1
|
Tymofiyeva O, Ho TC, Connolly CG, Gorrell S, Rampersaud R, Darrow SM, Max JE, Yang TT. Examining putamen resting-state connectivity markers of suicide attempt history in depressed adolescents. Front Psychiatry 2024; 15:1364271. [PMID: 38903634 PMCID: PMC11187256 DOI: 10.3389/fpsyt.2024.1364271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Suicide is a current leading cause of death in adolescents and young adults. The neurobiological underpinnings of suicide risk in youth, however, remain unclear and a brain-based model is lacking. In adult samples, current models highlight deficient serotonin release as a potential suicide biomarker, and in particular, involvement of serotonergic dysfunction in relation to the putamen and suicidal behavior. Less is known about associations among striatal regions and relative suicidal risk across development. The current study examined putamen connectivity in depressed adolescents with (AT) and without history of a suicide attempt (NAT), specifically using resting-state functional magnetic resonance imaging (fMRI) to evaluate patterns in resting-state functional connectivity (RSFC). We hypothesized the AT group would exhibit lower striatal RSFC compared to the NAT group, and lower striatal RSFC would associate with greater suicidal ideation severity and/or lethality of attempt. Methods We examined whole-brain RSFC of six putamen regions in 17 adolescents with depression and NAT (MAge [SD] = 16.4[0.3], 41% male) and 13 with AT (MAge [SD] = 16.2[0.3], 31% male). Results Only the dorsal rostral striatum showed a statistically significant bilateral between-group difference in RSFC with the superior frontal gyrus and supplementary motor area, with higher RSFC in the group without a suicide attempt compared to those with attempt history (voxel-wise p<.001, cluster-wise p<.01). No significant associations were found between any putamen RSFC patterns and suicidal ideation severity or lethality of attempts among those who had attempted. Discussion The results align with recent adult literature and have interesting theoretical and clinical implications. A possible interpretation of the results is a mismatch of the serotonin transport to putamen and to the supplementary motor area and the resulting reduced functional connectivity between the two areas in adolescents with attempt history. The obtained results can be used to enhance the diathesis-stress model and the Emotional paiN and social Disconnect (END) model of adolescent suicidality by adding the putamen. We also speculate that connectivity between putamen and the supplementary motor area may in the future be used as a valuable biomarker of treatment efficacy and possibly prediction of treatment outcome.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Tiffany C. Ho
- Department of Psychology, Brain Research Institute, Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, United States
| | - Colm G. Connolly
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Sasha Gorrell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, University of California San Francisco, San Francisco, CA, United States
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, University of California San Francisco, San Francisco, CA, United States
| | - Sabrina M. Darrow
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, University of California San Francisco, San Francisco, CA, United States
| | - Jeffrey E. Max
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
- Department of Psychiatry, Rady Children’s Hospital, San Diego, CA, United States
| | - Tony T. Yang
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, University of California San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Zhang Y, Liu X, Yang Y, Zhang Y, He Q, Xu F, Jin X, Gao J, Yao Y, Yu D, Hommel B, Zhu X, Wang K, Zhang W. Revealing complexity: segmentation of hippocampal subfields in adolescents with major depressive disorder reveals specific links to cognitive dysfunctions. Eur Psychiatry 2024; 68:e5. [PMID: 38389334 PMCID: PMC11795510 DOI: 10.1192/j.eurpsy.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Hippocampal disruptions represent potential neuropathological biomarkers in depressed adolescents with cognitive dysfunctions. Given heterogeneous outcomes of whole-hippocampus analyses, we investigated subregional abnormalities in depressed adolescents and their associations with symptom severity and cognitive dysfunctions. METHODS MethodsSeventy-nine first-episode depressive patients (ag = 15.54 ± 1.83) and 71 healthy controls (age = 16.18 ± 2.85) were included. All participants underwent T1 and T2 imaging, completed depressive severity assessments, and performed cognitive assessments on memory, emotional recognition, cognitive control, and attention. Freesurfer was used to segment each hippocampus into 12 subfields. Multivariable analyses of variance were performed to identify overall and disease severity-related abnormalities in patients. LASSO regression was also conducted to explore the associations between hippocampal subfields and patients' cognitive abilities. RESULTS Depressed adolescents showed decreases in dentate gyrus, CA1, CA2/3, CA4, fimbria, tail, and molecular layer. Analyses of overall symptom severity, duration, self-harm behavior, and suicidality suggested that severity-related decreases mainly manifested in CA regions and involved surrounding subfields with disease severity increases. LASSO regression indicated that hippocampal subfield abnormalities had the strongest associations with memory impairments, with CA regions and dentate gyrus showing the highest weights. CONCLUSIONS Hippocampal abnormalities are widespread in depressed adolescents and such abnormalities may spread from CA regions to surrounding areas as the disease progresses. Abnormalities in CA regions and dentate gyrus among these subfields primarily link with memory impairments in patients. These results demonstrate that hippocampal subsections may serve as useful biomarkers of depression progression in adolescents, offering new directions for early clinical intervention.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Xuan Liu
- School of Psychology, Shandong Normal University, Jinan, China
| | - Ying Yang
- Shandong Mental Health Center, Jinan, China
| | - Yihao Zhang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Qiang He
- Shandong Mental Health Center, Jinan, China
| | - Feiyu Xu
- Shandong Mental Health Center, Jinan, China
| | - Xinjuan Jin
- Radiology Department of Qilu Hospital, Shandong University, Jinan, China
| | - Junqi Gao
- Radiology Department of Qilu Hospital, Shandong University, Jinan, China
| | - Yuan Yao
- Radiology Department of Qilu Hospital, Shandong University, Jinan, China
| | - Dexin Yu
- Radiology Department of Qilu Hospital, Shandong University, Jinan, China
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China
| | - Xingxing Zhu
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Kangcheng Wang
- School of Psychology, Shandong Normal University, Jinan, China
- Shandong Mental Health Center, Jinan, China
| | - Wenxin Zhang
- School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
3
|
Başgöze Z, Demers L, Thai M, Falke CA, Mueller BA, Fiecas MB, Roediger DJ, Thomas KM, Klimes-Dougan B, Cullen KR. A Multilevel Examination of Cognitive Control in Adolescents With Nonsuicidal Self-injury. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:855-866. [PMID: 37881532 PMCID: PMC10593942 DOI: 10.1016/j.bpsgos.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 10/27/2023] Open
Abstract
