1
|
Yang P, Nie T, Sun X, Xu L, Ma C, Wang F, Long L, Chen J. Wheel-Running Exercise Alleviates Anxiety-Like Behavior via Down-Regulating S-Nitrosylation of Gephyrin in the Basolateral Amygdala of Male Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400205. [PMID: 38965798 PMCID: PMC11425869 DOI: 10.1002/advs.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Physical exercise has beneficial effect on anxiety disorders, but the underlying molecular mechanism remains largely unknown. Here, it is demonstrated that physical exercise can downregulate the S-nitrosylation of gephyrin (SNO-gephyrin) in the basolateral amygdala (BLA) to exert anxiolytic effects. It is found that the level of SNO-gephyrin is significantly increased in the BLA of high-anxiety rats and a downregulation of SNO-gephyrin at cysteines 212 and 284 produced anxiolytic effect. Mechanistically, inhibition of SNO-gephyrin by either Cys212 or Cys284 mutations increased the surface expression of GABAAR γ2 and the subsequent GABAergic neurotransmission, exerting anxiolytic effect in male rats. On the other side, overexpression of neuronal nitric oxide synthase in the BLA abolished the anxiolytic-like effects of physical exercise. This study reveals a key role of downregulating SNO-gephyrin in the anxiolytic effects of physical exercise, providing a new explanation for protein post-translational modifications in the brain after exercise.
Collapse
Affiliation(s)
- Ping‐Fen Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
| | - Tai‐Lei Nie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
| | - Xia‐Nan Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
| | - Lan‐Xin Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430030China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
- Hubei Shizhen LaboratoryWuhan430030China
| | - Li‐Hong Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
- Hubei Shizhen LaboratoryWuhan430030China
| | - Jian‐Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesDepartment of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhan430030China
- Hubei Shizhen LaboratoryWuhan430030China
| |
Collapse
|
2
|
Yang Y, Li Y, Wang WD, He S, Yuan TF, Hu J, Peng DH. Altered N-linked glycosylation in depression: A pre-clinical study. J Affect Disord 2024; 359:333-341. [PMID: 38801920 DOI: 10.1016/j.jad.2024.05.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Neuroimmune plays an important role in major depressive disorders (MDD). N-linked protein glycosylation (NLG) might contribute to depression by regulating the neuroinflammatory response. As microglia is the main executor of neuroimmune function in the central neural system (CNS), targeting the process of N-linked protein glycosylation of microglia in the mice used for studying depression might potentially offer new avenues for the strategy for MDD. METHODS The chronic unpredictable mild stress (CUMS) mouse model was established for the whole brain microglia isolating. Then, RNA samples of microglia were extracted for transcriptome sequencing and mRNA analysis. Immunofluorescence (IF) was used to identify the expression level of NLG-related enzyme, B4galt1, in microglia. RESULTS The data showed that NLG was positively related to depression. Moreover, the NLG-related gene, B4galt1 increased expression in the microglia of CUMS mice. Then, the inhibition of NLG reversed the depressive behavior in CUMS mice. The expression level of B4galt1 in CUMS mice was upregulating following the NLG-inhibitor treatment. Similar results haven't been observed in neurons. Information obtained from these experiments showed increasing expression of B4galt1 in microglia following depressive-like behaviors. CONCLUSIONS These findings indicate that NLG in microglia is associated with MDD, and suggest that therapeutically targeting NLG might be an effective strategy for depression. LIMITATIONS How to modulate the B4galt1 or NLG pathways in microglia efficiently and economically request new technologies.
Collapse
Affiliation(s)
- Yao Yang
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Di Wang
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dai-Hui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Łapińska L, Krentowska A, Kondraciuk M, Chlabicz M, Waszkiewicz N, Kamiński K, Kowalska I. The association between plasma N-terminal pro-brain natriuretic peptide concentration and metabolic disturbances in women with depressive symptoms. Psychoneuroendocrinology 2023; 158:106409. [PMID: 37801752 DOI: 10.1016/j.psyneuen.2023.106409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The relationship between brain natriuretic peptides and depression was studied in patients with cardiovascular diseases (CVD), but the data in people without CVD are limited. Metabolic disturbances can be associated with natriuretic peptides' levels. The study aimed to assess serum N-terminal pro-brain natriuretic peptide (NT-proBNP) level in women with depressive symptoms and its relationship with metabolic disturbances. METHODS The analysis included 347 women (20-60 years old) from Bialystok PLUS cohort study: 98 with depressive symptoms and 249 controls. Clinical examination, oral glucose tolerance test (OGTT) and assessment of lipid, sex hormone binding globulin (SHBG) and NT-proBNP concentrations in the blood were performed. The participants completed Beck Depression Inventory questionnaire. RESULTS Metabolic syndrome was more frequent in the group of women with depressive symptoms compared to women without depressive symptoms. Women with depressive symptoms had lower NT-proBNP level than the control group - 45.88 (27.80-67.04) vs 56.49 (32.42-94.25) pg/mL, p = 0.027. Multiple linear regression analysis of all women showed that NT-proBNP level was reversely associated with the presence of depressive symptoms, waist circumference and heart rate and positively connected with age. In the group of women with depressive symptoms, we observed negative correlations between NT-proBNP level and insulin concentration at 60 min of OGTT, diastolic blood pressure and a positive correlation with SHBG. CONCLUSIONS NT-proBNP level is decreased in women with depressive symptoms, which might be connected with metabolic disturbances in this group.
