1
|
Zhang H, Feng Y, Si Y, Lu C, Wang J, Wang S, Li L, Xie W, Yue Z, Yong J, Dai S, Zhang L, Li X. Shank3 ameliorates neuronal injury after cerebral ischemia/reperfusion via inhibiting oxidative stress and inflammation. Redox Biol 2024; 69:102983. [PMID: 38064762 PMCID: PMC10755590 DOI: 10.1016/j.redox.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024] Open
Abstract
Shank3, a key molecule related to the development and deterioration of autism, has recently been found to downregulate in the murine brain after ischemia/reperfusion (I/R). Despite this discovery, however, its effects on neuronal injury and the mechanism underlying the effects remain to be clarified. To address this, in this study, based on genetically modified mice models, we revealed that the expression of Shank3 showed a time-dependent change in murine hippocampal neurons after I/R, and that conditional knockout (cko) of Shank3 in neurons resulted in aggravated neuronal injuries. The protective effects of Shank3 against oxidative stress and inflammation after I/R were achieved through direct binding STIM1 and subsequent proteasome-mediated degradation of STIM1. The STIM1 downregulation induced the phosphorylation of downstream Nrf2 Ser40, which subsequently translocated to the nucleus, and further increased the expression of antioxidant genes such as NQO1 and HO-1 in HT22 cells. In vivo, the study has further confirmed that double knockout of Shank3 and Stim1 alleviated oxidative stress and inflammation after I/R in Shank3cko mice. In conclusion, the present study has demonstrated that Shank3 interacts with STIM1 and inhibits post-I/R neuronal oxidative stress and inflammatory response via the Nrf2 pathway. This interaction can potentially contribute to the development of a promising method for I/R treatment.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Feng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanfang Si
- Department of Ophthalmology, The Eighth Medical Center, Affiliated to the Senior Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100091, China
| | - Chuanhao Lu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiquan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenyu Xie
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheming Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Yong
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Medeiros GC, Matheson M, Demo I, Reid MJ, Matheson S, Twose C, Smith GS, Gould TD, Zarate CA, Barrett FS, Goes FS. Brain-based correlates of antidepressant response to ketamine: a comprehensive systematic review of neuroimaging studies. Lancet Psychiatry 2023; 10:790-800. [PMID: 37625426 PMCID: PMC11534374 DOI: 10.1016/s2215-0366(23)00183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 08/27/2023]
Abstract
Ketamine is an effective antidepressant, but there is substantial variability in patient response and the precise mechanism of action is unclear. Neuroimaging can provide predictive and mechanistic insights, but findings are limited by small sample sizes. This systematic review covers neuroimaging studies investigating baseline (pre-treatment) and longitudinal (post-treatment) biomarkers of responses to ketamine. All modalities were included. We performed searches of five electronic databases (from inception to April 26, 2022). 69 studies were included (with 1751 participants). There was substantial methodological heterogeneity and no well replicated biomarker. However, we found convergence across some significant results, particularly in longitudinal biomarkers. Response to ketamine was associated with post-treatment increases in gamma power in frontoparietal regions in electrophysiological studies, post-treatment increases in functional connectivity within the prefrontal cortex, and post-treatment increases in the functional activation of the striatum. Although a well replicated neuroimaging biomarker of ketamine response was not identified, there are biomarkers that warrant further investigation.
Collapse
Affiliation(s)
- Gustavo C Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Malcolm Matheson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabella Demo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Claire Twose
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, NIMH-NIH, Bethesda, MD, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Department of Psychological and Brain Sciences, and Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Zavaliangos-Petropulu A, Al-Sharif NB, Taraku B, Leaver AM, Sahib AK, Espinoza RT, Narr KL. Neuroimaging-Derived Biomarkers of the Antidepressant Effects of Ketamine. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:361-386. [PMID: 36775711 PMCID: PMC11483103 DOI: 10.1016/j.bpsc.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Major depressive disorder is a highly prevalent psychiatric disorder. Despite an extensive range of treatment options, about a third of patients still struggle to respond to available therapies. In the last 20 years, ketamine has gained considerable attention in the psychiatric field as a promising treatment of depression, particularly in patients who are treatment resistant or at high risk for suicide. At a subanesthetic dose, ketamine produces a rapid and pronounced reduction in depressive symptoms and suicidal ideation, and serial treatment appears to produce a greater and more sustained therapeutic response. However, the mechanism driving ketamine's antidepressant effects is not yet well understood. Biomarker discovery may advance knowledge of ketamine's antidepressant action, which could in turn translate to more personalized and effective treatment strategies. At the brain systems level, neuroimaging can be used to identify functional pathways and networks contributing to ketamine's therapeutic effects by studying how it alters brain structure, function, connectivity, and metabolism. In this review, we summarize and appraise recent work in this area, including 51 articles that use resting-state and task-based functional magnetic resonance imaging, arterial spin labeling, positron emission tomography, structural magnetic resonance imaging, diffusion magnetic resonance imaging, or magnetic resonance spectroscopy to study brain and clinical changes 24 hours or longer after ketamine treatment in populations with unipolar or bipolar depression. Though individual studies have included relatively small samples, used different methodological approaches, and reported disparate regional findings, converging evidence supports that ketamine leads to neuroplasticity in structural and functional brain networks that contribute to or are relevant to its antidepressant effects.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Noor B Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Amber M Leaver
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Ashish K Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Randall T Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
4
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
5
|