Background Nonsuicidal self-injury (NSSI), a transdiagnostic behavior, often emerges during adolescence. This study used the Research Domain Criteria approach to examine cognitive control (CC) with a focus on response inhibition and urgency relative to NSSI severity in adolescents. Methods One hundred thirty-eight adolescents, assigned female sex at birth, with a continuum of NSSI severity completed negative and positive urgency measurements (self-report), an emotional Go/NoGo task within negative and positive contexts (behavioral), and structural and functional imaging during resting state and task (brain metrics). Cortical thickness, subcortical volume, resting-state functional connectivity, and task activation focused on an a priori-defined CC network. Eighty-four participants had all these main measures. Correlations and stepwise model selection followed by multiple regression were used to examine the association between NSSI severity and multiunit CC measurements. Results Higher NSSI severity correlated with higher negative urgency and lower accuracy during positive no-inhibition (Go). Brain NSSI severity correlates varied across modalities and valence. For right medial prefrontal cortex and right caudate, higher NSSI severity correlated with greater negative but lower positive inhibition (NoGo) activation. The opposite pattern was observed for the right dorsolateral prefrontal cortex. Higher NSSI severity correlated with lower left dorsal anterior cingulate cortex (ACC) negative inhibition activation and thicker left dorsal ACC, yet it was correlated with higher right rostral ACC positive inhibition activation and thinner right rostral ACC, as well as lower CC network resting-state functional connectivity. Conclusions Findings revealed multifaceted signatures of NSSI severity across CC units of analysis, confirming the relevance of this domain in adolescent NSSI and illustrating how multimodal approaches can shed light on psychopathology.
Collapse
Affiliation(s)
- Zeynep Başgöze
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Lauren Demers
- Child Development & Rehabilitation Center, Oregon Health & Science University, Portland, Oregon
| | - Michelle Thai
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Chloe A. Falke
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Bryon A. Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mark B. Fiecas
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Donovan J. Roediger
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | | | - Kathryn R. Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
4
|
Fang S, Law SF, Ji X, Liu Q, Zhang P, Zhong R, Li H, Wang X, Yao S, Wang X. Potential neuropsychological mechanism involved in the transition from suicide ideation to action - a resting-state fMRI study implicating the insula. Eur Psychiatry 2023; 66:e69. [PMID: 37694389 PMCID: PMC10594382 DOI: 10.1192/j.eurpsy.2023.2444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Understanding the neural mechanism underlying the transition from suicidal ideation to action is crucial but remains unclear. To explore this mechanism, we combined resting-state functional connectivity (rsFC) and computational modeling to investigate differences between those who attempted suicide(SA) and those who hold only high levels of suicidal ideation(HSI). METHODS A total of 120 MDD patients were categorized into SA group (n=47) and HSI group (n=73). All participants completed a resting-state functional MRI scan, with three subregions of the insula and the dorsal anterior cingulate cortex (dACC) being chosen as the region of interest (ROI) in seed-to-voxel analyses. Additionally, 86 participants completed the balloon analogue risk task (BART), and a five-parameter Bayesian modeling of BART was estimated. RESULTS In the SA group, the FC between the ventral anterior insula (vAI) and the superior/middle frontal gyrus (vAI-SFG, vAI-MFG), as well as the FC between posterior insula (pI) and MFG (pI-MFG), were lower than those in HSI group. The correlation analysis showed a negative correlation between the FC of vAI-SFG and psychological pain avoidance in SA group, whereas a positive correlation in HSI group. Furthermore, the FC of vAI-MFG displayed a negative correlation with loss aversion in SA group, while a positive correlation was found with psychological pain avoidance in HSI group. CONCLUSION In current study, two distinct neural mechanisms were identified in the insula which involving in the progression from suicidal ideation to action. Dysfunction in vAI FCs may gradually stabilize as individuals experience heightened psychological pain, and a shift from positive to negative correlation patterns of vAI-MFC may indicate a transition from state to trait impairment. Additionally, the dysfunction in PI FC may lead to a lowered threshold for suicide by blunting the perception of physical harm.
Collapse
Affiliation(s)
- Shulin Fang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Samuel F. Law
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Xinlei Ji
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Qinyu Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Panwen Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Shanghai Songjiang Jiuting Middle School, Shanghai, China
| | - Runqing Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Huanhuan Li
- Department of Psychology, Renmin University of China, Beijing, China
| | - Xiaosheng Wang
- Department of Human Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, China
| |
Collapse
|
5
|
Doruk Camsari D, Lewis CP, Sonmez AI, Ozger C, Fatih P, Yuruk D, Shekunov J, Vande Voort JL, Croarkin PE. Event-Related Potential Markers of Suicidality in Adolescents. Int J Neuropsychopharmacol 2023; 26:566-575. [PMID: 37422891 PMCID: PMC10464930 DOI: 10.1093/ijnp/pyad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Implicit cognitive markers may assist with the prediction of suicidality beyond clinical risk factors. The aim of this study was to investigate neural correlates associated with the Death/Suicide Implicit Association Test (DS-IAT) via event-related potentials (ERP) in suicidal adolescents. METHODS Thirty inpatient adolescents with suicidal ideations and behaviors (SIBS) and 30 healthy controls from the community were recruited. All participants underwent 64-channel electroencephalography, DS-IAT, and clinical assessments. Hierarchical generalized linear models with spatiotemporal clustering were used to identify significant ERPs associated with the behavioral outcome of DS-IAT (D scores) and group differences. RESULTS Behavioral results (D scores) showed that the adolescents with SIBS had stronger implicit associations between "death" and "self" than the healthy group (P = .02). Within adolescents with SIBS, participants with stronger implicit associations between "death" and "self" reported more difficulty in controllability of suicidal ideation in the past 2 weeks based on the Columbia-Suicide Severity Rating Scale (P = .03). For the ERP data, the D scores and N100 component over the left parieto-occipital cortex had significant correlations. Significant group differences without behavioral correlation were observed for a second N100 cluster (P = .01), P200 (P = .02), and late positive potential (5 clusters, all P ≤ .02). Exploratory predictive models combining both neurophysiological and clinical measures distinguished adolescents with SIBS from healthy adolescents. CONCLUSIONS Our results suggest that N100 may be a marker of attentional resources involved in the distinction of stimuli that are congruent or incongruent to associations between death and self. Combined clinical and ERP measures may have utility in future refinements of assessment and treatment approaches for adolescents with suicidality.
