogenesis of PD. Future studies may further explore whether the rsFC of amygdala subregions, especially with the regions in DMN, can be used as a biological marker of PD.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Xiangyun Yang
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yun Wang
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Huan Liu
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Limin Meng
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Zijun Yan
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuan Zhou
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjiang Li
- Department of Clinical Psychology, The Beijing Key Laboratory of Mental Disorders and National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| |
Collapse
|
7
|
Lucherini Angeletti L, Scalabrini A, Ricca V, Northoff G. Topography of the Anxious Self: Abnormal Rest-Task Modulation in Social Anxiety Disorder. Neuroscientist 2023; 29:221-244. [PMID: 34282680 DOI: 10.1177/10738584211030497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Social anxiety disorder (SAD) is characterized by social anxiety/fear, self-attention, and interoception. Functional magnetic resonance imaging studies demonstrate increased activity during symptom-sensitive tasks in regions of the default-mode network (DMN), amygdala (AMG), and salience network (SN). What is the source of this task-unspecific symptom-sensitive hyperactivity in DMN? We address this question by probing SAD resting state (rs) changes in DMN including their relation to other regions as possible source of task-unspecific hyperactivity in the same regions. Our findings show the following: (1) rs-hypoconnectivity within-DMN regions; (2) rs-hyperconnectivity between DMN and AMG/SN; (3) task-evoked hyperactivity in the abnormal rs-regions of DMN and AMG/SN during different symptom-sensitive tasks; (4) negative relationship of rest and task changes in especially anterior DMN regions as their rs-hypoconnectivity is accompanied by task-unspecific hyperactivity; (5) abnormal top-down/bottom-up modulation between anterior DMN regions and AMG during rest and task. Findings demonstrate that rs-hypoconnectivity among DMN regions is negatively related to task-unspecific hyperactivity in DMN and AMG/SN. We propose a model of "Topography of the Anxious Self" in SAD (TAS-SAD). Abnormal DMN-AMG/SN topography during rest, as trait feature of an "unstable social self", is abnormally aggravated during SAD-sensitive situations resulting in task-related hyperactivity in the same regions with an "anxious self" as state feature.
Collapse
Affiliation(s)
| | - Andrea Scalabrini
- Department of Psychological Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Georg Northoff
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China.,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,The Royal's Institute of Mental Health Research & University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neural Dynamics, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Zhou S, Su S, Hong A, Yang C, Liu Q, Feng W, Wang Z. Abnormal functional connectivity of brain regions associated with fear network model in panic disorder. World J Biol Psychiatry 2022; 23:764-772. [PMID: 35255781 DOI: 10.1080/15622975.2022.2038389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background: Patients with panic disorder (PD) have an abnormal function in brain regions related to fear network is well recognised. However, the traditional fear network model (FNM) which was based on animals' horrible behaviours has been found that it's not enough to explain the pathological mechanism of PD. This study aims to explore brain regions' abnormalities in the new advanced FNM, and estimate whether it can better explain PD.Methods: Magnetic resonance imaging resting-state scans were acquired in 40 patients with PD (35 drug-naïve and 5 drug-free) and 40 healthy controls (HCs). Twelve brain regions in the advanced FNM were chosen as regions of interest (ROIs) to examine the group difference in the ROIs and whole-brain resting-state functional connectivity (rsFC).Results: We found significantly increased thalamic rsFC with the insula, compared with HCs. And it was significantly correlated with HAMA-somatic score. We also found increased thalamic rsFC with occipital gyrus, temporal gyrus, and frontal gyrus when compared with HCs.Conclusions: Taken together, PD patients exhibit abnormal rsFC alterations within the advanced FNM, especially the increased rsFC within thalamus-insula loop, suggesting that excessive sensitivity to external information plays an important role in PD. The advanced FNM may provide a fuller explanation about PD.
Collapse
Affiliation(s)
- Shuangyi Zhou
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Su
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ang Hong
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Liu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Feng
- Department of Psychological Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Pae C, Kim HJ, Bang M, Lee SH. Prediction of prognosis in patients with panic disorder using pre-treatment brain white matter features. J Affect Disord 2022; 313:214-221. [PMID: 35780964 DOI: 10.1016/j.jad.2022.06.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The early identification of patients with panic disorder (PD) with a poor prognosis is important for improving treatment outcomes; however, it is challenging due to a lack of objective biomarkers. We investigated the reliability of characterizing structural white matter (WM) connectivity and its ability to predict PD prognosis after pharmacotherapy. METHODS A total of 138 patients (59 men) with PD and 153 healthy controls (HCs; 73 men) participated in this study. PD symptom severity was measured using the Panic Disorder Severity Scale (PDSS) at baseline and follow-up periods of 8 weeks, 6 months, and 1 year. The least absolute shrinkage and selection operator (Lasso) was utilized to identify prognosis-related WM regions on diffusion imaging features. RESULTS Lasso identified seven prognosis-related WM regions: the bilateral posterior corona radiata, bilateral posterior limb of the internal capsule, the left retrolenticular part of the internal capsule, the left sagittal stratum, and the right fornix/stria terminalis. Some of these regions showed lower mean fractional anisotropy (FA) values in patients with PD than in HCs. The predicted PDSS scores using FA from these regions consistently correlated with the actual prognosis in all periods. LIMITATIONS This study had limited ability to evaluate individual longitudinal changes in detail owing to the data acquisition time and brain atlas resolution. CONCLUSIONS Our findings suggest the possibility of using structural WM connectivity as a biomarker for the clinical characterization of PD. Our findings will expand our understanding of the neurobiology of PD and improve biomarker-based prognosis prediction in clinical practice.
Collapse
Affiliation(s)
- Chongwon Pae
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
10
|
Antón-Toro LF, Bruña R, Del Cerro-León A, Shpakivska D, Mateos-Gordo P, Porras-Truque C, García-Gómez R, Maestú F, García-Moreno LM. Electrophysiological resting-state hyperconnectivity and poorer behavioural regulation as predisposing profiles of adolescent binge drinking. Addict Biol 2022; 27:e13199. [PMID: 35754100 PMCID: PMC9286401 DOI: 10.1111/adb.13199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Adolescent Binge Drinking (BD) has become an increasing health and social concern, with detrimental consequences for brain development and functional integrity. However, research on neurophysiological and neuropsychological traits predisposing to BD are limited at this time. In this work, we conducted a 2‐year longitudinal magnetoencephalography (MEG) study over a cohort of initially alcohol‐naïve adolescents with the purpose of exploring anomalies in resting‐state electrophysiological networks, impulsivity, sensation‐seeking, and dysexecutive behaviour able to predict future BD patterns. In a sample of 67 alcohol‐naïve adolescents (age = 14.5 ± 0.9), we measured resting‐state activity using MEG. Additionally, we evaluated their neuropsychological traits using self‐report ecological scales (BIS‐11, SSS‐V, BDEFS, BRIEF‐SR and DEX). In a second evaluation, 2 years later, we measured participant's alcohol consumption, sub‐dividing the original sample in two groups: future binge drinkers (22 individuals, age 14.6 ± 0.8; eight females) and future light/no drinkers (17 individuals, age 14.5 ± 0.8; eight females). Then, we searched for differences predating alcohol BD intake. We found abnormalities in MEG resting state, in a form of gamma band hyperconnectivity, in those adolescents who transitioned into BD years later. Furthermore, they showed higher impulsivity, dysexecutive behaviours and sensation seeking, positively correlated with functional connectivity (FC). Sensation seeking and impulsivity mainly predicted BD severity in the future, while the relationship between dysexecutive trait and FC with future BD was mediated by sensation seeking. These findings shed light to electrophysiological and neuropsychological traits of vulnerability towards alcohol consumption. We hypothesise that these differences may rely on divergent neurobiological development of inhibitory neurotransmission pathways and executive prefrontal circuits.