Medeiros GC, Gould TD, Prueitt WL, Nanavati J, Grunebaum MF, Farber NB, Singh B, Selvaraj S, Machado-Vieira R, Achtyes ED, Parikh SV, Frye MA, Zarate CA, Goes FS. Blood-based biomarkers of antidepressant response to ketamine and esketamine: A systematic review and meta-analysis. Mol Psychiatry 2022; 27:3658-3669. [PMID: 35760879 PMCID: PMC9933928 DOI: 10.1038/s41380-022-01652-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
(R,S)-ketamine (ketamine) and its enantiomer (S)-ketamine (esketamine) can produce rapid and substantial antidepressant effects. However, individual response to ketamine/esketamine is variable, and there are no well-accepted methods to differentiate persons who are more likely to benefit. Numerous potential peripheral biomarkers have been reported, but their current utility is unclear. We conducted a systematic review/meta-analysis examining the association between baseline levels and longitudinal changes in blood-based biomarkers, and response to ketamine/esketamine. Of the 5611 citations identified, 56 manuscripts were included (N = 2801 participants), and 26 were compatible with meta-analytical calculations. Random-effect models were used, and effect sizes were reported as standardized mean differences (SMD). Our assessments revealed that more than 460 individual biomarkers were examined. Frequently studied groups included neurotrophic factors (n = 15), levels of ketamine and ketamine metabolites (n = 13), and inflammatory markers (n = 12). There were no consistent associations between baseline levels of blood-based biomarkers, and response to ketamine. However, in a longitudinal analysis, ketamine responders had statistically significant increases in brain-derived neurotrophic factor (BDNF) when compared to pre-treatment levels (SMD [95% CI] = 0.26 [0.03, 0.48], p = 0.02), whereas non-responders showed no significant changes in BDNF levels (SMD [95% CI] = 0.05 [-0.19, 0.28], p = 0.70). There was no consistent evidence to support any additional longitudinal biomarkers. Findings were inconclusive for esketamine due to the small number of studies (n = 2). Despite a diverse and substantial literature, there is limited evidence that blood-based biomarkers are associated with response to ketamine, and no current evidence of clinical utility.
Collapse
Affiliation(s)
- Gustavo C. Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Departments of Pharmacology and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | | | - Julie Nanavati
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael F. Grunebaum
- Columbia University Irving Medical Center and New York State Psychiatric Institute, New York City, NY, USA
| | - Nuri B. Farber
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Sudhakar Selvaraj
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Eric D. Achtyes
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.,Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Sagar V. Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Fernando S. Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Correspondence and requests for materials should be addressed to Fernando S. Goes.,
| |
Collapse
|
6
|
Bahji A, Zarate CA, Vazquez GH. Efficacy and safety of racemic ketamine and esketamine for depression: a systematic review and meta-analysis. Expert Opin Drug Saf 2022; 21:853-866. [PMID: 35231204 PMCID: PMC9949988 DOI: 10.1080/14740338.2022.2047928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Racemic ketamine and esketamine have demonstrated rapid antidepressant effects. We aimed to review the efficacy and safety of racemic and esketamine for depression. RESEARCH DESIGN AND METHODS We conducted a PRISMA-guided review for relevant randomized controlled trials of racemic or esketamine for unipolar or bipolar major depression from database inception through 2021. We conducted random-effects meta-analyses using pooled rate ratios (RRs) and Cohen's standardized mean differences (d) with their 95% confidence intervals (CI). RESULTS We found 36 studies (2903 participants, 57% female, 45.1 +/- 7.0 years). Nine trials used esketamine, while the rest used racemic ketamine. The overall study quality was high. Treatment with any form of ketamine was associated with improved response (RR=2.14; 95% CI, 1.72-2.66; I2=65%), remission (RR=1.64; 95% CI, 1.33-2.02; I2=39%), and depression severity (d=-0.63; 95% CI, -0.80 to -0.45; I2=78%) against placebo. Overall, there was no association between treatment with any form of ketamine and retention in treatment (RR=1.00; 95% CI, 0.99-1.01; I2<1%), dropouts due to adverse events (RR=1.56; 95% CI, 1.00-2.45; I2<1%), or the overall number of adverse events reported per participant (OR=2.14; 95% CI, 0.82-5.60; I2=62%) against placebo. CONCLUSIONS Ketamine and esketamine are effective, safe, and acceptable treatments for individuals living with depression.
Collapse
Affiliation(s)
- Anees Bahji
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;,British Columbia Centre on Substance Use, Vancouver, British Columbia, Canada
| | - Carlos A. Zarate
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Gustavo H. Vazquez
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Dmitrzak-Weglarz M, Szczepankiewicz A, Rybakowski J, Kapelski P, Bilska K, Skibinska M, Reszka E, Lesicka M, Jablonska E, Wieczorek E, Pawlak J. Expression Biomarkers of Pharmacological Treatment Outcomes in Women with Unipolar and Bipolar Depression. PHARMACOPSYCHIATRY 2021; 54:261-268. [PMID: 34470067 DOI: 10.1055/a-1546-9483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION This study aimed to find the expression biomarkers of pharmacological treatment response in a naturalistic hospital setting. Through gene expression profiling, we were able to find differentially-expressed genes (DEGs) in unipolar (UD) and bipolar (BD) depressed women. METHODS We performed gene expression profiling in hospitalized women with unipolar (n=24) and bipolar depression (n=32) who achieved clinical improvement after pharmacological treatment (without any restriction). To identify DEGs in peripheral blood mononuclear cells (PBMCs), we used the SurePrint G3 Microarray and GeneSpring software. RESULTS After pharmacological treatment, UD and BD varied in the number of regulated genes and ontological pathways. Also, the pathways of neurogenesis and synaptic transmission were significantly up-regulated. Our research focused on DEGs with a minimum fold change (FC) of more than 2. For both types of depression, 2 up-regulated genes, OPRM1 and CELF4 (p=0.013), were significantly associated with treatment response (defined as a 50% reduction on the Hamilton Depression Rating Scale [HDRS]). We also uncovered the SHANK3 (p=0.001) gene that is unique for UD and found that the RASGRF1 (p=0.010) gene may be a potential specific biomarker of treatment response for BD. CONCLUSION Based on transcriptomic profiling, we identified potential expression biomarkers of treatment outcomes for UD and BD. We also proved that the Ras-GEF pathway associated with long-term memory, female stress response, and treatment response modulation in animal studies impacts treatment efficacy in patients with BD. Further studies focused on the outlined genes may help provide predictive markers of treatment outcomes in UD and BD.