Collapse
Affiliation(s)
- Deniz Doruk Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ayse Irem Sonmez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Can Ozger
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Parmis Fatih
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Psychiatry, Rush University, Chicago, Illinois, USA
| | - Deniz Yuruk
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia Shekunov
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Ojha A, Teresi GI, Slavich GM, Gotlib IH, Ho TC. Social threat, fronto-cingulate-limbic morphometry, and symptom course in depressed adolescents: a longitudinal investigation. Psychol Med 2023; 53:5203-5217. [PMID: 36117278 PMCID: PMC10024647 DOI: 10.1017/s0033291722002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/05/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Psychosocial stressors characterized by social threat, such as interpersonal loss and social rejection, are associated with depression in adolescents. Few studies, however, have examined whether social threat affects fronto-cingulate-limbic systems implicated in adolescent depression. METHODS We assessed lifetime stressor severity across several domains using the Stress and Adversity Inventory (STRAIN) in 57 depressed adolescents (16.15 ± 1.32 years, 34 females), and examined whether the severity of social threat and non-social threat stressors was associated with gray matter volumes (GMVs) in the anterior cingulate cortex (ACC), amygdala, hippocampus, and nucleus accumbens (NAcc). We also examined how lifetime social threat severity and GMVs in these regions related to depressive symptoms at baseline and over 9 months. RESULTS General stressor severity was related to greater depression severity at baseline and over 9 months. Moreover, greater severity of social threat (but not non-social threat) stressors was associated with smaller bilateral amygdala and NAcc GMVs, and smaller bilateral surface areas of caudal and rostral ACC (all pFDR ⩽ 0.048). However, neither social threat nor non-social threat stressor severity was related to hippocampal GMVs (all pFDR ⩾ 0.318). All fronto-cingulate-limbic structures that were associated with the severity of social threat were negatively associated with greater depression severity over 9 months (all pFDR ⩽ 0.014). Post-hoc analyses suggested that gray matter morphometry of bilateral amygdala, NAcc, and rostral and caudal ACC mediated the association between social threat and depression severity in adolescents over 9 months (all pFDR < 0.048). CONCLUSIONS Social threat specifically affects fronto-cingulate-limbic pathways that contribute to the maintenance of depression in adolescents.
Collapse
Affiliation(s)
- Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giana I. Teresi
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Tiffany C. Ho
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Mo D, Guo P, Hu S, Tao R, Zhong H, Liu H. Characteristics and correlation of gray matter volume and somatic symptoms in adolescent patients with depressive disorder. Front Psychiatry 2023; 14:1197854. [PMID: 37559918 PMCID: PMC10407247 DOI: 10.3389/fpsyt.2023.1197854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Background Adolescent patients with depressive disorders commonly exhibit somatic symptoms, which have a significant negative impact on their treatment and prognosis. Despite this, specific brain imaging characteristics of these symptoms have been poorly studied. Methods The Hamilton Depression Rating scale (HAMD-17), Children's Functional Somatization scale (CSI), and Toronto Alexithymia scale (TAS) were used to evaluate the clinical symptoms of adolescent depression. We analyzed the correlation between brain gray matter volume (GMV) and clinical symptoms in adolescent patients with depression and somatic symptoms. Results The depression subgroups with and without functional somatic symptoms (FSS) had higher scores on the HAMD-17, CSI, and TAS than the normal control group. The group with FSS had higher HAMD-17, CSI, and TAS scores than the depression group without FSS (p < 0.05). CSI and TAS scores were positively correlated (r = 0.378, p < 0.05). The GMV of the right supplementary motor area was higher in the depression groups with and without FSSs than in the normal control group, and the GMV was higher in the group without FSS than in the group with FSS (F = 29.394, p < 0.05). The GMV of the right supplementary motor area was negatively correlated with CSI in the depressed group with FSS (r = -0.376, p < 0.05). In the group with depression exhibiting FSS, CSI scores were positively correlated with GMV of the middle occipital gyrus (pr = 0.665, p = 0.0001), and TAS scores were positively correlated with GMV of the caudate nucleus (pr = 0.551, p = 0.001). Conclusion Somatic symptoms of adolescent depressive disorder are associated with alexithymia; moreover, somatic symptoms and alexithymia in adolescent patients with depressive disorders are correlated with GMV changes in different brain regions.