Collapse
Affiliation(s)
- Luis F Antón-Toro
- Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ricardo Bruña
- Department of Radiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Alberto Del Cerro-León
- Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Danylyna Shpakivska
- Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Patricia Mateos-Gordo
- Department of Psychobiology and Methodology in Behavioral Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Claudia Porras-Truque
- Department of Psychobiology and Methodology in Behavioral Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Raquel García-Gómez
- Department of Psychobiology and Methodology in Behavioral Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Luis Miguel García-Moreno
- Department of Psychobiology and Methodology in Behavioral Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
11
|
Keller M, Mendoza-Quiñones R, Cabrera Muñoz A, Iglesias-Fuster J, Virués AV, Zvyagintsev M, Edgar JC, Zweerings J, Mathiak K. Transdiagnostic alterations in neural emotion regulation circuits - neural substrates of cognitive reappraisal in patients with depression and post-traumatic stress disorder. BMC Psychiatry 2022; 22:173. [PMID: 35260119 PMCID: PMC8905757 DOI: 10.1186/s12888-022-03780-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Impaired cognitive reappraisal, associated with the social functioning and well-being of patients affected by mood or anxiety disorders, is characterized by distinct neural activation patterns across clinical populations. To date, studies dedicated to identifying common and distinct neural activation profiles need to be clarified. The aim of the present study was to investigate transdiagnostic differences and commonalities in brain activation patterns during reappraisal-mediated downregulation of emotions. METHODS Cognitive reappraisal of negative images was contrasted with maintaining emotions during a control viewing condition. Brain activation in 35 patients with major depressive disorder (MDD), 20 patients with post-traumatic stress disorder (PTSD), and 34 healthy controls (HC) during cognitive reappraisal was compared. Moreover, the neural circuitry of emotion regulation in these clinical populations was examined using seed-to-voxel and voxel-to-voxel functional connectivity analyses. RESULTS Whole-brain fMRI analyses showed less right-lateralized activation of the inferior, middle, and superior frontal gyrus during cognitive reappraisal compared to viewing of negative images in MDD and PTSD patients compared to HCs. Right IFG activation was negatively correlated with the severity of anxiety and depressive symptomatology. In addition, increased seed-to-voxel connectivity of the right IFG as well as increased voxel-to-voxel connectivity was observed in PTSD patients compared to HCs and MDD patients. CONCLUSIONS FMRI results therefore suggested a common deficit of depression and anxiety symptomatology reflected by reduced activation in right IFG during cognitive reappraisal as well as diagnosis specific effects in patients with PTSD based on seed-to-voxel and voxel-to-voxel connectivity showing an overactive and hyperconnected salience network. Findings highlight the role of transdiagnostic research to identify disorder specific brain patterns as well as patterns common across disorders.
Collapse
Affiliation(s)
- Micha Keller
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | | | - Amaray Cabrera Muñoz
- Department of Cognitive Neuroscience, Cuban Center for Neuroscience, Havana, Cuba
| | | | - Anette Valdés Virués
- Department of Cognitive Neuroscience, Cuban Center for Neuroscience, Havana, Cuba
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - J Christopher Edgar
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany.
- JARA-Brain, Research Center Jülich, Jülich, Germany.
| |
Collapse
|
12
|
Acevedo BP, Santander T, Marhenke R, Aron A, Aron E. Sensory Processing Sensitivity Predicts Individual Differences in Resting-State Functional Connectivity Associated with Depth of Processing. Neuropsychobiology 2021; 80:185-200. [PMID: 33561863 DOI: 10.1159/000513527] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sensory processing sensitivity (SPS) is a biologically based temperament trait associated with enhanced awareness and responsivity to environmental and social stimuli. Individuals with high SPS are more affected by their environments, which may result in overarousal, cognitive depletion, and fatigue. METHOD We examined individual differences in resting-state (rs) brain connectivity (using functional MRI) as a function of SPS among a group of adults (M age = 66.13 ± 11.44 years) immediately after they completed a social affective "empathy" task. SPS was measured with the Highly Sensitive Person (HSP) Scale and correlated with rs brain connectivity. RESULTS Results showed enhanced rs brain connectivity within the ventral attention, dorsal attention, and limbic networks as a function of greater SPS. Region of interest analyses showed increased rs brain connectivity between the hippocampus and the precuneus (implicated in episodic memory); while weaker connectivity was shown between the amygdala and the periaqueductal gray (important for anxiety), and the hippocampus and insula (implicated in habitual cognitive processing). CONCLUSIONS The present study showed that SPS is associated with rs brain connectivity implicated in attentional control, consolidation of memory, physiological homeostasis, and deliberative cognition. These results support theories proposing "depth of processing" as a central feature of SPS and highlight the neural processes underlying this cardinal feature of the trait.
Collapse
Affiliation(s)
- Bianca P Acevedo
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA,
| | - Tyler Santander
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Robert Marhenke
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Arthur Aron
- Department of Psychology, Stony Brook University, Stony Brook, New York, USA
| | - Elaine Aron
- Department of Psychology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
13
|
Helpman L, Zhu X, Zilcha-Mano S, Suarez-Jimenez B, Lazarov A, Rutherford B, Neria Y. Reversed patterns of resting state functional connectivity for females vs. males in posttraumatic stress disorder. Neurobiol Stress 2021; 15:100389. [PMID: 34527793 PMCID: PMC8433283 DOI: 10.1016/j.ynstr.2021.100389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Background Posttraumatic stress disorder (PTSD) is twice as prevalent among females as compared to males following potentially traumatic events. While there is evidence for aberrant functional connectivity between hubs of the central executive network (CEN), salience network (SN), and the default mode network (DMN) in PTSD, little is known regarding sex-specificity of this connectivity. The current study aims to directly examine sex-specific resting-state functional connectivity (rs-FC) in trauma exposed males and females, with and without PTSD. Methods One hundred and seventy-eight individuals underwent functional magnetic resonance imaging (fMRI) at rest, of them 85 females (45 with PTSD) and 93 males (57 with PTSD). We conducted whole-brain seed-based analysis using CEN (lateral prefrontal cortex [lPFC]), SN (anterior cingulate cortex [ACC], insula, amygdala [AMG]), and DMN (medial prefrontal cortex [mPFC], posterior parietal cortex [PCC], and hippocampus [HIP]) hubs as seed regions. Group-by-Sex ANOVA was conducted. Results The amygdala-precuneus, ACC-precuneus, and hippocampus-precuneus pathways exhibited significant group-by-sex interaction effects, with females with PTSD consistently differing in connectivity patterns from males with PTSD and from trauma-exposed healthy females. Conclusions Sex-specific neural connectivity patterns were found within and between key nodes of the CEN, DMN, and the SN, suggesting opposite patterns of connectivity in PTSD and trauma-exposed controls as a function of sex as a biological variable (SABV). This may point to mechanistic sex differences in adaptation following trauma and may inform differential neural targets for treatment of females and males with PTSD.