Collapse
Affiliation(s)
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poland
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Monika Lesicka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Ewa Jablonska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| |
Collapse
|
8
|
Zhan Y, Zhou Y, Zheng W, Liu W, Wang C, Lan X, Deng X, Xu Y, Zhang B, Ning Y. Alterations of multiple peripheral inflammatory cytokine levels after repeated ketamine infusions in major depressive disorder. Transl Psychiatry 2020; 10:246. [PMID: 32699226 PMCID: PMC7376102 DOI: 10.1038/s41398-020-00933-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence has demonstrated that inflammatory cytokines play an important role in major depressive disorder (MDD) and are associated with treatment outcomes. Few studies have explored the trajectories of multiple inflammatory cytokines after repeated ketamine infusions in MDD. In this study, we conducted a secondary analysis to investigate the impact of ketamine on the modulation of the inflammatory pathway in depression and whether this pathway contributes to the antidepressant properties of ketamine. A total of 60 patients with depression received six ketamine infusions (0.5 mg/kg) during a 12-day period. The Montgomery-Asberg Scale (MADRS) was administered, and blood samples were collected at baseline and 24 h and 14 days after the sixth infusion (days 0, 13, and 26). Plasma levels of the 19 cytokines were measured using the Luminex assay. At baseline, inflammatory cytokines were associated with the severity of depression. The concentrations of pro- and anti-inflammatory factors, including granulocyte macrophage colony-stimulating factor (GM-CSF), fractalkine, interferon gamma (IFN-γ), interleukin (IL)-10, IL-12p70, IL-17A, IL-1β, IL-2, IL-4, IL-23, IL-5, IL-6, IL-7, and tumor necrosis factor alpha (TNF-α), were downregulated after repeated ketamine administration (all p < 0.05). In addition, alterations in the levels of IL-17A (r = -0.259, p = 0.046) and IL-6 (r = -0.262, p = 0.043) were correlated with symptom improvement. A lower level of interferon-inducible T cell alpha chemoattractant (ITAC) at baseline was predictive of ketamine treatment response on day 13 according to a stepwise linear regression analysis (β = -0.296, p = 0.040). Our results suggest that the inflammatory pathway may be involved in the antidepressant effects of ketamine, which may be conducive to future treatment strategy optimization.
Collapse
Affiliation(s)
- Yanni Zhan
- grid.410737.60000 0000 8653 1072The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China ,grid.284723.80000 0000 8877 7471The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- grid.410737.60000 0000 8653 1072The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Wei Zheng
- grid.410737.60000 0000 8653 1072The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weijian Liu
- grid.410737.60000 0000 8653 1072The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China ,grid.284723.80000 0000 8877 7471The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- grid.410737.60000 0000 8653 1072The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- grid.410737.60000 0000 8653 1072The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiurong Deng
- grid.410737.60000 0000 8653 1072The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yan Xu
- grid.410737.60000 0000 8653 1072The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Bin Zhang
- grid.410737.60000 0000 8653 1072The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China. .,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
9
|
Neurobiological biomarkers of response to ketamine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:195-235. [PMID: 32616207 DOI: 10.1016/bs.apha.2020.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a field, psychiatry is undergoing an exciting paradigm shift toward early identification and intervention that will likely minimize both the burden associated with severe mental illnesses as well as their duration. In this context, the rapid-acting antidepressant ketamine has revolutionized our understanding of antidepressant response and greatly expanded the pharmacologic armamentarium for treatment-resistant depression. Efforts to characterize biomarkers of ketamine response support a growing emphasis on early identification, which would allow clinicians to identify biologically enriched subgroups with treatment-resistant depression who are more likely to benefit from ketamine therapy. This chapter presents a broad overview of a range of translational biomarkers, including those drawn from imaging and electrophysiological studies, sleep and circadian rhythms, and HPA axis/endocrine function as well as metabolic, immune, (epi)genetic, and neurotrophic biomarkers related to ketamine response. Ketamine's unique, rapid-acting properties may serve as a model to explore a whole new class of novel rapid-acting treatments with the potential to revolutionize drug development and discovery. However, it should be noted that although several of the biomarkers reviewed here provide promising insights into ketamine's mechanism of action, most studies have focused on acute rather than longer-term antidepressant effects and, at present, none of the biomarkers are ready for clinical use.