Collapse
Affiliation(s)
- Daming Mo
- Department of Psychiatry, Chao hu Hospital of Anhui Medical University, Hefei, China
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Pengfei Guo
- Department of Psychiatry, Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Shuwen Hu
- Clinical Psychological Science, Anhui Provincial Children’s Hospital, Hefei, China
| | - Rui Tao
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, Anhui Mental Health Center, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chao hu Hospital of Anhui Medical University, Hefei, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Wu H, Wang X, Wang D, Wang W, Jin WQ, Luo J, Jiang W, Tang YL, Ren YP, Yang CL, Ma X, Li R. Abnormal fiber integrity in the cerebellum with recent suicide behavior in depressed patients: A diffusion tensor imaging study. Asian J Psychiatr 2023; 86:103658. [PMID: 37321151 DOI: 10.1016/j.ajp.2023.103658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Han Wu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xue Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wen Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wen-Qing Jin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jiong Luo
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wei Jiang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi-Lang Tang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA; Mental Health Service Line, Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Yan-Ping Ren
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Chun-Lin Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xin Ma
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Dimick MK, Hird MA, Sultan AA, Mitchell RHB, Sinyor M, MacIntosh BJ, Goldstein BI. Resting-state functional connectivity indicators of risk and resilience for self-harm in adolescent bipolar disorder. Psychol Med 2023; 53:3377-3386. [PMID: 35256032 PMCID: PMC10277718 DOI: 10.1017/s0033291721005419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Suicide is the second leading cause of death in all youth and among adults with bipolar disorder (BD). The risk of suicide in BD is among the highest of all psychiatric conditions. Self-harm, including suicide attempts and non-suicidal self-injury, is a leading risk factor for suicide. Neuroimaging studies suggest reward circuits are implicated in both BD and self-harm; however, studies have yet to examine self-harm related resting-state functional connectivity (rsFC) phenotypes within adolescent BD. METHODS Resting-state fMRI data were analyzed for 141 adolescents, ages 13-20 years, including 38 with BD and lifetime self-harm (BDSH+), 33 with BD and no self-harm (BDSH-), and 70 healthy controls (HC). The dorsolateral prefrontal cortex (dlPFC), orbitofrontal cortex (OFC) and amygdala were examined as regions of interest in seed-to-voxel analyses. A general linear model was used to explore the bivariate correlations for each seed. RESULTS BDSH- had increased positive rsFC between the left amygdala and left lateral occipital cortex, and between the right dlPFC and right frontal pole, and increased negative rsFC between the left amygdala and left superior frontal gyrus compared to BDSH+ and HC. BDSH+ had increased positive rsFC of the right OFC with the precuneus and left paracingulate gyrus compared to BDSH- and HC. CONCLUSIONS This study provides preliminary evidence of altered reward-related rsFC in relation to self-harm in adolescents with BD. Between-group differences conveyed a combination of putative risk and resilience connectivity patterns. Future studies are warranted to evaluate changes in rsFC in response to treatment and related changes in self-harm.
Collapse
Affiliation(s)
- Mikaela K. Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Megan A. Hird
- MD Program, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Alysha A. Sultan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rachel H. B. Mitchell
- Department of Psychiatry, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mark Sinyor
- Department of Psychiatry, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Benjamin I. Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Hurvitz Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Guo Y, Jiang X, Jia L, Zhu Y, Han X, Wu Y, Liu W, Zhao W, Zhu H, Wang D, Tu Z, Zhou Y, Sun Q, Kong L, Wu F, Tang Y. Altered gray matter volumes and plasma IL-6 level in major depressive disorder patients with suicidal ideation. Neuroimage Clin 2023; 38:103403. [PMID: 37079937 PMCID: PMC10148078 DOI: 10.1016/j.nicl.2023.103403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUNDS Suicidal ideation (SI) is one of the most serious consequences of major depressive disorder (MDD). Understanding the unique mechanism of MDD with SI (MDD + S) is crucial for treatment development. While abundant research has studied MDD, past studies have not reached a consensus on the mechanism of MDD + S. The study aimed to investigate the abnormalities of the gray matter volumes (GMVs) and plasma IL-6 level in MDD + S to further reveal the mechanism of MDD + S. METHODS We tested the plasma IL-6 level using Luminex multifactor assays and collected the Structural Magnetic Resonance Imaging (SMRI) data from 34 healthy controls (HCs), 36 MDD patients without SI (MDD - S) and 34 MDD + S patients. We performed a partial correlation between the GMVs of the brain regions with significant differences and plasma IL-6 level with age, sex, medication, scores of HAMD-17 and HAMA as the covariates. RESULTS Compared with HCs and MDD - S, MDD + S had significantly decreased GMVs in the left cerebellum Crus I/II and significantly increased plasma IL-6 level; compared with HCs, both the MDD + S and MDD - S had significantly decreased GMVs in right precentral and postcentral gyri. No significant correlation was found between the GMVs and the plasma IL-6 level in the MDD + S and MDD - S, respectively. While the GMVs of the right precentral and postcentral gyri negatively correlated with the level of IL-6 in the whole MDD (r = -0.28, P = 0.03). The GMVs of the left cerebellum Crus I/II (r = -0.47, P = 0.02), and the right precentral and postcentral gyri (r = -0.42, P = 0.04) negatively correlated with the level of IL-6 in HCs. CONCLUSION The altered GMVs and the plasma IL-6 level may provide a scientific basis to understand the pathophysiological mechanisms of MDD + S.