Collapse
Affiliation(s)
- Lidia Łapińska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland.
| | - Anna Krentowska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Kondraciuk
- Population Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Chlabicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | | | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Cerebrospinal Fluid Proteome Alterations Associated with Neuropsychiatric Symptoms in Cognitive Decline and Alzheimer's Disease. Cells 2022; 11:cells11061030. [PMID: 35326481 PMCID: PMC8947516 DOI: 10.3390/cells11061030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Although neuropsychiatric symptoms (NPS) are common and severely affect older people with cognitive decline, little is known about their underlying molecular mechanisms and relationships with Alzheimer’s disease (AD). The aim of this study was to identify and characterize cerebrospinal fluid (CSF) proteome alterations related to NPS. In a longitudinally followed-up cohort of subjects with normal cognition and patients with cognitive impairment (MCI and mild dementia) from a memory clinic setting, we quantified a panel of 790 proteins in CSF using an untargeted shotgun proteomic workflow. Regression models and pathway enrichment analysis were used to investigate protein alterations related to NPS, and to explore relationships with AD pathology and cognitive decline at follow-up visits. Regression analysis selected 27 CSF proteins associated with NPS. These associations were independent of the presence of cerebral AD pathology (defined as CSF p-tau181/Aβ1−42 > 0.0779, center cutoff). Gene ontology enrichment showed abundance alterations of proteins related to cell adhesion, immune response, and lipid metabolism, among others, in relation to NPS. Out of the selected proteins, three were associated with accelerated cognitive decline at follow-up visits after controlling for possible confounders. Specific CSF proteome alterations underlying NPS may both represent pathophysiological processes independent from AD and accelerate clinical disease progression.
Collapse
|
6
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
7
|
Lybech LKM, Calabró M, Briuglia S, Drago A, Crisafulli C. Suicide Related Phenotypes in a Bipolar Sample: Genetic Underpinnings. Genes (Basel) 2021; 12:genes12101482. [PMID: 34680877 PMCID: PMC8535342 DOI: 10.3390/genes12101482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Suicide in Bipolar Disorder (BD) is a relevant clinical concern. Genetics may shape the individual risk for suicide behavior in BD, together with known clinical factors. The lack of consistent replication in BD may be associated with its multigenetic component. In the present contribution we analyzed a sample of BD individuals (from STEP-BD database) to identify the genetic variants potentially associated with three different suicide-related phenotypes: (1) a feeling that the life was not worth living; (2) fantasies about committing a violent suicide; (3) previous attempted suicide. The sample under analysis included 1115 BD individuals. None of the SNPs reached genome-wide significance. However, a trend of association was evidenced for rs2767403, an intron variant of AOPEP gene, in association with phenotype #1 (p = 5.977 × 10−6). The molecular pathway analysis showed a significant enrichment in all the investigated phenotypes on pathways related to post synaptic signaling, neurotransmission and neurodevelopment. Further, NOTCH signaling or the γ-aminobutyric acid (GABA)-ergic signaling were found to be associated with specific suicide-related phenotypes. The present investigation contributes to the hypothesis that the genetic architecture of suicide behaviors in BD is related to alteration of entire pathways rather than single genes. In particular, our molecular pathway analysis points on some specific molecular events that could be the focus of further research in this field.
Collapse
Affiliation(s)
- Line K. M. Lybech
- Unit for Psychiatric Research, Psychiatry, Aalborg University Hospital, DK-9100 Aalborg, Denmark;
| | - Marco Calabró
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (S.B.)
| | - Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (S.B.)
| | - Antonio Drago
- Unit for Psychiatric Research, Psychiatry, Aalborg University Hospital, DK-9100 Aalborg, Denmark;
- Correspondence: (A.D.); (C.C.); Tel.: +45-97-64-30-00 (A.D.); +39-(0)9-0221-3373 (C.C.)
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (M.C.); (S.B.)