Collapse
Affiliation(s)
- Liat Helpman
- University of Haifa, 199 Aba Hushi St. Mt. Carmel, Haifa, Israel
- Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv, Israel
- Department of Psychiatry and the New York State Psychiatric Institute, Columbia University Medical Center, 1071 Riverside Dr., New York, NY, USA
- Corresponding author. Dept. of Counseling and Human Development, University of Haifa, 199 Aba Hushi St. Mt. Carmel, Haifa, Israel.
| | - Xi Zhu
- Department of Psychiatry and the New York State Psychiatric Institute, Columbia University Medical Center, 1071 Riverside Dr., New York, NY, USA
| | | | | | - Amit Lazarov
- Department of Psychiatry and the New York State Psychiatric Institute, Columbia University Medical Center, 1071 Riverside Dr., New York, NY, USA
- School of Psychological Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv, Israel
| | - Bret Rutherford
- Department of Psychiatry and the New York State Psychiatric Institute, Columbia University Medical Center, 1071 Riverside Dr., New York, NY, USA
| | - Yuval Neria
- Department of Psychiatry and the New York State Psychiatric Institute, Columbia University Medical Center, 1071 Riverside Dr., New York, NY, USA
| |
Collapse
|
14
|
Altered resting-state network connectivity in panic disorder: an independent ComponentAnalysis. Brain Imaging Behav 2021; 15:1313-1322. [PMID: 32748315 DOI: 10.1007/s11682-020-00329-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panic disorder (PD) is a prevalent anxiety disorder but its neurobiology remains poorly understood. It has been proposed that the pathophysiology of PD is related to an abnormality in a particular neural network. However, most studies investigating resting-state functional connectivity (FC) have relied on a priori restrictions of seed regions, which may bias observations. This study investigated changes in intra and internetwork FC in the whole brain of patients with PD using resting-state functional magnetic resonance imaging. A voxel-wise data-driven independent component analysis was performed on 26 PD patients and 27 healthy controls (HCs).We compared the differences in the intra and internetwork FC between the two groups of subjects using statistical parametric mapping with two-sample t-tests. PD patients exhibited decreased intra-network FC in the right anterior cingulate cortex (ACC) of the anterior default mode network, the left precentral and postcentral gyrus of the sensorimotor network, the right lobule V/VI, the cerebellum vermis, and the left lobule VI of the cerebellum network compared with the HCs. The intra-network FC in the right ACC was negatively correlated with symptom severity. None of the pairs of resting state networks showed significant differences in functional network connectivity between the two groups. These results suggest that the brain networks associated with emotion regulation, interoceptive awareness, and fear and somatosensory processing may play an important role in the pathophysiology of PD.
Collapse
|
15
|
Xu L, Xu H, Ding H, Li J, Wang C. Intrinsic Network Brain Dysfunction Correlates With Temporal Complexity in Generalized Anxiety Disorder and Panic Disorder. Front Hum Neurosci 2021; 15:647518. [PMID: 34335204 PMCID: PMC8319536 DOI: 10.3389/fnhum.2021.647518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Generalized anxiety disorder (GAD) and panic disorder (PD) are the two severe subtypes of anxiety disorders (ADs), which are similar in clinical manifestation, pathogenesis, and treatment. Earlier studies have taken a whole-brain perspective on GAD and PD in the assumption that intrinsic fluctuations are static throughout the entire scan. However, it has recently been suggested that the dynamic alternations in functional connectivity (FC) may reflect the changes in macroscopic neural activity patterns underlying the critical aspects of cognition and behavior, and thus may act as biomarkers of disease. Methods: In this study, the resting-state functional MRI (fMRI) data were collected from 26 patients with GAD, 22 patients with PD, and 26 healthy controls (HCs). We investigated dynamic functional connectivity (DFC) by using the group spatial independent component analysis, a sliding window approach, and the k-means clustering methods. For group comparisons, the temporal properties of DFC states were analyzed statistically. Results: The dynamic analysis demonstrated two discrete connectivity "States" across the entire group, namely, a more segregated State I and a strongly integrated State II. Compared with HCs, patients with both GAD and PD spent more time in the weakly within-network State I, while performing fewer transitions and dwelling shorter in the integrated State II. Additionally, the analysis of DFC strength showed that connections associated with ADs were identified including the regions that belonged to default mode (DM), executive control (EC), and salience (SA) networks, especially the connections between SA and DM networks. However, no significant difference was found between the GAD and PD groups in temporal features and connection strength. Conclusions: More common but less specific alterations were detected in the GAD and PD groups, which implied that they might have similar state-dependent neurophysiological mechanisms and, in addition, could hopefully help us better understand their abnormal affective and cognitive performances in the clinic.
Collapse
Affiliation(s)
- Li Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China
| | - Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jinyang Li
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Out-of-step: brain-heart desynchronization in anxiety disorders. Mol Psychiatry 2021; 26:1726-1737. [PMID: 33504952 DOI: 10.1038/s41380-021-01029-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Imaging studies in anxiety disorders (AD) show abnormal functional connectivity primarily in the salience network (SN), somatomotor network (SMN), and default mode network (DMN). However, it is not clear how precisely these network changes occur including their relation to psychopathological symptoms. Here, we show that the functional networks affected in AD overlap with cortical regions that receive visceral inputs (the so-called central/visceral autonomic network). Focusing on cardiac afferents, we suggest that network changes in AD may be due to reduced phase synchronization between ongoing neural and cardiac activity. This neuro-cardiac desynchronization occurs due to the abnormal phase resetting of neural activity at the onset of each heartbeat, as measured by a lower intertrial coherence and heartbeat-evoked potential. Biochemically, cardiac afferents reach subcortical serotonergic raphe nuclei and noradrenergic locus coeruleus (among others) which, in turn, are known to reciprocally modulate the DMN and SMN/SN on the cortical level. Consistent with the network changes in AD, decreases in serotonergic and noradrenergic activity are known to increase connectivity in both SMN and SN while, at the same time, they decrease DMN connectivity. SMN and SN increases, in turn, lead to increased emotional arousal/anxiety and bodily awareness whereas decreased DMN connectivity leads to an unstable sense-of-self in AD. Finally, we integrate our proposal with interoceptive predictive processing models suggesting neuro-cardiac desynchronization as a mechanism for "noisy" bottom-up information leading to a persistently uncertain bodily state in top-down models. In sum, integrating theories on active interference and hyperarousal, we propose a precise neuro-cardiac and biochemically -driven mechanisms for key psychopathological symptoms of AD.
Collapse
|
17
|
Lai CH. Biomarkers in Panic Disorder. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999200918163245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Panic disorder (PD) is a kind of anxiety disorder that impacts the life quality
and functional perspectives in patients. However, the pathophysiological study of PD seems still
inadequate and many unresolved issues need to be clarified.
Objectives:
In this review article of biomarkers in PD, the investigator will focus on the findings of
magnetic resonance imaging (MRI) of the brain in the pathophysiology study. The MRI biomarkers
would be divided into several categories, on the basis of structural and functional perspectives.
Methods:
The structural category would include the gray matter and white matter tract studies. The
functional category would consist of functional MRI (fMRI), resting-state fMRI (Rs-fMRI), and
magnetic resonance spectroscopy (MRS). The PD biomarkers revealed by the above methodologies
would be discussed in this article.