Collapse
Affiliation(s)
- Yingrui Guo
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China; Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Linna Jia
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Xinyu Han
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Yifan Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Wen Liu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Wenhui Zhao
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Huaqian Zhu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Dahai Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Zhaoyuan Tu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Qikun Sun
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China; Department of Geriatric Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Liu J, Zhang Y, Qiu J, Wei D. Linking negative affect, personality and social conditions to structural brain development during the transition from late adolescent to young adulthood. J Affect Disord 2023; 325:14-21. [PMID: 36623558 DOI: 10.1016/j.jad.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND The transition from late adolescence to early adulthood is a period that experiences a surge of life changes and brain reorganization caused by internal and external factors, including negative affect, personality, and social conditions. METHODS Non-imaging phenotype and structural brain variables were available on 497 healthy participants (279 females and 218 males) between 17 and 22 years old. We used sparse canonical correlation analysis (sCCA) on the high-dimensional and longitudinal data to extract modes with maximum covariation between structural brain changes and negative affect, personality, and social conditions. RESULTS Separate sCCAs for cortical volume, cortical thickness, cortical surface area and subcortical volume confirmed that each imaging phenotype was correlated with non-imaging features (sCCA |r| range: 0.21-0.38, all pFDR < 0.01). Bilateral superior frontal, left caudal anterior cingulate and bilateral caudate had the highest canonical cross-loadings (|ρ| = 0.15-0.32). In longitudinal data analysis, scan-interval, negative affect, and enthusiasm had the highest association with structural brain changes (|ρ| = 0.07-0.38); at baseline, intellect and politeness were associated with individual variability in the structural brain (|ρ| = 0.10-0.25). LIMITATIONS The present study used non-imaging variables only at baseline, making it impossible to explore the relationship between changing behavior and structural brain development. CONCLUSIONS Individual structural brain changes are associated with multiple factors. In addition to time-dependent variables, we find that negative affect, enthusiasm and social support play a numerically weak but significant role in structural brain development during the transition from late adolescence to young adulthood.
Collapse
Affiliation(s)
- Jiahui Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yi Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, China.
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China.
| |
Collapse
|
12
|
Han S, Zheng R, Li S, Zhou B, Jiang Y, Fang K, Wei Y, Wen B, Pang J, Li H, Zhang Y, Chen Y, Cheng J. Altered structural covariance network of nucleus accumbens is modulated by illness duration and severity of symptom in depression. J Affect Disord 2023; 324:334-340. [PMID: 36608848 DOI: 10.1016/j.jad.2022.12.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
The differential structural covariance of nucleus accumbens (NAcc), playing a vital role in etiology and treatment, remains unclear in depression. We aimed to investigate whether structural covariance of NAcc was altered and how it was modulated by illness duration and severity of symptom measured with Hamilton Depression scale (HAMD). T1-weighted anatomical images of never-treated first-episode patients with depression (n = 195) and matched healthy controls (HCs, n = 78) were acquired. Gray matter volumes were calculated using voxel-based morphometry analysis for each subject. Then, we explored abnormal structural covariance of NAcc and how the abnormality was modulated by illness duration and severity of symptom. Patients with depression exhibited altered structural covariance of NAcc connected to key brain regions in reward system including the medial orbitofrontal cortex, amygdala, insula, parahippocampa gyrus, precuneus, thalamus, hippocampus and cerebellum. In addition, the structural covariance of the NAcc was distinctly modulated by illness duration and the severity of symptom in patients with depression. What is more, the structural covariance of the NAcc connected to hippocampus was modulated by these two factors at the same time. These results elucidate altered structural covariance of the NAcc and its distinct modulation of illness duration and severity of symptom.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Keke Fang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jianyue Pang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Hengfen Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| |
Collapse
|
13
|
Dobbertin M, Blair KS, Carollo E, Blair JR, Dominguez A, Bajaj S. Neuroimaging alterations of the suicidal brain and its relevance to practice: an updated review of MRI studies. Front Psychiatry 2023; 14:1083244. [PMID: 37181903 PMCID: PMC10174251 DOI: 10.3389/fpsyt.2023.1083244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Suicide is a leading cause of death in the United States. Historically, scientific inquiry has focused on psychological theory. However, more recent studies have started to shed light on complex biosignatures using MRI techniques, including task-based and resting-state functional MRI, brain morphometry, and diffusion tensor imaging. Here, we review recent research across these modalities, with a focus on participants with depression and Suicidal Thoughts and Behavior (STB). A PubMed search identified 149 articles specific to our population of study, and this was further refined to rule out more diffuse pathologies such as psychotic disorders and organic brain injury and illness. This left 69 articles which are reviewed in the current study. The collated articles reviewed point to a complex impairment showing atypical functional activation in areas associated with perception of reward, social/affective stimuli, top-down control, and reward-based learning. This is broadly supported by the atypical morphometric and diffusion-weighted alterations and, most significantly, in the network-based resting-state functional connectivity data that extrapolates network functions from well validated psychological paradigms using functional MRI analysis. We see an emerging picture of cognitive dysfunction evident in task-based and resting state fMRI and network neuroscience studies, likely preceded by structural changes best demonstrated in morphometric and diffusion-weighted studies. We propose a clinically-oriented chronology of the diathesis-stress model of suicide and link other areas of research that may be useful to the practicing clinician, while helping to advance the translational study of the neurobiology of suicide.