- Correspondence: (A.D.); (C.C.); Tel.: +45-97-64-30-00 (A.D.); +39-(0)9-0221-3373 (C.C.)
| |
Collapse
|
8
|
Oommen AM, Cunningham S, O'Súilleabháin PS, Hughes BM, Joshi L. An integrative network analysis framework for identifying molecular functions in complex disorders examining major depressive disorder as a test case. Sci Rep 2021; 11:9645. [PMID: 33958659 PMCID: PMC8102631 DOI: 10.1038/s41598-021-89040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/14/2021] [Indexed: 12/02/2022] Open
Abstract
In addition to the psychological depressive phenotype, major depressive disorder (MDD) patients are also associated with underlying immune dysregulation that correlates with metabolic syndrome prevalent in depressive patients. A robust integrative analysis of biological pathways underlying the dysregulated neural connectivity and systemic inflammatory response will provide implications in the development of effective strategies for the diagnosis, management and the alleviation of associated comorbidities. In the current study, focusing on MDD, we explored an integrative network analysis methodology to analyze transcriptomic data combined with the meta-analysis of biomarker data available throughout public databases and published scientific peer-reviewed articles. Detailed gene set enrichment analysis and complex protein–protein, gene regulatory and biochemical pathway analysis has been undertaken to identify the functional significance and potential biomarker utility of differentially regulated genes, proteins and metabolite markers. This integrative analysis method provides insights into the molecular mechanisms along with key glycosylation dysregulation underlying altered neutrophil-platelet activation and dysregulated neuronal survival maintenance and synaptic functioning. Highlighting the significant gap that exists in the current literature, the network analysis framework proposed reduces the impact of data gaps and permits the identification of key molecular signatures underlying complex disorders with multiple etiologies such as within MDD and presents multiple treatment options to address their molecular dysfunction.
Collapse
Affiliation(s)
- Anup Mammen Oommen
- Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Stephen Cunningham
- Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, Galway, Ireland. .,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.
| | - Páraic S O'Súilleabháin
- Department of Psychology, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Brian M Hughes
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, Galway, Ireland. .,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
9
|
Zhang M, Li A, Yang Q, Li J, Wang L, Liu X, Huang Y, Liu L. Beneficial Effect of Alkaloids From Sophora alopecuroides L. on CUMS-Induced Depression Model Mice via Modulating Gut Microbiota. Front Cell Infect Microbiol 2021; 11:665159. [PMID: 33954123 PMCID: PMC8089385 DOI: 10.3389/fcimb.2021.665159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
It was recently shown that the gut microbiota of both depression patients and depression model animals is significantly altered, suggesting that gut microbes are closely related to depression. Here, we investigated the effects of Sophora alopecuroides L.-derived alkaloids on the gut microbiota of mice with depression-like behaviors. We first established a mouse model of depression via chronic unpredictable mild stress (CUMS) and detected changes in depression-like behaviors and depression-related indicators. Simultaneously, 16S rRNA sequencing was performed to investigate gut microbiota changes. Sophora alopecuroides L.-derived alkaloids improved depression-like behaviors and depression-related indicators in mice. The alkaloids decreased the gut microbiota diversity of CUMS mice and depleted intestinal differentially abundant "harmful" microbiota genera. Spearman analysis showed that there is a certain correlation between the differential microbiota (Lactobacillus, Helicobacter, Oscillospira, Odoribacter, Mucispirillum, Ruminococcus), depression-like behaviors, and depression-related indicators. Combined with the predictive analysis of gut microbiota function, these results indicate that alkaloids improve depression in mice through modulating gut microbiota.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Qifang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Jingyi Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiuxian Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
10
|
Nedic Erjavec G, Sagud M, Nikolac Perkovic M, Svob Strac D, Konjevod M, Tudor L, Uzun S, Pivac N. Depression: Biological markers and treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110139. [PMID: 33068682 DOI: 10.1016/j.pnpbp.2020.110139] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Nowadays depression is considered as a systemic illness with different biological mechanisms involved in its etiology, including inflammatory response, hypothalamic-pituitary-adrenal (HPA) axis dysregulation and neurotransmitter and neurotrophic systems imbalance. Novel "omics" approaches, such as metabolomics and glycomics provide information about altered metabolic pathways and metabolites, as well as disturbances in glycosylation processes affected by or causing the development of depression. The clinical diagnosis of depression continues to be established based on the presence of the specific symptoms, but due to its heterogeneous underlying biological background, that differs according to the disease stage, there is an unmet need for treatment response biomarkers which would facilitate the process of appropriate treatment selection. This paper provides an overview of the role of major stress response system, the HPA axis, and its dysregulation in depression, possible involvement of neurotrophins, especially brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and insulin-like growth factor-1, in the development of depression. Article discusses how activated inflammation processes and increased cytokine levels, as well as disturbed neurotransmitter systems can contribute to different stages of depression and could specific metabolomic and glycomic species be considered as potential biomarkers of depression. The second part of the paper includes the most recent findings about available medical treatment of depression. The described biological factors impose an optimistic conclusion that they could represent easy obtainable biomarkers potentially predicting more personalized treatment and diagnostic options.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marina Sagud