Results:
For the gray matter perspectives, the PD patients would have alterations in the volumes of
fear network structures, such as the amygdala, parahippocampal gyrus, thalamus, anterior cingulate
cortex, insula, and frontal regions. For the white matter tract studies, the PD patients seemed to have
alterations in the fasciculus linking the fear network regions, such as the anterior thalamic radiation,
uncinate fasciculus, fronto-occipital fasciculus, and superior longitudinal fasciculus. For the fMRI
studies in PD, the significant results also focused on the fear network regions, such as the amygdala,
hippocampus, thalamus, insula, and frontal regions. For the Rs-fMRI studies, PD patients seemed to
have alterations in the regions of the default mode network and fear network model. At last, the
MRS results showed alterations in neuron metabolites of the hippocampus, amygdala, occipital
cortex, and frontal regions.
Conclusion:
The MRI biomarkers in PD might be compatible with the extended fear network model
hypothesis in PD, which included the amygdala, hippocampus, thalamus, insula, frontal regions, and
sensory-related cortex.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Sheth C, Rogowska J, Legarreta M, McGlade E, Yurgelun-Todd D. Functional connectivity of the anterior cingulate cortex in Veterans with mild traumatic brain injury. Behav Brain Res 2020; 396:112882. [PMID: 32853657 DOI: 10.1016/j.bbr.2020.112882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the most prevalent injuries in the military with mild traumatic brain injury (mTBI) accounting for approximately 70-80 % of all TBI. TBI has been associated with diffuse and focal brain changes to structures and networks underlying cognitive-emotional processing. Although the anterior cingulate cortex (ACC) plays a critical role in emotion regulation and executive function and is susceptible to mTBI, studies focusing on ACC resting state functional connectivity (rs-fc) in Veterans are limited. METHODS Veterans with mTBI (n = 49) and with no history of TBI (n = 25), ages 20-54 completed clinical assessments and an 8-minute resting state functional magnetic resonance imaging (rs-fMRI) on a 3 T Siemens scanner. Imaging results were analyzed with left and right ACC as seed regions using SPM8. Regression analyses were performed with time since injury. RESULTS Seed-based analysis showed increased connectivity of the left and right ACC with brain regions including middle and posterior cingulate regions, preceneus, and occipital regions in the mTBI compared to the non-TBI group. CONCLUSIONS The rs-fMRI results indicate hyperconnectivity in Veterans with mTBI. These results are consistent with previous studies of recently concussed athletes showing ACC hyperconnectivity. Enhanced top-down control of attention networks necessary to compensate for the microstructural damage following mTBI may explain ACC hyperconnectivity post-mTBI.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA.
| | - Jadwiga Rogowska
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Margaret Legarreta
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Erin McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Chen G, Wang X, Zhang S, Xu X, Liang J, Xu Y. In vivo investigation on bio-markers of perimenopausal panic disorder and catgut embedding acupoints mechanism. Medicine (Baltimore) 2020; 99:e19909. [PMID: 32384434 PMCID: PMC7220090 DOI: 10.1097/md.0000000000019909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Panic disorder (PD), defined by repeated and unexpected panic attacks, severely affects patients' living quality and social function. Perimenopausal women are high-risk group of PD and suffer greatly from it. Modern medicine therapies for this disorder have many side reactions and poor effects, so nonpharmacological modality is an urgent need. Although acupoint catgut embedding is widely used in clinical practice, there is no persuasive evidence of its effect for perimenopausal PD. The aim of this study is to investigate the effectiveness and safety of acupoint catgut embedding for perimenopausal PD and to elucidate the correlations among brain neural activation, bio-markers (amino acids) and clinical outcomes with radiographic evidence, thus to explore its neural mechanism. METHODS The parallel designed, exploratory randomized controlled trial will include 70 outpatients with perimenopausal PD recruited from two hospitals of Chinese Medicine. These subjects will be randomly allocated to an intervention group (Group Embedding) and a control group (Group Medication) in a 1:1 ratio. The subjects in the intervention group will receive acupoint catgut embedding treatment two weeks a time in the following predefined acupuncture points: Shenshu (BL23), Sanyinjiao (SP6), Guanyuan (RN4), Ganshu (BL18), Zusanli (ST36) and Pishu (BL20). The included women of the control group will take 0.4 mg Alprazolam tablet orally, 1 tablet a time, 3 times a day. There is a study period of 3 months and a follow-up period of 1 month for each group. The primary outcomes will be the following therapeutic indexes: the frequency of panic attack, Panic Disorder Severity Score (PDSS), and Panic-associated Symptoms Score (PASS) during the observation period and follow-up period. The changes in Hamilton Anxiety Scale (HAMA) Score and Symptom Checklist 90 (SCL-90) Score will also be compared between these two groups. Additionally, functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy (1H-MRS) scans will be done before and after the observation period to show cranial neuroimaging changes. DISCUSSION We present a study design and rationale to explore the effectiveness and neural mechanism of acupoint catgut embedding for perimenopausal PD. There are still several factors restrict our research such as no unified standard of diagnostic criteria and curative effect evaluation. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR-INR-16009724, registered in November 2016.
Collapse
Affiliation(s)
- Guizhen Chen
- The Bao’an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen
| | - Xue Wang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuo Zhang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaokang Xu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junquan Liang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
McIntosh RC, Hoshi RA, Timpano KR. Take my breath away: Neural activation at breath-hold differentiates individuals with panic disorder from healthy controls. Respir Physiol Neurobiol 2020; 277:103427. [PMID: 32120012 DOI: 10.1016/j.resp.2020.103427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Abstract
There is neuroanatomical evidence of an "extended fear network" of brain structures involved in the etiology of panic disorder (PD). Although ventilatory distrubance is a primary symptom of PD these sensations may also trigger onset of a panic attack (PA). Here, a voluntary breath-holding paradigm was used to mimic the hypercapnia state in order to compare blood oxygen level-dependent (BOLD) response, at the peak of a series of 18 s breath-holds, of 21 individuals with PD to 21 low anxiety matched controls. Compared to the rest condition, BOLD activity at the peak (12 - 18 s) of the breath-hold was greater for PD versus controls within a number of structures implicated in the extended fear network, including hippocampus, thalamus, and brainstem. Activation was also observed in cortical structures that are shown to be involved in interoceptive and self-referential processing, such as right insula, middle frontal gyrus, and precuneus/posterior cingulate. In lieu of amygdala activation, our findings show elevated activity throughout an extended network of cortical and subcortical structures involved in contextual, interoceptive and self-referential processing when individuals with PD engage in voluntary breath-holding.