Collapse
Affiliation(s)
- Matthew Dobbertin
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
- Child and Adolescent Psychiatric Inpatient Center, Boys Town National Research Hospital, Boys Town, NE, United States
- *Correspondence: Matthew Dobbertin,
| | - Karina S. Blair
- Program for Trauma and Anxiety in Children (PTAC), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Erin Carollo
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - James R. Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Copenhagen, Denmark
| | - Ahria Dominguez
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Sahil Bajaj
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| |
Collapse
|
14
|
Colic L, Villa LM, Dauvermann MR, van Velzen LS, Sankar A, Goldman DA, Panchal P, Kim JA, Quatrano S, Spencer L, Constable RT, Suckling J, Goodyer IM, Schmaal L, van Harmelen AL, Blumberg HP. Brain grey and white matter structural associations with future suicidal ideation and behaviors in adolescent and young adult females with mood disorders. JCPP ADVANCES 2022; 2:e12118. [PMID: 36817186 PMCID: PMC9937714 DOI: 10.1002/jcv2.12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background To reduce suicide in females with mood disorders, it is critical to understand brain substrates underlying their vulnerability to future suicidal ideation and behaviors (SIBs) in adolescence and young adulthood. In an international collaboration, grey and white matter structure was investigated in adolescent and young adult females with future suicidal behaviors (fSB) and ideation (fSI), and without SIBs (fnonSIB). Methods Structural (n = 91) and diffusion-weighted (n = 88) magnetic resonance imaging scans at baseline and SIB measures at follow-up on average two years later (standard deviation, SD = 1 year) were assessed in 92 females [age(SD) = 16.1(2.6) years] with bipolar disorder (BD, 28.3%) or major depressive disorder (MDD, 71.7%). One-way analyses of covariance comparing baseline regional grey matter cortical surface area, thickness, subcortical grey volumes, or white matter tensor-based fractional anisotropy across fSB (n = 40, 43.5%), fSI (n = 33, 35.9%) and fnonSIB (n = 19, 20.6%) groups were followed by pairwise comparisons in significant regions (p < 0.05). Results Compared to fnonSIBs, fSIs and fSBs showed significant decreases in cortical thickness of right inferior frontal gyrus pars orbitalis and middle temporal gyrus, fSIs of left inferior frontal gyrus, pars orbitalis. FSIs and fSBs showed lower fractional anisotropy in left uncinate fasciculus and corona radiata, and fSBs in right uncinate and superior fronto-occipital fasciculi. Conclusions The study provides preliminary evidence of grey and white matter alterations in brain regions subserving emotional and behavioral regulation and perceptual processing in adolescent and young adult females with mood disorders with, versus without, future SIBs. Findings suggest potential targets to prevent SIBs in female adolescents and young adults.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, Jena, Germany
| | - Luca M. Villa
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Maria R. Dauvermann
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Laura S. van Velzen
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Anjali Sankar
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Kobenhavn, Denmark
| | - Danielle A. Goldman
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Priyanka Panchal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jihoon A. Kim
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan Quatrano
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ian M. Goodyer
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lianne Schmaal
- Orygen, Parkville, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Anne-Laura van Harmelen
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Gotlib IH, Miller JG, Borchers LR, Coury SM, Costello LA, Garcia JM, Ho TC. Effects of the COVID-19 Pandemic on Mental Health and Brain Maturation in Adolescents: Implications for Analyzing Longitudinal Data. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:S2667-1743(22)00142-2. [PMID: 36471743 PMCID: PMC9713854 DOI: 10.1016/j.bpsgos.2022.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background The COVID-19 pandemic has caused significant stress and disruption for young people, likely leading to alterations in their mental health and neurodevelopment. In this context, it is not clear whether youth who lived through the pandemic and its shutdowns are comparable psychobiologically to their age- and sex-matched peers assessed before the pandemic. This question is particularly important for researchers who are analyzing longitudinal data that span the pandemic. Methods In this study we compared carefully matched youth assessed before the pandemic (n=81) and after the pandemic-related shutdowns ended (n=82). Results We found that youth assessed after the pandemic shutdowns had more severe internalizing mental health problems, reduced cortical thickness, larger hippocampal and amygdala volume, and more advanced brain age. Conclusions Thus, not only does the COVID-19 pandemic appear to have led to poorer mental health and accelerated brain aging in adolescents, but it also poses significant challenges to researchers analyzing data from longitudinal studies of normative development that were interrupted by the pandemic.
Collapse
Affiliation(s)
- Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, California
| | - Jonas G. Miller
- Department of Psychology, Stanford University, Stanford, California
| | | | - Sache M. Coury
- Department of Psychology, Stanford University, Stanford, California
| | | | - Jordan M. Garcia
- Department of Psychology, Stanford University, Stanford, California
| | - Tiffany C. Ho
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| |
Collapse
|
16
|
Ojha A, Parr AC, Foran W, Calabro FJ, Luna B. Puberty contributes to adolescent development of fronto-striatal functional connectivity supporting inhibitory control. Dev Cogn Neurosci 2022; 58:101183. [PMID: 36495791 PMCID: PMC9730138 DOI: 10.1016/j.dcn.2022.101183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Adolescence is defined by puberty and represents a period characterized by neural circuitry maturation (e.g., fronto-striatal systems) facilitating cognitive improvements. Though studies have characterized age-related changes, the extent to which puberty influences maturation of fronto-striatal networks is less known. Here, we combine two longitudinal datasets to characterize the role of puberty in the development of fronto-striatal resting-state functional connectivity (rsFC) and its relationship to inhibitory control in 106 10-18-year-olds. Beyond age effects, we found that puberty was related to decreases in rsFC between the caudate and the anterior vmPFC, rostral and ventral ACC, and v/dlPFC, as well as with rsFC increases between the dlPFC and nucleus accumbens (NAcc) across males and females. Stronger caudate rsFC with the dlPFC and vlPFC during early puberty was associated with worse inhibitory control and slower correct responses, respectively, whereas by late puberty, stronger vlPFC rsFC with the dorsal striatum was associated with faster correct responses. Taken together, our findings suggest that certain fronto-striatal connections are associated with pubertal maturation beyond age effects, which, in turn are related to inhibitory control. We discuss implications of puberty-related fronto-striatal maturation to further our understanding of pubertal effects related to adolescent cognitive and affective neurodevelopment.
Collapse
Affiliation(s)
- Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Correspondence to: Laboratory of Neurocognitive Development, University of Pittsburgh, 121 Meyran Ave, Pittsburgh, PA 15213, USA.