- The University of Zagreb School of Medicine, Salata 3, 10000 Zagreb, Croatia; University Hospital Center Zagreb, Department of Psychiatry, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sandra Uzun
- University Hospital Center Zagreb, Department for Anesthesiology, Reanimatology, and Intensive Care, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Kubo H, Setoyama D, Watabe M, Ohgidani M, Hayakawa K, Kuwano N, Sato-Kasai M, Katsuki R, Kanba S, Kang D, Kato TA. Plasma acetylcholine and nicotinic acid are correlated with focused preference for photographed females in depressed males: an economic game study. Sci Rep 2021; 11:2199. [PMID: 33500434 PMCID: PMC7838250 DOI: 10.1038/s41598-020-75115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/07/2020] [Indexed: 11/12/2022] Open
Abstract
Interpersonal difficulties are often observed in major depressive disorder (MDD), while the underlying psychological and biological mechanisms have not yet been elucidated. In the present case–control study, a PC-based trust game was conducted for 38 drug-free MDD patients and 38 healthy controls (HC). In the trust game, participants invested money in a partner (trusting behaviors), and also rated each partner’s attractiveness (preference for others). In addition, blood biomarkers including metabolites were measured. Both MDD and HC males exhibited more trusting behaviors compared to females. MDD males’ preference for ordinary-attractive partners (lay-person photographs) was lower than HC males, whereas their preference for high-attractive females (fashion-model photographs) was similar levels to HC males. This tendency in MDD males could reflect a “focused (narrowed) preference for females”. As for blood biomarker analysis, the levels of 37 metabolites including acetylcholine, AMP, GMP, nicotinic acid and tryptophan were significantly different between two groups. Interestingly, among male participants, acetylcholine and nicotinic acid were negatively correlated with the level of focused preference for photographed females. In sum, we have revealed some behavioral, psychological and biological traits of trusting behaviors and preference for others especially in MDD males. Larger studies should be conducted to validate our preliminary findings.
Collapse
Affiliation(s)
- Hiroaki Kubo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Motoki Watabe
- School of Business, Monash University Malaysia, Jalan Lagoon Selatan, 46150, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohei Hayakawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Nobuki Kuwano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Mina Sato-Kasai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ryoko Katsuki
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
12
|
Nikolac Perkovic M, Sagud M, Tudor L, Konjevod M, Svob Strac D, Pivac N. A Load to Find Clinically Useful Biomarkers for Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:175-202. [PMID: 33834401 DOI: 10.1007/978-981-33-6044-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is heterogeneous and complex disease with diverse symptoms. Its neurobiological underpinning is still not completely understood. For now, there are still no validated, easy obtainable, clinically useful noninvasive biomarker(s) or biomarker panel that will be able to confirm a diagnosis of depression, its subtypes and improve diagnostic procedures. Future multimodal preclinical and clinical research that involves (epi)genetic, molecular, cellular, imaging, and other studies is necessary to advance our understanding of the role of monoamines, GABA, HPA axis, neurotrophins, metabolome, and glycome in the pathogenesis of depression and their potential as diagnostic, prognostic, and treatment response biomarkers. These studies should be focused to include the first-episode depression and antidepressant drug-naïve patients with large sample sizes to reduce variability in different biological and clinical parameters. At present, metabolomics study revealed with high precision that a neurometabolite panel consisting of plasma metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) might represent clinically useful biomarkers of MDD.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Psychiatry, University Hospital Center Zagreb, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, Rudjer Boskovic Institute, Zagreb, Croatia.
| |
Collapse
|
13
|
Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry 2020; 25:3198-3207. [PMID: 32404945 PMCID: PMC8081047 DOI: 10.1038/s41380-020-0761-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Glycosylation, the enzymatic attachment of carbohydrates to proteins and lipids, regulates nearly all cellular processes and is critical in the development and function of the nervous system. Axon pathfinding, neurite outgrowth, synaptogenesis, neurotransmission, and many other neuronal processes are regulated by glycans. Over the past 25 years, studies analyzing post-mortem brain samples have found evidence of aberrant glycosylation in individuals with schizophrenia. Proteins involved in both excitatory and inhibitory neurotransmission display altered glycans in the disease state, including AMPA and kainate receptor subunits, glutamate transporters EAAT1 and EAAT2, and the GABAA receptor. Polysialylated NCAM (PSA-NCAM) and perineuronal nets, highly glycosylated molecules critical for axonal migration and synaptic stabilization, are both downregulated in multiple brain regions of individuals with schizophrenia. In addition, enzymes spanning several pathways of glycan synthesis show differential expression in brains of individuals with schizophrenia. These changes may be due to genetic predisposition, environmental perturbations, medication use, or a combination of these factors. However, the recent association of several enzymes of glycosylation with schizophrenia by genome-wide association studies underscores the importance of glycosylation in this disease. Understanding how glycosylation is dysregulated in the brain will further our understanding of how this pathway contributes to the development and pathophysiology of schizophrenia.