Collapse
Affiliation(s)
- R C McIntosh
- Department of Psychology, University of Miami, 1120 NW 14th Street, Miami, FL, 33136, United States.
| | - R A Hoshi
- Clinical and Epidemiological Research Center, Sao Paulo University. 2565 Professor Lineu Prestes Ave, Sao Paulo, 05508-000, Brazil
| | - K R Timpano
- Department of Psychology, University of Miami, 1120 NW 14th Street, Miami, FL, 33136, United States
| |
Collapse
|
21
|
Kim SW, Kim MK, Kim B, Choi TK, Lee SH. White matter connectivity differences between treatment responders and non-responders in patients with panic disorder. J Affect Disord 2020; 260:527-535. [PMID: 31539689 DOI: 10.1016/j.jad.2019.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Panic disorder (PD) is a prevalent and highly disabling mental condition. However, less is known about relationships between biomarkers that may together predict a better response to pharmacological treatment. The objective of the present study was to compare the brain white matter (WM) connectivity between treatment-responsive patients with panic disorder (RPD) and non-responsive patients with panic disorder (NRPD) after 12 weeks of pharmacotherapy. METHODS Sixty-four patients with PD were enrolled in this study (RPD, n = 37; NRPD, n = 27). All patients were examined by using magnetic resonance imaging at 3 Tesla. The Panic Disorder Severity Scale (PDSS), Albany Panic and Phobia Questionnaire (APPQ), Anxiety Sensitivity Inventory-Revised (ASI-R), Beck Anxiety Inventory (BAI), and Beck Depression Inventory (BDI) were administered at baseline of the study. Fractional anisotropy (FA) data were compared using tract-based spatial statistics (TBSS). RESULTS TBSS results showed that the FA values of the patients with NRPD were significantly higher than of those with RPD in the WM regions such as the precentral gyrus, parahippocampal gyrus, posterior corona radiata, posterior thalamic radiation, posterior parts of the corpus callosum, and precuneus. Symptom severity scales, such as ASI-R scores, showed significant positive correlations of the FA values with the fronto-temporal WM regions in NRPD. CONCLUSIONS These results suggest that structural changes to areas such as the fronto-limbic regions and the posterior part of default mode network, could influence medication response in PD. Further studies with a larger number of patients should be performed to confirm our findings.
Collapse
Affiliation(s)
- Se-Woong Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13492, Republic of Korea
| | - Min-Kyoung Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13492, Republic of Korea
| | - Borah Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13492, Republic of Korea
| | - Tae-Kiu Choi
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13492, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13492, Republic of Korea.
| |
Collapse
|
22
|
Northoff G. Anxiety Disorders and the Brain's Resting State Networks: From Altered Spatiotemporal Synchronization to Psychopathological Symptoms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:71-90. [PMID: 32002923 DOI: 10.1007/978-981-32-9705-0_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anxiety disorders include a variety of different disorders including panic disorder (PD), social anxiety disorder (SAD), generalized anxiety disorder (GAD), and phobias. We here focus our review on GAD, SAD, and PD and put a specific emphasis on resting state networks and the coupling between the brain and the heart as all anxiety disorders exhibit abnormal perception of their own heartbeat in some way or the other. Resting state functional connectivity (rsFC) studies demonstrate abnormalities in default-mode network (DMN) in all anxiety disorders, e.g., mostly decreases in rsFC of DMN. In contrast, resting state fMRI shows increased rsFC in salience network (SN) (SAD, GAD) and/or somato-motor/sensory network (SMN) (PD). Since rsFC is coherence- or phase-based operating in the infraslow frequency domain (0.01-0.1 Hz), these data suggest spatiotemporal hypo- or hyper-synchronization in DMN and SMN/SN, respectively. These abnormalities in the neural network's spatiotemporal synchronization may, in turn, impact phase-based temporal synchronization of neural and cardiac activities resulting in decreased (DMN) or increased (SMN/SN) neuro-cardiac coupling in anxiety disorders. That, in turn, may be related to the various psychopathological symptoms like unstable sense of self (as based on unstable DMN showing spatiotemporal hypo-synchronization), increased emotions and specifically anxiety (as related to increased SN showing spatiotemporal hyper-synchronization), and increased bodily awareness (mediated by increased SMN with spatiotemporal hyper-synchronization) in anxiety disorders. Taken together, we here suggest altered spatiotemporal synchronization of neural and cardiac activity within the brain's resting state to underlie various psychopathological symptoms in anxiety disorders. Such spatiotemporal basis of psychopathological symptoms is well compatible with the recently suggested "Spatiotemporal Psychopathology."
Collapse
Affiliation(s)
- Georg Northoff
- EJLB-Michael Smith Chair for Neuroscience and Mental Health, Royal Ottawa Healthcare Group, University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| |
Collapse
|
23
|
Lai CH. Fear Network Model in Panic Disorder: The Past and the Future. Psychiatry Investig 2019; 16:16-26. [PMID: 30176707 PMCID: PMC6354036 DOI: 10.30773/pi.2018.05.04.2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/04/2018] [Indexed: 01/04/2023] Open
Abstract
The core concept for pathophysiology in panic disorder (PD) is the fear network model (FNM). The alterations in FNM might be linked with disturbances in the autonomic nervous system (ANS), which is a common phenomenon in PD. The traditional FNM included the frontal and limbic regions, which were dysregulated in the feedback mechanism for cognitive control of frontal lobe over the primitive response of limbic system. The exaggerated responses of limbic system are also associated with dysregulation in the neurotransmitter system. The neuroimaging studies also corresponded to FNM concept. However, more extended areas of FNM have been discovered in recent imaging studies, such as sensory regions of occipital, parietal cortex and temporal cortex and insula. The insula might integrate the filtered sensory information via thalamus from the visuospatial and other sensory modalities related to occipital, parietal and temporal lobes. In this review article, the traditional and advanced FNM would be discussed. I would also focus on the current evidences of insula, temporal, parietal and occipital lobes in the pathophysiology. In addition, the white matter and functional connectome studies would be reviewed to support the concept of advanced FNM. An emerging dysregulation model of fronto-limbic-insula and temporooccipito-parietal areas might be revealed according to the combined results of recent neuroimaging studies. The future delineation of advanced FNM model can be beneficial from more extensive and advanced studies focusing on the additional sensory regions of occipital, parietal and temporal cortex to confirm the role of advanced FNM in the pathophysiology of PD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,PhD Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan.,Department of Psychiatry, Yeezen General Hospital, Taoyuan, Taiwan
| |
Collapse
|
24
|
Xu J, Van Dam NT, Feng C, Luo Y, Ai H, Gu R, Xu P. Anxious brain networks: A coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci Biobehav Rev 2018; 96:21-30. [PMID: 30452934 DOI: 10.1016/j.neubiorev.2018.11.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Anxiety and anxiety disorders are associated with specific alterations to functional brain networks, including intra-networks and inter-networks. Given the heterogeneity within anxiety disorders and inconsistencies in functional network differences across studies, identifying common patterns of altered brain networks in anxiety is imperative. Here, we conducted an activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety and anxiety disorders (including 835 individuals with different levels of anxiety or anxiety disorders and 508 controls). Results show that anxiety can be characterized by hypo-connectivity of the affective network with executive control network (ECN) and default mode network (DMN), as well as decoupling of the ECN with the DMN. The connectivity within the salience network and its connectivity with sensorimotor network are also attenuated. These results reveal consistent dysregulations of affective and cognitive control related networks over networks related to emotion processing in anxiety and anxiety disorders. The current findings provide an empirical foundation for an integrated model of brain network alterations that are common across anxiety and anxiety disorders.
Collapse
Affiliation(s)
- Jie Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, 518060, China
| | - Nicholas T Van Dam
- School of Psychological Sciences, University of Melbourne, Victoria, 3010, Australia; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Chunliang Feng
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, 518060, China; College of Information Science and Technology, Beijing Normal University, Beijing, 100875, China
| | - Yuejia Luo
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, 518060, China; Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China
| | - Hui Ai
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, 518060, China; Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China.