Collapse
|
10
|
Lama A, Pirozzi C, Annunziata C, Morgese MG, Senzacqua M, Severi I, Calignano A, Trabace L, Giordano A, Meli R, Mattace Raso G. Palmitoylethanolamide counteracts brain fog improving depressive-like behaviour in obese mice: Possible role of synaptic plasticity and neurogenesis. Br J Pharmacol 2020; 178:845-859. [PMID: 32346865 DOI: 10.1111/bph.15071] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE High-fat diet (HFD)-induced obesity is accompanied by metabolic and neurochemical changes that have been associated with depression. Recent studies indicate that palmitoylethanolamide (PEA) exerts metabolic effects and holds neuroprotective potential. However, studies on HFD exposure in mice which investigate the effects of PEA on monoamine system and synaptic plasticity are limited. EXPERIMENTAL APPROACH In C57Bl/6J male mice, obesity was established by HFD feeding for 12 weeks. Then, mice were treated with ultra-micronized PEA (30 mg·kg-1 daily p.o.) or vehicle for 7 weeks along with HFD. Mice receiving chow diet and vehicle served as controls. Thereafter, depressive-, anhedonic-like behaviour and cognitive performance were measured. Monoamine analyses were performed on brain areas (nucleus accumbens, Nac; prefrontal cortex, PFC; hippocampus), and markers of synaptic plasticity and neurogenesis were evaluated in hippocampus. KEY RESULTS PEA limited depressive- and anhedonic-like behaviour, and cognitive deficits induced by HFD. PEA induced an increase in 5-HT levels in PFC, and a reduction of dopamine and 5-HT turnover in Nac and PFC, respectively. Moreover, PEA increased dopamine levels in the hippocampus and PFC. At a molecular level, PEA restored brain-derived neurotrophic factor signalling pathway in hippocampus and PFC, indicating an improvement of synaptic plasticity. In particular, PEA counteracted the reduction of glutamatergic synaptic density induced by HFD in the stratum radiatum of the CA1 of the hippocampus, where it also exhibited neurogenesis-promoting abilities. CONCLUSION AND IMPLICATIONS PEA may represent an adjuvant therapy to limit depressive-like behaviours and memory deficit, affecting monoamine homeostasis, synaptic plasticity and neurogenesis. LINKED ARTICLES This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
11
|
Updates on Preclinical and Translational Neuroscience of Mood Disorders: A Brief Historical Focus on Ketamine for the Clinician. J Clin Psychopharmacol 2019; 39:665-672. [PMID: 31688400 DOI: 10.1097/jcp.0000000000001132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The development of new-generation antidepressants comes at a time of great clinical need when the global burden of depression, suicide, and other psychiatric conditions continues to increase. Our current treatment armamentarium is limited by the time delay needed for antidepressant effects and the significant number of patients who do not show an adequate response to antidepressants. The past 2 decades of psychiatric research has revealed that ketamine, known to be used only as an anesthetic and drug of abuse and to produce experimental models of psychosis, is effective at subanesthetic doses to ameliorate clinical depression. METHODS We performed a systematic search of PubMed/MEDLINE indexed reports to identify clinical and translational research done with ketamine for purposes of treating depression. RESULTS We will first present the rationale for investigating ketamine and other N-methyl-D-aspartate receptor antagonists as a novel class of glutamate system targeting antidepressants. We will summarize putative molecular pathways underlying mood disorders and outline a brief history of investigation into ketamine as a treatment for depression. Recent clinical/translational evidence of ketamine's rapid-acting antidepressant mechanism will be critically reviewed in detail. CONCLUSIONS At the end of this review, we will opine on the role of ketamine and derivatives in clinical practice.
Collapse
|
12
|
Verdonk F, Petit AC, Abdel-Ahad P, Vinckier F, Jouvion G, de Maricourt P, De Medeiros GF, Danckaert A, Van Steenwinckel J, Blatzer M, Maignan A, Langeron O, Sharshar T, Callebert J, Launay JM, Chrétien F, Gaillard R. Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine. Brain Behav Immun 2019; 81:361-373. [PMID: 31255681 DOI: 10.1016/j.bbi.2019.06.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder is a complex multifactorial condition with a so far poorly characterized underlying pathophysiology. Consequently, the available treatments are far from satisfactory as it is estimated that up to 30% of patients are resistant to conventional treatment. Recent comprehensive evidence has been accumulated which suggests that inflammation may be implied in the etiology of this disease. Here we investigated ketamine as an innovative treatment strategy due to its immune-modulating capacities. In a murine model of LPS-induced depressive-like behavior we demonstrated that a single dose of ketamine restores the LPS-induced depressive-like alterations. These behavioral effects are associated with i/ a reversal of anxiety and reduced self-care, ii/ a decrease in parenchymal cytokine production, iii/ a modulation of the microglial reactivity and iv/ a decrease in microglial quinolinic acid production that is correlated with plasmatic peripheral production. In a translational approach, we show that kynurenic acid to quinolinic acid ratio is a predictor of ketamine response in treatment-resistant depressed patients and that the reduction in quinolinic acid after a ketamine infusion is a predictor of the reduction in MADRS score. Our results suggest that microglia is a key therapeutic target and that quinolinic acid is a biomarker of ketamine response in major depressive disorder.