| | - Ashley C. Parr
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
van Velzen LS, Dauvermann MR, Colic L, Villa LM, Savage HS, Toenders YJ, Zhu AH, Bright JK, Campos AI, Salminen LE, Ambrogi S, Ayesa-Arriola R, Banaj N, Başgöze Z, Bauer J, Blair K, Blair RJ, Brosch K, Cheng Y, Colle R, Connolly CG, Corruble E, Couvy-Duchesne B, Crespo-Facorro B, Cullen KR, Dannlowski U, Davey CG, Dohm K, Fullerton JM, Gonul AS, Gotlib IH, Grotegerd D, Hahn T, Harrison BJ, He M, Hickie IB, Ho TC, Iorfino F, Jansen A, Jollant F, Kircher T, Klimes-Dougan B, Klug M, Leehr EJ, Lippard ETC, McLaughlin KA, Meinert S, Miller AB, Mitchell PB, Mwangi B, Nenadić I, Ojha A, Overs BJ, Pfarr JK, Piras F, Ringwald KG, Roberts G, Romer G, Sanches M, Sheridan MA, Soares JC, Spalletta G, Stein F, Teresi GI, Tordesillas-Gutiérrez D, Uyar-Demir A, van der Wee NJA, van der Werff SJ, Vermeiren RRJM, Winter A, Wu MJ, Yang TT, Thompson PM, Rentería ME, Jahanshad N, Blumberg HP, van Harmelen AL, Schmaal L. Structural brain alterations associated with suicidal thoughts and behaviors in young people: results from 21 international studies from the ENIGMA Suicidal Thoughts and Behaviours consortium. Mol Psychiatry 2022; 27:4550-4560. [PMID: 36071108 PMCID: PMC9734039 DOI: 10.1038/s41380-022-01734-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
Identifying brain alterations associated with suicidal thoughts and behaviors (STBs) in young people is critical to understanding their development and improving early intervention and prevention. The ENIGMA Suicidal Thoughts and Behaviours (ENIGMA-STB) consortium analyzed neuroimaging data harmonized across sites to examine brain morphology associated with STBs in youth. We performed analyses in three separate stages, in samples ranging from most to least homogeneous in terms of suicide assessment instrument and mental disorder. First, in a sample of 577 young people with mood disorders, in which STBs were assessed with the Columbia Suicide Severity Rating Scale (C-SSRS). Second, in a sample of young people with mood disorders, in which STB were assessed using different instruments, MRI metrics were compared among healthy controls without STBs (HC; N = 519), clinical controls with a mood disorder but without STBs (CC; N = 246) and young people with current suicidal ideation (N = 223). In separate analyses, MRI metrics were compared among HCs (N = 253), CCs (N = 217), and suicide attempters (N = 64). Third, in a larger transdiagnostic sample with various assessment instruments (HC = 606; CC = 419; Ideation = 289; HC = 253; CC = 432; Attempt=91). In the homogeneous C-SSRS sample, surface area of the frontal pole was lower in young people with mood disorders and a history of actual suicide attempts (N = 163) than those without a lifetime suicide attempt (N = 323; FDR-p = 0.035, Cohen's d = 0.34). No associations with suicidal ideation were found. When examining more heterogeneous samples, we did not observe significant associations. Lower frontal pole surface area may represent a vulnerability for a (non-interrupted and non-aborted) suicide attempt; however, more research is needed to understand the nature of its relationship to suicide risk.
Collapse
Grants
- UG3 MH111929 NIMH NIH HHS
- R37 MH101495 NIMH NIH HHS
- R01 MH103291 NIMH NIH HHS
- P41 RR008079 NCRR NIH HHS
- UL1 TR001872 NCATS NIH HHS
- UL1 TR001863 NCATS NIH HHS
- R61 MH111929 NIMH NIH HHS
- RC1 MH088366 NIMH NIH HHS
- R01 MH117601 NIMH NIH HHS
- K23 MH090421 NIMH NIH HHS
- R21 AA027884 NIAAA NIH HHS
- K01 MH106805 NIMH NIH HHS
- R61 AT009864 NCCIH NIH HHS
- R01 MH069747 NIMH NIH HHS
- K01 AA027573 NIAAA NIH HHS
- R01 MH070902 NIMH NIH HHS
- K01 MH117442 NIMH NIH HHS
- R01 MH085734 NIMH NIH HHS
- R21 AT009173 NCCIH NIH HHS
- MQ Brighter Futures Award MQBFC/2 and the U.S. National Institute of Mental Health under Award Number R01MH117601. National Suicide Prevention Research Fund, managed by Suicide Prevention Australia
- MQ Brighter Futures Award MQBFC/2. Interdisziplinäres Zentrum für Klinische Forschung, UKJ
- Italian Ministry of Health grant RC17-18-19-20-21/A
- Instituto de Salud Carlos III through the projects PI14/00639, PI14/00918 and PI17/01056 (Co-funded by European Regional Development Fund/European Social Fund "Investing in your future") and Fundación Instituto de Investigación Marqués de Valdecilla (NCT0235832 and NCT02534363)
- National Institute of Mental Health (K23MH090421), the National Alliance for Research on Schizophrenia and Depression, the University of Minnesota Graduate School, the Minnesota Medical Foundation, and the Biotechnology Research Center (P41 RR008079 to the Center for Magnetic Resonance Research), University of Minnesota, and the Deborah E. Powell Center for Women’s Health Seed Grant, University of Minnesota
- Medical Leader Foundation of Yunnan Province (L2019011) and Famous Doctors Project of Yunnan Province Plan (YNWR-MY-2018-041)
- CJ Martin Fellowship (NHMRC app 1161356). “Investissements d’avenir” ANR-10-IAIHU-06
- German Research Foundation (DFG, grant FOR2107-DA1151/5-1 and DA1151/5-2 to UD, and DFG grants HA7070/2-2, HA7070/3, HA7070/4 to TH)
- Australian National Health and Medical Research Council of Australia (NHMRC) Project Grants 1024570 NHMRC Career Development Fellowships (1061757)
- Medical Faculty Münster, Innovative Medizinische Forschung (Grant IMF KO 1218 06)
- Australian National Medical and Health Research Council (Program Grant 1037196 and Investigator Grant 1177991 to PBM, Project Grant 1066177 to JMF), the Lansdowne Foundation, Good Talk and the Keith Pettigrew Family Bequest (PM) Janette Mary O’Neil Research Fellowship. IHG is supported in part by R37MH101495
- Australian National Health and Medical Research Council of Australia (NHMRC) Project Grants 1064643 (principal investigator, BJH) NHMRC Career Development Fellowships (1124472)
- National Institute of Mental Health (K01MH106805). Klingenstein Third Generation Foundation, the National Institute of Mental Health (K01MH117442), the Stanford Maternal Child Health Research Institute, and the Stanford Center for Cognitive and Neurobiological Imaging. TCH receives partial support from the Ray and Dagmar Dolby Family Fund
- German Research Foundation (DFG, grant FOR2107-JA 1890/7-1 and JA 1890/7-2 to AJ, and DFG, grant FOR2107-KI588/14-1 and FOR2107-KI588/14-2 to TK)
- NIAAA (K01AA027573, R21AA027884) and the American Foundation for Suicide Prevention
- National Institute of Mental Health (R01-MH103291)
- National Center for Complementary and Integrative Health (NCCIH) R21AT009173 and R61AT009864 National Center for Advancing Translational Sciences (CTSI), National Institutes of Health, through UCSF-CTSI UL1TR001872 American Foundation for Suicide Prevention (AFSP) SRG-1-141-18 UCSF Research Evaluation and Allocation Committee (REAC) and J. Jacobson Fund to TTY; by the National Institute of Mental Health (NIMH) R01MH085734 and the Brain and Behavior Research Foundation (formerly NARSAD)