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Shenzhen University, Shenzhen, 518060, China; Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518057, China; Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713, AW Groningen, the Netherlands.
| |
Collapse
|
25
|
Kim YK, Yoon HK. Common and distinct brain networks underlying panic and social anxiety disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 28642079 DOI: 10.1016/j.pnpbp.2017.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although panic disorder (PD) and phobic disorders are independent anxiety disorders with distinct sets of diagnostic criteria, there is a high level of overlap between them in terms of pathogenesis and neural underpinnings. Functional connectivity research using resting-state functional magnetic resonance imaging (rsfMRI) shows great potential in identifying the similarities and differences between PD and phobias. Understanding common and distinct networks between PD and phobic disorders is critical for identifying both specific and general neural characteristics of these disorders. We review recent rsfMRI studies and explore the clinical relevance of resting-state functional connectivity (rsFC) in PD and phobias. Although findings differ between studies, there are some meaningful, consistent findings. Social anxiety disorder (SAD) and PD share common default mode network alterations. Alterations within the sensorimotor network are observed primarily in PD. Increased connectivity in the salience network is consistently reported in SAD. This review supports hypotheses that PD and phobic disorders share common rsFC abnormalities and that the different clinical phenotypes between the disorders come from distinct brain functional network alterations.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
26
|
Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: Status quo of the research. World J Psychiatry 2017; 7:12-33. [PMID: 28401046 PMCID: PMC5371170 DOI: 10.5498/wjp.v7.i1.12] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/16/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To provide an overview of the current research in the functional neuroanatomy of panic disorder.
METHODS Panic disorder (PD) is a frequent psychiatric disease. Gorman et al (1989; 2000) proposed a comprehensive neuroanatomical model of PD, which suggested that fear- and anxiety-related responses are mediated by a so-called “fear network” which is centered in the amygdala and includes the hippocampus, thalamus, hypothalamus, periaqueductal gray region, locus coeruleus and other brainstem sites. We performed a systematic search by the electronic database PubMed. Thereby, the main focus was laid on recent neurofunctional, neurostructural, and neurochemical studies (from the period between January 2012 and April 2016). Within this frame, special attention was given to the emerging field of imaging genetics.
RESULTS We noted that many neuroimaging studies have reinforced the role of the “fear network” regions in the pathophysiology of panic disorder. However, recent functional studies suggest abnormal activation mainly in an extended fear network comprising brainstem, anterior and midcingulate cortex (ACC and MCC), insula, and lateral as well as medial parts of the prefrontal cortex. Interestingly, differences in the amygdala activation were not as consistently reported as one would predict from the hypothesis of Gorman et al (2000). Indeed, amygdala hyperactivation seems to strongly depend on stimuli and experimental paradigms, sample heterogeneity and size, as well as on limitations of neuroimaging techniques. Advanced neurochemical studies have substantiated the major role of serotonergic, noradrenergic and glutamatergic neurotransmission in the pathophysiology of PD. However, alterations of GABAergic function in PD are still a matter of debate and also their specificity remains questionable. A promising new research approach is “imaging genetics”. Imaging genetic studies are designed to evaluate the impact of genetic variations (polymorphisms) on cerebral function in regions critical for PD. Most recently, imaging genetic studies have not only confirmed the importance of serotonergic and noradrenergic transmission in the etiology of PD but also indicated the significance of neuropeptide S receptor, CRH receptor, human TransMEMbrane protein (TMEM123D), and amiloride-sensitive cation channel 2 (ACCN2) genes.
CONCLUSION In light of these findings it is conceivable that in the near future this research will lead to the development of clinically useful tools like predictive biomarkers or novel treatment options.
Collapse
|
27
|
Goddard AW. The Neurobiology of Panic: A Chronic Stress Disorder. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017736038. [PMID: 32440580 PMCID: PMC7219873 DOI: 10.1177/2470547017736038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Panic disorder is an often chronic and impairing human anxiety syndrome, which frequently results in serious psychiatric and medical comorbidities. Although, to date, there have been many advances in the diagnosis and treatment of panic disorder, its pathophysiology still remains to be elucidated. In this review, recent evidence for a neurobiological basis of panic disorder is reviewed with particular attention to risk factors such as genetic vulnerability, chronic stress, and temperament. In addition, neuroimaging data are reviewed which provides support for the concept of panic disorder as a fear network disorder. The potential impact of the National Institute of Mental Health Research Domain Criteria constructs of acute and chronic threats responses and their implications for the neurobiology of panic disorder are also discussed.
Collapse
Affiliation(s)
- Andrew W. Goddard
- UCSF Fresno Medical Education and
Research Program, University of California, San Francisco, USA
| |
Collapse
|
28
|
MacNamara A, DiGangi J, Phan KL. Aberrant Spontaneous and Task-Dependent Functional Connections in the Anxious Brain. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:278-287. [PMID: 27141532 DOI: 10.1016/j.bpsc.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A number of brain regions have been implicated in the anxiety disorders, yet none of these regions in isolation has been distinguished as the sole or discrete site responsible for anxiety disorder pathology. Therefore, the identification of dysfunctional neural networks as represented by alterations in the temporal correlation of blood-oxygen level dependent (BOLD) signal across several brain regions in anxiety disorders has been increasingly pursued in the past decade. Here, we review task-independent (e.g., resting state) and task-induced functional connectivity magnetic resonance imaging (fcMRI) studies in the adult anxiety disorders (including trauma- and stressor-related and obsessive compulsive disorders). The results of this review suggest that anxiety disorder pathophysiology involves aberrant connectivity between amygdala-frontal and frontal-striatal regions, as well as within and between canonical "intrinsic" brain networks - the default mode and salience networks, and that evidence of these aberrations may help inform findings of regional activation abnormalities observed in the anxiety disorders. Nonetheless, significant challenges remain, including the need to better understand mixed findings observed using different methods (e.g., resting state and task-based approaches); the need for more developmental work; the need to delineate disorder-specific and transdiagnostic fcMRI aberrations in the anxiety disorders; and the need to better understand the clinical significance of fcMRI abnormalities. In meeting these challenges, future work has the potential to elucidate aberrant neural networks as intermediate, brain-based phenotypes to predict disease onset and progression, refine diagnostic nosology, and ascertain treatment mechanisms and predictors of treatment response across anxiety, trauma-related and obsessive compulsive disorders.
Collapse
Affiliation(s)
- Annmarie MacNamara
- Department of Psychiatry (AM, JD, KLP), University of Illinois at Chicago, Chicago, IL; Departments of Psychology and Anatomy and Cell Biology, and the Graduate Program in Neuroscience (KLP), University of Illinois at Chicago, Chicago, IL; Mental Health Service Line (JD, KLP), Jesse Brown VA Medical Center, Chicago, IL
| | - Julia DiGangi
- Department of Psychiatry (AM, JD, KLP), University of Illinois at Chicago, Chicago, IL; Departments of Psychology and Anatomy and Cell Biology, and the Graduate Program in Neuroscience (KLP), University of Illinois at Chicago, Chicago, IL; Mental Health Service Line (JD, KLP), Jesse Brown VA Medical Center, Chicago, IL
| | - K Luan Phan
- Department of Psychiatry (AM, JD, KLP), University of Illinois at Chicago, Chicago, IL; Departments of Psychology and Anatomy and Cell Biology, and the Graduate Program in Neuroscience (KLP), University of Illinois at Chicago, Chicago, IL; Mental Health Service Line (JD, KLP), Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
29
|
Lai CH, Wu YT. The Explorative Analysis to Revise Fear Network Model for Panic Disorder: Functional Connectome Statistics. Medicine (Baltimore) 2016; 95:e3597. [PMID: 27149492 PMCID: PMC4863809 DOI: 10.1097/md.0000000000003597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Functional connectome analysis in panic disorder (PDO) is a relatively new field for research. We tried to investigate the functional connectome alterations in PDO to re-examine the precision and role of fear network model for the pathophysiology of PDO.We enrolled 53 PDO patients and 54 controls with imaging data in this study. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. Then network-based statistics (The University of Melbourne and Melbourne Health, Australia) of connectome was used to perform group comparisons between patients and controls. The correlation between network measures of significant subnetwork and illness duration or severity of PDO was also performed.Within the 6 network models, only 1 network survived after multiple corrections. We found decreased functional connectivity in the edges between the following nodes: the left parahippocampal gyrus, bilateral precentral gyri, bilateral middle cingulate gyri, bilateral supramarginal gyri, bilateral calcarine fissures, and right lingual gyrus. The central hubs were the left parahippocampal gyrus and left precentral gyrus. The importance of limbic areas and connection with sensory and motor regions might shed light on the revision of fear network model for the pathophysiology of PDO.