Collapse
|
14
|
Mealer RG, Jenkins BG, Chen CY, Daly MJ, Ge T, Lehoux S, Marquardt T, Palmer CD, Park JH, Parsons PJ, Sackstein R, Williams SE, Cummings RD, Scolnick EM, Smoller JW. The schizophrenia risk locus in SLC39A8 alters brain metal transport and plasma glycosylation. Sci Rep 2020; 10:13162. [PMID: 32753748 PMCID: PMC7403432 DOI: 10.1038/s41598-020-70108-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
A common missense variant in SLC39A8 is convincingly associated with schizophrenia and several additional phenotypes. Homozygous loss-of-function mutations in SLC39A8 result in undetectable serum manganese (Mn) and a Congenital Disorder of Glycosylation (CDG) due to the exquisite sensitivity of glycosyltransferases to Mn concentration. Here, we identified several Mn-related changes in human carriers of the common SLC39A8 missense allele. Analysis of structural brain MRI scans showed a dose-dependent change in the ratio of T2w to T1w signal in several regions. Comprehensive trace element analysis confirmed a specific reduction of only serum Mn, and plasma protein N-glycome profiling revealed reduced complexity and branching. N-glycome profiling from two individuals with SLC39A8-CDG showed similar but more severe alterations in branching that improved with Mn supplementation, suggesting that the common variant exists on a spectrum of hypofunction with potential for reversibility. Characterizing the functional impact of this variant will enhance our understanding of schizophrenia pathogenesis and identify novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA.
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Bruce G Jenkins
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark J Daly
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sylvain Lehoux
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Münster, Germany
| | - Christopher D Palmer
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Julien H Park
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Münster, Germany
| | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Robert Sackstein
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sarah E Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward M Scolnick
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| |
Collapse
|
15
|
Rehan IF, Mahmoud ME, Salman D, Elnagar A, Salman S, Youssef M, Aziz ARA, Bazh EK, Hesham AEL. Sialylated N-glycan profile during acute and chronic infections with Toxoplasma gondii in mice. Sci Rep 2020; 10:3809. [PMID: 32123198 PMCID: PMC7052212 DOI: 10.1038/s41598-020-60681-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is associated with physiological and psychiatric perturbations. The immune response is interrelated to the progress of anhedonia and despair symptoms of T. gondii-infected subjects. We recently reported that serum N-glycans were altered in mice displayed depressive-like behaviors. However, a novel biomarker that correlated to T. gondii infection and associated behaviors is demanded. Glycomics has been used to find affected glycoproteins during depression. The objective of this study is to investigate serum N-glycomics changes during infection with T. gondii in BALB/c mice, immunocompetent, or in severe combined immunodeficient mice, and after treatment with an immunostimulant; 1-methyl tryptophan. Glycans were examined through glycoblotting-protocol then investigated by MALDI-TOF/MS. Both depressive and sickness-related behaviors were significantly abundant (P ≤ 0.001 each), during acute T. gondii in immunocompetent mice, compared to controls. Only sickness symptoms were evident in immunodeficient mice infected with T. gondii, as associated with high expression level (P ≤ 0.001) of Peak # 15 (2 × Neu5Gc) compared to controls. The alteration of sialylated N-glycan expressions is important to detect the immune status of animals/humans against T. gondii. Moreover, 1-methyl tryptophan reduced depressive-like behavior (P ≤ 0.001) compared to controls. Therefore, sialylated N-glycan (Neu5Ac/Neu5Gc-terminal) is targeted to be used as a novel biomarker of sickness/depressive-like behaviors.