Collapse
Affiliation(s)
- Franck Verdonk
- Institut Pasteur, Experimental Neuropathology Unit, Infection and Epidemiology Department, Paris, France; Department of Anaesthesiology and Intensive Care, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Sorbonne University, Paris, France
| | - Anne-Cécile Petit
- Institut Pasteur, Experimental Neuropathology Unit, Infection and Epidemiology Department, Paris, France; Service Hospitalo Universitaire, Centre Hospitalier Sainte-Anne, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Pierre Abdel-Ahad
- Service Hospitalo Universitaire, Centre Hospitalier Sainte-Anne, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; INSERM, Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de psychiatrie et neurosciences, CPN U894, Institut de psychiatrie (GDR 3557), Paris, France
| | - Fabien Vinckier
- Service Hospitalo Universitaire, Centre Hospitalier Sainte-Anne, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; INSERM, Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de psychiatrie et neurosciences, CPN U894, Institut de psychiatrie (GDR 3557), Paris, France
| | - Gregory Jouvion
- Institut Pasteur, Experimental Neuropathology Unit, Infection and Epidemiology Department, Paris, France
| | - Pierre de Maricourt
- Service Hospitalo Universitaire, Centre Hospitalier Sainte-Anne, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; INSERM, Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de psychiatrie et neurosciences, CPN U894, Institut de psychiatrie (GDR 3557), Paris, France
| | | | - Anne Danckaert
- Institut Pasteur, Experimental Neuropathology Unit, Infection and Epidemiology Department, Paris, France; Institut Pasteur, UtechS Photonic BioImaging (Imagopole) - C2RT, Paris, France
| | - Juliette Van Steenwinckel
- Inserm, U1141 Paris, France; Paris Diderot University, Sorbonne Paris Cité, UMRS 1141, F-75019 Paris, France
| | - Michael Blatzer
- Institut Pasteur, Experimental Neuropathology Unit, Infection and Epidemiology Department, Paris, France
| | - Anna Maignan
- Service Universitaire de Psychiatrie d'adultes, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Olivier Langeron
- Institut Pasteur, Experimental Neuropathology Unit, Infection and Epidemiology Department, Paris, France; Sorbonne University, Paris, France; Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Tarek Sharshar
- Institut Pasteur, Experimental Neuropathology Unit, Infection and Epidemiology Department, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; Department of Intensive Care, Centre Hospitalier Sainte Anne, Paris, France
| | - Jacques Callebert
- Service de Biochimie et Biologie Moléculaire, INSERM U942, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Marie Launay
- Service de Biochimie et Biologie Moléculaire, INSERM U942, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fabrice Chrétien
- Institut Pasteur, Experimental Neuropathology Unit, Infection and Epidemiology Department, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; Laboratoire hospitalo-universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France.
| | - Raphael Gaillard
- Institut Pasteur, Experimental Neuropathology Unit, Infection and Epidemiology Department, Paris, France; Service Hospitalo Universitaire, Centre Hospitalier Sainte-Anne, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
13
|
Jacobson GM, Voss LJ, Klockars A, Bird S, Dimitrov I, Denny WA, Olszewski PK, Sleigh JW, Harvey MG. Transcriptional changes in response to ketamine ester-analogs SN 35210 and SN 35563 in the rat brain. BMC Genomics 2019; 20:281. [PMID: 30971208 PMCID: PMC6458767 DOI: 10.1186/s12864-019-5649-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Background Ketamine ester analogs, SN 35210 and SN 35563, demonstrate different pharmacological profiles to ketamine in animal models. Both confer hypnosis with predictably rapid offset yet, paradoxically, SN35563 induces a prolonged anti-nociceptive state. To explore underlying mechanisms, broad transcriptome changes were measured and compared across four relevant target regions of the rat brain. Results SN 35563 produced large-scale alteration of gene expression in the Basolateral Amygdala (BLA) and Paraventricular Nucleus of the Thalamus (PVT), in excess of 10x that induced by ketamine and SN 35210. A smaller and quantitatively similar number of gene changes were observed in the Insula (INS) and Nucleus Accumbens (ACB) for all three agents. In the BLA and PVT, SN 35563 caused enrichment for gene pathways related to the function and structure of glutamatergic synapses in respect to: release of neurotransmitter, configuration of postsynaptic AMPA receptors, and the underlying cytoskeletal scaffolding and alignment. Conclusion The analgesic ketamine ester analog SN 35563 induces profound large-scale changes in gene expression in key pain-related brain regions reflecting its unique prolonged pharmacodynamic profile. Electronic supplementary material The online version of this article (10.1186/s12864-019-5649-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregory M Jacobson
- Faculty of Science and Engineering, The University of Waikato, Hillcrest, Hamilton, 3216, New Zealand.
| | - Logan J Voss
- Waikato District Health Board, Pembroke Street, Hamilton, 3204, New Zealand
| | - Anica Klockars
- Faculty of Science and Engineering, The University of Waikato, Hillcrest, Hamilton, 3216, New Zealand
| | - Steve Bird
- Faculty of Science and Engineering, The University of Waikato, Hillcrest, Hamilton, 3216, New Zealand
| | - Ivo Dimitrov
- The University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - William A Denny
- The University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Pawel K Olszewski
- Faculty of Science and Engineering, The University of Waikato, Hillcrest, Hamilton, 3216, New Zealand
| | - James W Sleigh
- Waikato District Health Board, Pembroke Street, Hamilton, 3204, New Zealand
| | - Martyn G Harvey
- Waikato District Health Board, Pembroke Street, Hamilton, 3204, New Zealand
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Poor treatment response is a hallmark of major depressive disorder. To tackle this problem, recent neuroimaging studies have sought to characterize antidepressant response in terms of pretreatment differences in intrinsic functional brain networks. Our aim is to review recent studies that predict antidepressant response using intrinsic network connectivity. We discuss current methodological limitations and directions for future antidepressant biomarker studies. RECENT FINDINGS Functional connectivity stemming from the subgenual and rostral anterior cingulate has shown particular consistency in predicting antidepressant response. Differences in this connectivity may prove fruitful in differentiating treatment responders to many antidepressant interventions. Future biomarker studies should integrate biological MDD subtypes to address the disorder's inherent clinical heterogeneity. These clinical and scientific advancements have the potential to address this population marked by limited treatment response. Methodological considerations, including patient selection, response criteria, and model overfitting, will require future investigation to ensure that biomarkers generalize for prospective prediction of treatment response.