Collapse
Affiliation(s)
- Chien-Han Lai
- From the Department of Psychiatry (C-HL), Cheng Hsin General Hospital, Taipei City; Department of Biomedical Imaging and Radiological Sciences (C-HL, Y-TW); Institute of Biophotonics (C-HL, Y-TW); and Brain Research Center (Y-TW), National Yang-Ming University, Taipei, Taiwan, ROC
| | | |
Collapse
|
30
|
Tsai SY, Fang CH, Wu TY, Lin YR. Effects of Frequency Drift on the Quantification of Gamma-Aminobutyric Acid Using MEGA-PRESS. Sci Rep 2016; 6:24564. [PMID: 27079873 PMCID: PMC4832206 DOI: 10.1038/srep24564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/31/2016] [Indexed: 01/04/2023] Open
Abstract
The MEGA-PRESS method is the most common method used to measure γ-aminobutyric acid (GABA) in the brain at 3T. It has been shown that the underestimation of the GABA signal due to B0 drift up to 1.22 Hz/min can be reduced by post-frequency alignment. In this study, we show that the underestimation of GABA can still occur even with post frequency alignment when the B0 drift is up to 3.93 Hz/min. The underestimation can be reduced by applying a frequency shift threshold. A total of 23 subjects were scanned twice to assess the short-term reproducibility, and 14 of them were scanned again after 2–8 weeks to evaluate the long-term reproducibility. A linear regression analysis of the quantified GABA versus the frequency shift showed a negative correlation (P < 0.01). Underestimation of the GABA signal was found. When a frequency shift threshold of 0.125 ppm (15.5 Hz or 1.79 Hz/min) was applied, the linear regression showed no statistically significant difference (P > 0.05). Therefore, a frequency shift threshold at 0.125 ppm (15.5 Hz) can be used to reduce underestimation during GABA quantification. For data with a B0 drift up to 3.93 Hz/min, the coefficients of variance of short-term and long-term reproducibility for the GABA quantification were less than 10% when the frequency threshold was applied.
Collapse
Affiliation(s)
- Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan.,Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Chun-Hao Fang
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Thai-Yu Wu
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
31
|
Goddard AW. Cortical and subcortical gamma amino acid butyric acid deficits in anxiety and stress disorders: Clinical implications. World J Psychiatry 2016; 6:43-53. [PMID: 27014597 PMCID: PMC4804267 DOI: 10.5498/wjp.v6.i1.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/18/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Anxiety and stress disorders are a major public health issue. However, their pathophysiology is still unclear. The gamma amino acid butyric acid (GABA) neurochemical system has been strongly implicated in their pathogenesis and treatment by numerous preclinical and clinical studies, the most recent of which have been highlighted and critical review in this paper. Changes in cortical GABA appear related to normal personality styles and responses to stress. While there is accumulating animal and human neuroimaging evidence of cortical and subcortical GABA deficits across a number of anxiety conditions, a clear pattern of findings in specific brain regions for a given disorder is yet to emerge. Neuropsychiatric conditions with anxiety as a clinical feature may have GABA deficits as an underlying feature. Different classes of anxiolytic therapies support GABA function, and this may be an area in which newer GABA neuroimaging techniques could soon offer more personalized therapy. Novel GABAergic pharmacotherapies in development offer potential improvements over current therapies in reducing sedative and physiologic dependency effects, while offering rapid anxiolysis.
Collapse
|
32
|
Cui H, Zhang J, Liu Y, Li Q, Li H, Zhang L, Hu Q, Cheng W, Luo Q, Li J, Li W, Wang J, Feng J, Li C, Northoff G. Differential alterations of resting-state functional connectivity in generalized anxiety disorder and panic disorder. Hum Brain Mapp 2016; 37:1459-73. [PMID: 26800659 DOI: 10.1002/hbm.23113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022] Open
Abstract
Generalized anxiety disorder (GAD) and panic disorder (PD) are most common anxiety disorders with high lifetime prevalence while the pathophysiology and disease-specific alterations still remain largely unclear. Few studies have taken a whole-brain perspective in the functional connectivity (FC) analysis of these two disorders in resting state. It limits the ability to identify regionally and psychopathologically specific network abnormalities with their subsequent use as diagnostic marker and novel treatment strategy. The whole brain FC using a novel FC metric was compared, that is, scaled correlation, which they demonstrated to be a reliable FC statistics, but have higher statistical power in two-sample t-test of whole brain FC analysis. About 21 GAD and 18 PD patients were compared with 22 matched control subjects during resting-state, respectively. It was found that GAD patients demonstrated increased FC between hippocampus/parahippocampus and fusiform gyrus among the most significantly changed FC, while PD was mainly associated with greater FC between somatosensory cortex and thalamus. Besides such regional specificity, it was observed that psychopathological specificity in that the disrupted FC pattern in PD and GAD correlated with their respective symptom severity. The findings suggested that the increased FC between hippocampus/parahippocampus and fusiform gyrus in GAD were mainly associated with a fear generalization related neural circuit, while the greater FC between somatosensory cortex and thalamus in PD were more likely linked to interoceptive processing. Due to the observed regional and psychopathological specificity, their findings bear important clinical implications for the potential treatment strategy.