Collapse
Affiliation(s)
- Ibrahim Farag Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menofia University, Shebin Alkom, Menofia, 32511, Egypt.
| | - Motamed Elsayed Mahmoud
- Department of Animal Behavior and Husbandry (management, genetics, and breeding), Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Doaa Salman
- Department of Animal Medicine, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Asmaa Elnagar
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Saleh Salman
- Department of Animal Sciences, Colorado State University, Fort Collins, 80523, Colorado, USA
- Department of Animal Production, Faculty of Agriculture, Assiut University, Assiut, 71111, Egypt
| | - Mohammed Youssef
- Department of Animal Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Amer Ragheb Abdel Aziz
- Department of Parasitology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Eman Kamal Bazh
- Department of Parasitology, Faculty of Veterinary Medicine, Menofia University, Shebin Alkom, Menofia, 32511, Egypt
| | - Abd El-Latif Hesham
- Department of Genetics, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
16
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
17
|
Mahmoud ME, Rehan IF, El-Dawy Ahmed K, Abdelrahman A, Mohammadi S, Abou-Elnaga AF, Youssef M, Diab HM, Salman D, Elnagar A, Mohammed HH, Shanab O, Ibrahim RM, Ahmed EKH, Hesham AEL, Gupta A. Identification of serum N-glycoproteins as a biological correlate underlying chronic stress response in mice. Mol Biol Rep 2019; 46:2733-2748. [PMID: 30915686 DOI: 10.1007/s11033-019-04717-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/23/2019] [Indexed: 12/11/2022]
Abstract
Glycosylation is a post-translational protein modification in eukaryotes and plays an important role in controlling several diseases. N-glycan structure is emerging as a new paradigm for biomarker discovery of neuropsychiatric disorders. However, the relationship between N-glycosylation pattern and depression is not well elucidated to date. This study aimed to explore whether serum N-glycan structures are altered in depressive-like behavior using a stress based mouse model. We used two groups of BALB/c mice; (i) treated group exposed to chronic unpredictable mild stress (CUMS) as a model of depression, and (ii) control group. Behavioral tests in mice (e.g., sucrose preference test, forced swimming test, and fear conditioning test) were used to evaluate the threshold level to which mice displayed a depressive-like phenotype. Serum N-glycans were analyzed carefully using glycoblotting followed by Matrix-assisted laser desorption ionization-time of flight/mass spectrometry (MALDI-TOF/MS) to exhibit N-glycan expression levels and to illustrate the changes in the N-glycome profile. N-glycan expression levels were commonly altered in the depressive-like model and correlated well with the behavioral data. Our results indicated that sialylated N-glycan was identified as a biomarker associated with depressive symptoms, which may have utility as a candidate biomarker for the clinical diagnosis and monitoring of depression.
Collapse
Affiliation(s)
- Motamed Elsayed Mahmoud
- Department of Animal Behavior and Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Ibrahim F Rehan
- Department of Animal Behavior and Husbandry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Kh El-Dawy Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, El-Zeraa Street, 114, Zagazig, 44511, Egypt
| | - Amany Abdelrahman
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Saeed Mohammadi
- Department of Tissue Engineering and Applied Cell Sciences, University of Medical Sciences, Tehran, 1985711151, Iran.,Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, ON, L8S 0A3, Canada
| | - Ahmed F Abou-Elnaga
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed Youssef
- Department of Animal Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Hassan Mahmoud Diab
- Department of Animal Hygiene, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Doaa Salman
- Department of Animal Medicine, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Asmaa Elnagar
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, El-Zeraa Street, 114, Zagazig, 44511, Egypt
| | - Hesham H Mohammed
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, El-Zeraa Street, 114, Zagazig, 44511, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Rawia M Ibrahim
- Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Eslam K H Ahmed
- Department of Animal Behavior and Husbandry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Assiut University, Assiut, 71516, Egypt.
| | - Arti Gupta
- Department of Zoology, Sri Avadh Raj Singh Smarak Degree College, Gonda, India
| |
Collapse
|
18
|
Wang W, Jiang Y, Cai E, Li B, Zhao Y, Zhu H, Zhang L, Gao Y. L-menthol exhibits antidepressive-like effects mediated by the modification of 5-HTergic, GABAergic and DAergic systems. Cogn Neurodyn 2018; 13:191-200. [PMID: 30956723 DOI: 10.1007/s11571-018-9513-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 11/13/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
Major depression disorder, also known as depression, with a significant and persistent low mood as the main clinical features, is the main type of mood disorders. L-menthol (LM), the main active ingredient of mint, has been considered as safe and healthy natural ingredient by the Food and Drug Administration in the USA. In this study, LM (40 mg/kg, i.g.) produced antidepressant-like effect in the forced swimming test (FST) in mice. The sub-effective dose (5 mg/kg, i.g.) of LM combined with the sub-effective dose of fluoxetine (5 mg/kg, i.p.) or reboxetine (2.5 mg/kg, i.p.) could significantly shorten the immobility time in the FST. Pretreatment with ondansetron (a highly selective 5-HT3 receptor antagonist, 8 mg/kg, i.p.), bicuculline [a competitive γ-aminobutyric acid (GABA) antagonist, 4 mg/kg, i.p.] and haloperidol (a non-selective D2 receptor antagonist, 0.2 mg/kg, i.p.) significantly reversed the antidepressant-like effect of LM (40 mg/kg, i.g.). In contrast, prazosin (a α1-adrenoceptor antagonist, 1 mg/kg, i.p.) and N-methyl-d-aspartic acid (an agonist at the glutamate site, 75 mg/kg, i.p.) did not eliminate the antidepressant-like effect of LM. All of these above indicated that LM is able to induce an antidepressant-like effect mediated by the modification of 5-HTergic, GABAergic and DAergic systems in the FST. LM might be used as combination therapy in depressed patients and is a potential antidepressant.