Collapse
Affiliation(s)
- Katharine Dunlop
- Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th Street, Box 240, New York, NY, 10021, USA.
| | - Aleksandr Talishinsky
- 000000041936877Xgrid.5386.8Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th Street, Box 240, New York, NY 10021 USA
| | - Conor Liston
- 000000041936877Xgrid.5386.8Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th Street, Box 240, New York, NY 10021 USA ,000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medicine, New York, NY USA
| |
Collapse
|
15
|
Mora C, Zonca V, Riva MA, Cattaneo A. Blood biomarkers and treatment response in major depression. Expert Rev Mol Diagn 2018; 18:513-529. [DOI: 10.1080/14737159.2018.1470927] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cristina Mora
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Valentina Zonca
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King’s College, London, UK
| |
Collapse
|
16
|
Romeo B, Choucha W, Fossati P, Rotge JY. Facteurs prédictifs de la réponse antidépressive à la kétamine dans les épisodes dépressifs majeurs résistants : revue de la littérature. Encephale 2017; 43:354-362. [DOI: 10.1016/j.encep.2016.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/26/2022]
|
17
|
Kiraly DD, Horn SR, Van Dam NT, Costi S, Schwartz J, Kim-Schulze S, Patel M, Hodes GE, Russo SJ, Merad M, Iosifescu DV, Charney DS, Murrough JW. Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry 2017; 7:e1065. [PMID: 28323284 PMCID: PMC5416674 DOI: 10.1038/tp.2017.31] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
A subset of patients with depression have elevated levels of inflammatory cytokines, and some studies demonstrate interaction between inflammatory factors and treatment outcome. However, most studies focus on only a narrow subset of factors in a patient sample. In the current study, we analyzed broad immune profiles in blood from patients with treatment-resistant depression (TRD) at baseline and following treatment with the glutamate modulator ketamine. Serum was analyzed from 26 healthy control and 33 actively depressed TRD patients free of antidepressant medication, and matched for age, sex and body mass index. All subjects provided baseline blood samples, and TRD subjects had additional blood draw at 4 and 24 h following intravenous infusion of ketamine (0.5 mg kg-1). Samples underwent multiplex analysis of 41 cytokines, chemokines and growth factors using quantitative immunoassay technology. Our a priori hypothesis was that TRD patients would show elevations in canonical pro-inflammatory cytokines; analyses demonstrated significant elevation of the pro-inflammatory cytokine interleukin-6. Further exploratory analyses revealed significant regulation of four additional soluble factors in patients with TRD. Several cytokines showed transient changes in level after ketamine, but none correlated with treatment response. Low pretreatment levels of fibroblast growth factor 2 were associated with ketamine treatment response. In sum, we found that patients with TRD demonstrate a unique pattern of increased inflammatory mediators, chemokines and colony-stimulating factors, providing support for the immune hypothesis of TRD. These patterns suggest novel treatment targets for the subset of patients with TRD who evidence dysregulated immune functioning.
Collapse
Affiliation(s)
- D D Kiraly
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S R Horn
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N T Van Dam
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Costi
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Schwartz
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Kim-Schulze
- The Immunology Institute, Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Patel
- The Immunology Institute, Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G E Hodes
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S J Russo
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Merad
- The Immunology Institute, Human Immune Monitoring Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D V Iosifescu
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D S Charney
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J W Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA. E-mail:
| |
Collapse
|
18
|
Pennybaker SJ, Niciu MJ, Luckenbaugh DA, Zarate CA. Symptomatology and predictors of antidepressant efficacy in extended responders to a single ketamine infusion. J Affect Disord 2017; 208:560-566. [PMID: 27839782 PMCID: PMC5154889 DOI: 10.1016/j.jad.2016.10.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 10/22/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Antidepressant response to a single subanesthetic dose infusion of the glutamatergic modulator ketamine is transient in most depressed patients; however, a minority continue to experience an extended response. This study examined depressive symptoms and potential clinical predictors of extended response to ketamine in subjects with mood disorders. METHODS Subjects were diagnosed with either major depressive disorder (MDD) or bipolar depression. All subjects were treatment-resistant and experiencing a major depressive episode of at least moderate severity. MDD subjects were unmedicated and those with bipolar depression were receiving therapeutic-dose lithium or valproate. All subjects received a single 0.5mg/kg ketamine infusion. Data were collected pre-infusion (baseline) and at days one, 14, and 28 post-infusion. RESULTS Twelve of 93 (12.9%) participants continued to meet response criteria (50% reduction in Montgomery-Asberg Depression Rating Scale (MADRS) score) at two weeks. All depressive symptoms assessed by the MADRS were improved at two weeks in ketamine responders except for sleep duration/depth. A positive family history of alcohol use disorder in a first-degree relative (FHP) and greater dissociation during the infusion were associated with better antidepressant response at two weeks. Improved measures of apparent sadness, reported sadness, inability to feel, and difficulty concentrating at day 1 correlated most strongly with antidepressant effects at two weeks. LIMITATIONS Post-hoc design, small sample size, diagnostic heterogeneity. CONCLUSIONS Static (FHP) and dynamic (improved depressive symptoms) factors may be clinically useful in predicting whether a patient will have an extended response to ketamine.