Collapse
Affiliation(s)
- Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Zhang
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China.,Department of Radiology, Jinling Hospital of Nanjing, Nanjing, People's Republic of China
| | - Yicen Liu
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Qingwei Li
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, People's Republic of China
| | - Hui Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lanlan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qiang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Cheng
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Qiang Luo
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai, People's Republic of China
| | - Wei Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jianfeng Feng
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China.,Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom.,Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Shanghai Center for Mathematical Sciences, Shanghai, People's Republic of China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, People's Republic of China.,Centre for Brain and Consciousness, Taipei Medical University (TMU), Taipei, Taiwan
| |
Collapse
|
33
|
Haag L, Quetscher C, Dharmadhikari S, Dydak U, Schmidt-Wilcke T, Beste C. Interrelation of resting state functional connectivity, striatal GABA levels, and cognitive control processes. Hum Brain Mapp 2015; 36:4383-93. [PMID: 26354091 DOI: 10.1002/hbm.22920] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/01/2015] [Accepted: 07/20/2015] [Indexed: 12/24/2022] Open
Abstract
Important issues for cognitive control are response selection processes, known to depend on fronto-striatal networks with recent evidence suggesting that striatal gamma-amino butyric acid (GABA) levels play an important role. Regional GABA concentrations have also been shown to modulate intrinsic connectivity, e.g. of the default mode network. However, the interrelation between striatal GABA levels, basal ganglia network (BGN) connectivity, and performance in cognitive control is elusive. In the current study, we measure striatal GABA levels using magnetic resonance spectroscopy (MRS) and resting state parameters using functional magnetic resonance imaging (fMRI). Resting state parameters include activity within the BGN, as determined by the low frequency power (LFP) within the network, and the functional connectivity between the BGN and somatomotor network (SMN). Specifically, we examine the interrelation between GABA, resting state parameters, and performance (i.e., accuracy) in conflict monitoring using a Simon task. Response control was affected by striatal GABA+ levels and activity within the BGN, especially when response selection was complicated by altered stimulus-response mappings. The data suggest that there are two mechanisms supporting response selection accuracy. One is related to resting state activity within the BGN and modulated by striatal GABA+ levels. The other is related to decreased cortico-striatal network connectivity, unrelated to the GABAergic system. The inclusion of all three factors (i.e., striatal GABA+ levels, activity within the BGN, and BGN-SMN network connectivity) explained a considerable amount of variance in task accuracy. Striatal neurobiochemical (GABA+) and parameters of the resting state BGN represent important modulators of response control.
Collapse
Affiliation(s)
- Lauren Haag
- Department of Neurology, BG-Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Clara Quetscher
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Shalmali Dharmadhikari
- School of Health Sciences, Purdue University, West Lafayette, Indiana.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, Indiana.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| |
Collapse
|
34
|
Abstract
Afferent neural signals are continuously transmitted from visceral organs to the brain. Interoception refers to the processing of visceral-afferent neural signals by the central nervous system, which can finally result in the conscious perception of bodily processes. Interoception can, therefore, be described as a prominent example of information processing on the ascending branch of the brain–body axis. Stress responses involve a complex neuro-behavioral cascade, which is elicited when the organism is confronted with a potentially harmful stimulus. As this stress cascade comprises a range of neural and endocrine pathways, stress can be conceptualized as a communication process on the descending branch of the brain–body axis. Interoception and stress are, therefore, associated via the bi-directional transmission of information on the brain–body axis. It could be argued that excessive and/or enduring activation (e.g., by acute or chronic stress) of neural circuits, which are responsible for successful communication on the brain–body axis, induces malfunction and dysregulation of these information processes. As a consequence, interoceptive signal processing may be altered, resulting in physical symptoms contributing to the development and/or maintenance of body-related mental disorders, which are associated with stress. In the current paper, we summarize findings on psychobiological processes underlying acute and chronic stress and their interaction with interoception. While focusing on the role of the physiological stress axes (hypothalamic-pituitary-adrenocortical axis and autonomic nervous system), psychological factors in acute and chronic stress are also discussed. We propose a positive feedback model involving stress (in particular early life or chronic stress, as well as major adverse events), the dysregulation of physiological stress axes, altered perception of bodily sensations, and the generation of physical symptoms, which may in turn facilitate stress.
Collapse
Affiliation(s)
- André Schulz
- Institute for Health and Behaviour, Integrative Research Unit on Social and Individual Development, University of Luxembourg Walferdange, Luxembourg
| | - Claus Vögele
- Institute for Health and Behaviour, Integrative Research Unit on Social and Individual Development, University of Luxembourg Walferdange, Luxembourg
| |
Collapse
|
35
|
Holper L, Scholkmann F, Seifritz E. Time-frequency dynamics of the sum of intra- and extracerebral hemodynamic functional connectivity during resting-state and respiratory challenges assessed by multimodal functional near-infrared spectroscopy. Neuroimage 2015; 120:481-92. [PMID: 26169319 DOI: 10.1016/j.neuroimage.2015.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Monitoring respiratory processes is important for evaluating neuroimaging data, given their influence on time-frequency dynamics of intra- and extracerebral hemodynamics. Here we investigated the time-frequency dynamics of the sum of intra- and extracerebral hemodynamic functional connectivity states during hypo- and hypercapnia by using three different respiratory challenge tasks (i.e., hyperventilation, breath-holding, and rebreathing) compared to resting-state. The sum of intra- and extracerebral hemodynamic responses were assessed using functional near-infrared spectroscopy (fNIRS) within two regions of interest (i.e., the dorsolateral and the medial prefrontal cortex). Time-frequency fNIRS analysis was performed based on wavelet transform coherence to quantify functional connectivity in terms of positive and negative phase-coupling within each region of interest. Physiological measures were assessed in the form of partial end-tidal carbon dioxide, heart rate, arterial tissue oxygen saturation, and respiration rate. We found that the three respiration challenges modulated time-frequency dynamics differently with respect to resting-state: 1) Hyperventilation and breath-holding exhibited inverse patterns of positive and negative phase-coupling. 2) In contrast, rebreathing had no significant effect. 3) Low-frequency oscillations contributed to a greater extent to time-frequency dynamics compared to high-frequency oscillations. The results highlight that there exist distinct differences in time-frequency dynamics of the sum of intra- and extracerebral functional connectivity not only between hypo- (hyperventilation) and hypercapnia but also between different states of hypercapnia (breath-holding versus rebreathing). This suggests that a multimodal assessment of intra-/extracerebral and systemic physiological changes during respiratory challenges compared to resting-state may have potential use in the differentiation between physiological and pathological respiratory behavior accompanied by the psycho-physiological state of a human.
Collapse
Affiliation(s)
- L Holper
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - F Scholkmann
- Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - E Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| |
Collapse
|
36
|
|
37
|
Coutinho JF, Gonçalves OF, Maia L, Fernandes Vasconcelos C, Perrone-McGovern K, Simon-Dack S, Hernandez K, Oliveira-Silva P, Mesquita AR, Sampaio A. Differential activation of the default mode network in jet lagged individuals. Chronobiol Int 2014; 32:143-9. [DOI: 10.3109/07420528.2014.955187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Lai CH, Wu YT. The alterations in inter-hemispheric functional coordination of patients with panic disorder: the findings in the posterior sub-network of default mode network. J Affect Disord 2014; 166:279-84. [PMID: 25012442 DOI: 10.1016/j.jad.2014.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Voxel-mirrored homotopic connectivity (VMHC) has been studied in several neuropsychiatric illnesses. The inter-hemispheric interactions probably could explain the important aspects for the pathophysiology of panic disorder (PD). Therefore, we initiated this study to estimate the differences in VMHC values between the PD patients and controls. METHODS Thirty first-episode medication-naïve patients with PD and 21 controls were enrolled with age and gender controlled. All the participants received the scanning of resting-state functional magnetic resonance imaging (R-FMRI). The R-FMRI images were preprocessed and analyzed to obtain the VMHC values. The two-sample t test of VMHC data between PD patients and controls was performed. We also explored the relationship between the VMHC values and clinical characteristics. RESULTS The controls had significantly higher VMHC values than patients in the posterior cingulate cortex and precuneus (false discovery rate corrected p<0.005). The one-sided results by the unilateral hemisphere mask also confirmed that the results were indeed found in the right hemisphere. The VMHC value in the posterior cingulate cortex was also negatively correlated with panic severity. CONCLUSION The alterations of inter-hemispheric coordination in cingulate-precuneus may play a role in the pathophysiology of PD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei City, Taiwan, ROC; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.
| | - Yu-Te Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC; Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.
| |
Collapse
|