Collapse
Affiliation(s)
- Weidong Wang
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Yuanyuan Jiang
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Enbo Cai
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Bingchen Li
- Antu Forestry Co., Ltd, Yanbian, 133600 Jilin China
| | - Yan Zhao
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Hongyan Zhu
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Lianxue Zhang
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Yugang Gao
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| |
Collapse
|
19
|
Nyarko JNK, Quartey MO, Heistad RM, Pennington PR, Poon LJ, Knudsen KJ, Allonby O, El Zawily AM, Freywald A, Rauw G, Baker GB, Mousseau DD. Glycosylation States of Pre- and Post-synaptic Markers of 5-HT Neurons Differ With Sex and 5-HTTLPR Genotype in Cortical Autopsy Samples. Front Neurosci 2018; 12:545. [PMID: 30147642 PMCID: PMC6096231 DOI: 10.3389/fnins.2018.00545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) is thought to alter 5-HT signaling and contribute to behavioral and cognitive phenotypes in depression as well as Alzheimer disease (AD). We explored how well the short (S) and long (L) alleles of the 5-HTTLPR align with serotoninergic indices in 60 autopsied cortical samples from early-onset AD/EOAD and late-onset AD/LOAD donors, and age- and sex-matched controls. Stratifying data by either diagnosis-by-genotype or by sex-by-genotype revealed that the donor's 5-HTTLPR genotype, i.e., L/L, S/L, or S/S, did not affect 5-HTT mRNA or protein expression. However, the glycosylation of 5-HTT was significantly higher in control female (vs. male) samples and tended to decrease in female EOAD/LOAD samples, but remained unaltered in male LOAD samples. Glycosylated forms of the vesicular monoamine transporter (VMAT2) were lower in both male and female AD samples, while a sex-by-genotype stratification revealed a loss of VMAT2 glycosylation specifically in females with an L/L genotype. VMAT2 and 5-HTT glycosylation were correlated in male samples and inversely correlated in female samples in both stratification models. The S/S genotype aligned with lower levels of 5-HT turnover in females (but not males) and with an increased glycosylation of the post-synaptic 5-HT2C receptor. Interestingly, the changes in presynaptic glycosylation were evident primarily in female carriers of the APOE ε4 risk factor for AD. Our data do not support an association between 5-HTTLPR genotype and 5-HTT expression, but they do reveal a non-canonical association of 5-HTTLPR genotype with sex-dependent glycosylation changes in pre- and post-synaptic markers of serotoninergic neurons. These patterns of change suggest adaptive responses in 5-HT signaling and could certainly be contributing to the female prevalence in risk for either depression or AD.
Collapse
Affiliation(s)
- Jennifer N K Nyarko
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maa O Quartey
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ryan M Heistad
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul R Pennington
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lisa J Poon
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaeli J Knudsen
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Odette Allonby
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amr M El Zawily
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gail Rauw
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
20
|
Pan JX, Xia JJ, Deng FL, Liang WW, Wu J, Yin BM, Dong MX, Chen JJ, Ye F, Wang HY, Zheng P, Xie P. Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Transl Psychiatry 2018; 8:130. [PMID: 29991685 PMCID: PMC6039504 DOI: 10.1038/s41398-018-0183-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/11/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric illness. However, there is currently no objective laboratory-based diagnostic tests for this disorder. Although, perturbations in multiple neurotransmitter systems have been implicated in MDD, the biochemical changes underlying the disorder remain unclear, and a comprehensive global evaluation of neurotransmitters in MDD has not yet been performed. Here, using a GC-MS coupled with LC-MS/MS-based targeted metabolomics approach, we simultaneously quantified the levels of 19 plasma metabolites involved in GABAergic, catecholaminergic, and serotonergic neurotransmitter systems in 50 first-episode, antidepressant drug-naïve MDD subjects and 50 healthy controls to identify potential metabolite biomarkers for MDD (training set). Moreover, an independent sample cohort comprising 49 MDD patients, 30 bipolar disorder (BD) patients and 40 healthy controls (testing set) was further used to validate diagnostic generalizability and specificity of these candidate biomarkers. Among the 19 plasma neurotransmitter metabolites examined, nine were significantly changed in MDD subjects. These metabolites were mainly involved in GABAergic, catecholaminergic and serotonergic systems. The GABAergic and catecholaminergic had better diagnostic value than serotonergic pathway. A panel of four candidate plasma metabolite biomarkers (GABA, dopamine, tyramine, kynurenine) could distinguish MDD subjects from health controls with an AUC of 0.968 and 0.953 in the training and testing set, respectively. Furthermore, this panel distinguished MDD subjects from BD subjects with high accuracy. This study is the first to globally evaluate multiple neurotransmitters in MDD plasma. The altered plasma neurotransmitter metabolite profile has potential differential diagnostic value for MDD.