Collapse
Affiliation(s)
- Steven J Pennybaker
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA; The Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, USA
| | - Mark J Niciu
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA
| | - David A Luckenbaugh
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA
| | - Carlos A Zarate
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Zhang C, Wu Z, Hong W, Peng D, Fang Y. Evaluating the association between the SHANK3 gene and bipolar disorder. Psychiatry Res 2016; 244:284-8. [PMID: 27512916 DOI: 10.1016/j.psychres.2016.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/31/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies have shown that the genes involved in synaptic density and plasticity were downregulated in bipolar disorder (BD) postmortem brains. The SHANK3 (SH3 and multiple ankyrin repeat domain 3) protein is a scaffold protein enriched in the postsynaptic density of excitatory synapses, and recent findings were suggestive of a possible role of SHANK3 in the development of BD. In this study, we aimed to evaluate the genetic association between the gene encoding SHANK3 (SHANK3) and BD in Han Chinese. METHODS Ten variants in SHANK3 were genotyped among 1482 individuals with or without BD. We measured the mRNA expression level of SHANK3 in patients with BD and controls. We then performed an eQTL analysis. RESULTS In our sample set, there were no significant differences in allele, genotype and haplotype frequencies between the BD and control groups. Our results showed no significant difference in the level of peripheral SHANK3 expression between the BD patients and healthy controls. Further eQTL analysis showed that rs9616915 has functional effect on SHANK3 expression in the hippocampus. CONCLUSION This study does not provide evidence for a major role of SHANK3 in the pathogenesis of BD.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Hong
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Cui X, Niu W, Kong L, He M, Jiang K, Chen S, Zhong A, Li W, Lu J, Zhang L. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomark Med 2016; 10:943-52. [PMID: 27404501 DOI: 10.2217/bmm-2016-0130] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: This study aimed to determine whether circular RNA (circRNA) molecules in peripheral blood mononuclear cells (PBMCs) could be used as novel non-invasive biomarkers for major depressive disorder (MDD). Materials & methods: Differentially expressed circRNAs were screened using an Arraystar Human CircRNA Array (which includes 13,617 human circRNAs) and qRT-PCR. Thirty MDD patients were randomly selected to retest the circRNA levels after 4-week and 8-week antidepressant regimens. Results: Four differentially expressed circRNAs were identified between MDD patients and controls, and only down-regulated hsa_circRNA_103636 was significantly altered after the 8-week treatment in MDD patients. Conclusion: These results suggest that altered expression of hsa_circRNA_103636 in PBMCs is a potential novel biomarker for the diagnosis and treatment of MDD.
Collapse
Affiliation(s)
- Xuelian Cui
- Department of Health Care, Changzhou Maternal & Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, People's Republic of China
| | - Wei Niu
- Department of Rehabilitation, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Lingming Kong
- Prevention & Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Mingjun He
- Prevention & Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Kunhong Jiang
- Prevention & Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Shengdong Chen
- Department of Neurology, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Aifang Zhong
- Clinical Laboratory, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| | - Wanshuai Li
- Gopath Diagnostic Laboratory Co Ltd, No. 801, Changzhou, People's Republic of China
| | - Jim Lu
- Gopath Diagnostic Laboratory Co Ltd, No. 801, Changzhou, People's Republic of China
- Gopath Laboratories LLC, 1351 Barclay Blvd, Buffalo Grove, USA
| | - Liyi Zhang
- Prevention & Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, People's Republic of China
| |
Collapse
|
21
|
Vasavada MM, Leaver AM, Espinoza RT, Joshi SH, Njau SN, Woods RP, Narr KL. Structural connectivity and response to ketamine therapy in major depression: A preliminary study. J Affect Disord 2016; 190:836-841. [PMID: 26630613 PMCID: PMC4685004 DOI: 10.1016/j.jad.2015.11.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/30/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ketamine elicits an acute antidepressant effect in patients with major depressive disorder (MDD). Here, we used diffusion imaging to explore whether regional differences in white matter microstructure prior to treatment may predict clinical response 24h following ketamine infusion in 10 MDD patients. METHODS FSL's Tract-Based Spatial Statistics (TBSS) established voxel-level differences in fractional anisotropy (FA) between responders (patients showing >50% improvement in symptoms 24h post-infusion) and non-responders in major white matter pathways. Follow-up regions-of-interest (ROI) analyses examined differences in FA and radial (RD), axial (AD) and mean diffusivity (MD) between responders and non-responders and 15 age- and sex-matched controls, with groups compared pairwise. RESULTS Whole brain TBSS (p<0.05, corrected) and confirmatory tract-based regions-of-interest analyses showed larger FA values in the cingulum and forceps minor in responders compared to non-responders; complementary decreases in RD occurred in the cingulum (p<0.05). Only non-responders differed from controls showing decreased FA in the forceps minor, increased RD in the cingulum and forceps minor, and increased MD in the forceps minor (p<0.05). LIMITATIONS Non-responders showed an earlier age of onset and longer current depressive episode than responders. Though these factors did not interact with diffusion metrics, results may be impacted by the limited sample size. CONCLUSIONS Though findings are considered preliminary, significant differences in FA, RD and MD shown in non-responders compared to responders and controls in fronto-limbic and ventral striatal pathways suggest that the structural architecture of specific functional networks mediating emotion may predict ketamine response in MDD.
Collapse
Affiliation(s)
- Megha M Vasavada
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Amber M Leaver
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Randall T Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Shantanu H Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie N Njau
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA,Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Sałat K, Siwek A, Starowicz G, Librowski T, Nowak G, Drabik U, Gajdosz R, Popik P. Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor. Neuropharmacology 2015; 99:301-7. [DOI: 10.1016/j.neuropharm.2015.07.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/07/2015] [Accepted: 07/29/2015] [Indexed: 01/15/2023]
|
23
|
Costi S, Van Dam NT, Murrough JW. Current Status of Ketamine and Related Therapies for Mood and Anxiety Disorders. Curr Behav Neurosci Rep 2015; 2:216-225. [PMID: 26783510 DOI: 10.1007/s40473-015-0052-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide. Despite a plethora of established treatments, less than one-third of individuals with MDD achieve stable remission of symptoms. Given limited efficacy and significant lag time to onset of therapeutic action among conventional antidepressants, interest has shifted to treatments that act outside of the monoamine neurotransmitter systems (e.g., serotonin, norepinephrine, and dopamine). Preclinical and clinical research on the glutamate system has been particularly promising in this regard. Accumulating evidence shows support for a rapid antidepressant effect of ketamine - a glutamate N-methyl-d-aspartate (NMDA) receptor antagonist. The present article reviews the pharmacology, safety, and efficacy of ketamine as a novel therapeutic agent for mood and anxiety disorders. The majority of clinical trials using ketamine have been conducted in patients with treatment resistant forms of MDD; recent work has begun to examine ketamine in bipolar disorder, posttraumatic stress disorder, and obsessive-compulsive disorder. The impact of ketamine on suicidal ideation is also discussed. The current status and prospects for the identification of human biomarkers of ketamine treatment response and hurdles to treatment development are considered. We conclude by considering modulators of the glutamate system other than ketamine currently in development as potential novel treatment strategies for mood and anxiety disorders.