Collapse
Affiliation(s)
- Jun-Xi Pan
- 0000 0000 8653 0555grid.203458.8Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460 China ,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 China
| | - Jin-Jun Xia
- 0000 0000 8653 0555grid.203458.8Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460 China ,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 China
| | - Feng-Li Deng
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Wei-Wei Liang
- 0000 0000 8653 0555grid.203458.8Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460 China ,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Jing Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Bang-Min Yin
- 0000 0000 8653 0555grid.203458.8Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460 China ,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Mei-Xue Dong
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Fei Ye
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China ,grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China ,0000 0000 8653 0555grid.203458.8Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016 China
| | - Peng Zheng
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402460, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Blood plasma/IgG N-glycome biosignatures associated with major depressive disorder symptom severity and the antidepressant response. Sci Rep 2018; 8:179. [PMID: 29317657 PMCID: PMC5760622 DOI: 10.1038/s41598-017-17500-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
While N-linked glycosylation has been extensively studied in the context of inflammatory and metabolic disorders, its relationship with major depressive disorder (MDD) and antidepressant treatment response has not been investigated. In our exploratory study, we analysed N-glycan profiles in blood plasma samples collected from MDD patients (n = 18) and found gender-dependent correlations with severity of depressive symptoms prior to initiating antidepressant treatment. In addition, several N-glycosylation traits showed gender-dependent associations with clinical antidepressant response. Follow up proteomics analysis in peripheral blood mononuclear cells (PBMCs) collected from MDD patients (n = 20) identified baseline and post-antidepressant treatment pathway differences between responder and non-responder patients. Reactome data analysis further delineated potential biological reaction differences between responder and non-responder patients. Our preliminary results suggest that specific glycosylation traits are associated with depressive symptom severity and antidepressant response and may be of use as biomarkers.
Collapse
|
22
|
Yin Y, Liu X, Liu J, Cai E, Zhao Y, Li H, Zhang L, Li P, Gao Y. The effect of beta-sitosterol and its derivatives on depression by the modification of 5-HT, DA and GABA-ergic systems in mice. RSC Adv 2018; 8:671-680. [PMID: 35538977 PMCID: PMC9076981 DOI: 10.1039/c7ra11364a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/24/2017] [Indexed: 01/09/2023] Open
Abstract
Beta-sitosterol belongs to the group of phytosterols, which are active trace components existing in natural plants, known as the "key of life", and have a steroid nucleus structure similar to cholesterol. Due to the insolubility issue of beta-sitosterol, most pharmacological studies and clinical applications are limited. Therefore, the modification of beta-sitosterol into its derivatives to enhance its pharmacologic activity is viable. In this study, 4 kinds of new beta-sitosterol derivative were obtained by an esterification reaction with beta-sitosterol, organic acids, EDCI and DMAP in dichloromethane. The chemical structures were defined by IR and NMR. Beta-sitosterol and its derivatives were used to carry out antidepressant research in the tail suspension test (TST) and the forced swimming test (FST) in mice. Additionally, the roles of different parts of the central nervous system (CNS) in the antidepressant-like effect of Sit-S, which is one of the beta-sitosterol derivatives, were also investigated. The results showed that the derivatives exhibited a stronger antidepressant activity than beta-sitosterol. Among the derivatives, administration of Sit-S (4 mg kg-1) gave the lowest immobility time in the TST, demonstrating that Sit-S exhibited the strongest antidepressant-like activity. The study into the roles of different parts of the CNS in the antidepressant-like effect of Sit-S showed that agomelatine (40 mg kg-1), haloperidol (0.2 mg kg-1) and bicuculline (4 mg kg-1) reversed the antidepressant effect of Sit-S (4 mg kg-1). This study confirmed the conclusions that beta-sitosterol derivatives broaden the pharmacological effects of beta-sitosterol, Sit-S (4 mg kg-1) exhibits antidepressant-like effects, and this antidepressant-like effect on male adult mice is mediated by the 5-HT, DA and GABA-ergic systems.
Collapse
Affiliation(s)
- Yongxia Yin
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| | | | | | - Enbo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| | | | - Lianxue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| | | | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural UniversityChangchun 130118JilinChina+86 431 84533358+86 431 84533358
| |
Collapse
|