Collapse
Affiliation(s)
- Sara Costi
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicholas T Van Dam
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James W Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
24
|
Douglas SR, Shenoda BB, Qureshi RA, Sacan A, Alexander GM, Perreault M, Barrett JE, Aradillas-Lopez E, Schwartzman RJ, Ajit SK. Analgesic Response to Intravenous Ketamine Is Linked to a Circulating microRNA Signature in Female Patients With Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2015; 16:814-24. [PMID: 26072390 DOI: 10.1016/j.jpain.2015.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/04/2015] [Accepted: 05/28/2015] [Indexed: 11/15/2022]
Abstract
Although ketamine is beneficial in treating complex regional pain syndrome (CRPS), a subset of patients respond poorly to therapy. We investigated treatment-induced microRNA (miRNA) changes and their predictive validity in determining treatment outcome by assessing miRNA changes in whole blood from patients with CRPS. Blood samples from female patients were collected before and after 5 days of intravenous ketamine administration. Seven patients were responders and 6 were poor responders. Differential miRNA expression was observed in whole blood before and after treatment. In addition, 33 miRNAs differed between responders and poor responders before therapy, suggesting the predictive utility of miRNAs as biomarkers. Investigation of the mechanistic significance of hsa-miR-548d-5p downregulation in poor responders showed that this miRNA can downregulate UDP-glucuronosyltransferase UGT1A1 mRNA. Poor responders had a higher conjugated/unconjugated bilirubin ratio, indicating increased UGT1A1 activity. We propose that lower pretreatment levels of miR-548d-5p may result in higher UDP-GT activity, leading to higher levels of inactive glucuronide conjugates, thereby minimizing the therapeutic efficacy of ketamine in poor responders. Differences in miRNA signatures can provide molecular insights distinguishing responders from poor responders. Extending this approach to other treatment and outcome assessments might permit stratification of patients for maximal therapeutic outcome. Perspective: This study suggests the usefulness of circulating miRNAs as potential biomarkers. Assessing miRNA signatures before and after treatment demonstrated miRNA alterations from therapy; differences in miRNA signature in responders and poor responders before therapy indicate prognostic value. Mechanistic studies on altered miRNAs can provide new insights into disease.
Collapse
Affiliation(s)
- Sabrina R Douglas
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Botros B Shenoda
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rehman A Qureshi
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Ahmet Sacan
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Guillermo M Alexander
- Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Marielle Perreault
- Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - James E Barrett
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Robert J Schwartzman
- Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Seena K Ajit
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Iadarola ND, Niciu MJ, Richards EM, Vande Voort JL, Ballard ED, Lundin NB, Nugent AC, Machado-Vieira R, Zarate CA. Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther Adv Chronic Dis 2015; 6:97-114. [PMID: 25954495 DOI: 10.1177/2040622315579059] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Current pharmacotherapies for major depressive disorder (MDD) and bipolar depression (BDep) have a distinct lag of onset that can generate great distress and impairment in patients. Furthermore, as demonstrated by several real-world effectiveness trials, their efficacy is limited. All approved antidepressant medications for MDD primarily act through monoaminergic mechanisms, agonists or antagonists with varying affinities for serotonin, norepinephrine and dopamine. The glutamate system has received much attention in recent years as an avenue for developing novel therapeutics. A single subanesthetic dose infusion of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has been shown to have rapid and potent antidepressant effects in treatment-resistant MDD and BDep. In a reverse translational framework, ketamine's clinical efficacy has inspired many preclinical studies to explore glutamatergic mechanisms of antidepressant action. These studies have revealed enhanced synaptic plasticity/synaptogenesis via numerous molecular and cellular mechanisms: release of local translational inhibition of brain-derived neurotrophic factor and secretion from dendritic spines, mammalian target of rapamycin activation and glycogen synthase kinase-3 inhibition. Current efforts are focused on extending ketamine's antidepressant efficacy, uncovering the neurobiological mechanisms responsible for ketamine's antidepressant activity in biologically enriched subgroups, and identifying treatment response biomarkers to personalize antidepressant selection. Other NMDA receptor antagonists have been studied both preclinically and clinically, which have revealed relatively modest antidepressant effects compared with ketamine but potentially other favorable characteristics, for example, decreased dissociative or psychotomimetic effects; therefore, there is great interest in developing novel glutamatergic antidepressants with greater target specificity and/or decreased adverse effects.
Collapse
Affiliation(s)
- Nicolas D Iadarola
- National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Bethesda, MD, USA
| | - Mark J Niciu
- National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Bethesda, MD, USA
| | - Erica M Richards
- National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Bethesda, MD, USA
| | - Jennifer L Vande Voort
- National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Bethesda, MD, USA
| | - Elizabeth D Ballard
- National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Bethesda, MD, USA
| | - Nancy B Lundin
- National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Bethesda, MD, USA
| | - Allison C Nugent
- National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Bethesda, MD, USA
| | - Rodrigo Machado-Vieira
- National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Bethesda, MD, USA
| | - Carlos A Zarate
- National Institutes of Health/National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, 10 Center Dr., Building 10/CRC, Room 7-5545, Bethesda, MD 20892, USA
| |
Collapse
|