- MQ Brighter Futures Award MQBFC/2 R61MH111929RC1MH088366, R01MH070902, R01MH069747, American Foundation for Suicide Prevention, International Bipolar Foundation, Brain and Behavior Research Foundation, For the Love of Travis Foundation and Women’s Health Research at Yale
- MQ Brighter Futures Award MQBFC/2 Social Safety and Resilience programme of Leiden University
- MQ Brighter Futures Award MQBFC/2 National Institute of Mental Health under Award Number R01MH117601 NHMRC Career Development Fellowship (1140764)
Collapse
Affiliation(s)
- Laura S van Velzen
- Orygen, Parkville, VIC, Australia.
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Maria R Dauvermann
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lejla Colic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Germany
| | - Luca M Villa
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Hannah S Savage
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Yara J Toenders
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Joanna K Bright
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Adrián I Campos
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lauren E Salminen
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sonia Ambrogi
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Sevilla, Spain
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Zeynep Başgöze
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jochen Bauer
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Karina Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Robert James Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
- CMBB, Marburg, Germany
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical College, Kunming, China
- Yunnan Province Clinical Research Center for Psychiatry, Kunming, China
| | - Romain Colle
- MOODS Team, CESP, INSERM U1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, 94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Colm G Connolly
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Emmanuelle Corruble
- MOODS Team, CESP, INSERM U1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, 94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Baptiste Couvy-Duchesne
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Paris Brain Institute (ICM), Inserm (U1127), CNRS (UMR 7225), Sorbonne University, Inria Paris (Aramis project-team), Paris, France
| | - Benedicto Crespo-Facorro
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Sevilla, Spain
- Virgen del Rocío University Hospital, IBiS, CSIC, University of Sevilla, Sevilla, Spain
| | - Kathryn R Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janice M Fullerton
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Ali Saffet Gonul
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Mengxin He
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical College, Kunming, China
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Frank Iorfino
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
- CMBB, Marburg, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Fabrice Jollant
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- MOODS Team, CESP, INSERM U1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, 94275, France
- Université de Paris & GHU Paris Psychiatrie et Neurosciences, Paris, France
- McGill University, Department of Psychiatry, Montréal, QC, Canada
- Academic Hospital (CHU), Nîmes, France
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
- CMBB, Marburg, Germany
| | | | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elizabeth T C Lippard
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
- Mulva Clinic for Neuroscience, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | | | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Adam Bryant Miller
- Mental Health Risk and Resilience Research Program, RTI International, Research Triangle Park, NC, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Benson Mwangi
- Center Of Excellence On Mood Disorders, The University of Texas-Health Science Center at Houston, Houston, TX, USA
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas - Health Science Center at Houston, Houston, TX, USA
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
- CMBB, Marburg, Germany
| | - Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
- CMBB, Marburg, Germany
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
- CMBB, Marburg, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Georg Romer
- Department of Child & Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Münster, Münster, Germany
| | - Marsal Sanches
- Center Of Excellence On Mood Disorders, The University of Texas-Health Science Center at Houston, Houston, TX, USA
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas - Health Science Center at Houston, Houston, TX, USA
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jair C Soares
- Center Of Excellence On Mood Disorders, The University of Texas-Health Science Center at Houston, Houston, TX, USA
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas - Health Science Center at Houston, Houston, TX, USA
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Marburg University, Marburg, Germany
- CMBB, Marburg, Germany
| | - Giana I Teresi
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diana Tordesillas-Gutiérrez
- Department of Radiology, IDIVAL, Marqués de Valdecilla University Hospital, Santander, Spain
- Advanced Computing and e-Science, Instituto de Física de Cantabria (UC-CSIC), Santander, Spain
| | - Aslihan Uyar-Demir
- SoCAT Lab, Department of Psychiatry, School of Medicine, Ege University, Izmir, Turkey
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Steven J van der Werff
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- Leids Universitair Behandel- en Expertise Centrum, Leiden, The Netherlands
| | - Robert R J M Vermeiren
- Child and Adolescent Psychiatry Leiden University Medical Center, Leiden, The Netherlands
- Youz: Child and Adolescent Psychiatry, Leiden, The Netherlands
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Mon-Ju Wu
- Center Of Excellence On Mood Disorders, The University of Texas-Health Science Center at Houston, Houston, TX, USA
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas - Health Science Center at Houston, Houston, TX, USA
| | - Tony T Yang
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, UCSF, San Francisco, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Miguel E Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Anne-Laura van Harmelen
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- Social Security and Resilience Programme, Education and Child Studies, Leiden University, Leiden, The Netherlands
| | - Lianne Schmaal
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Sohn MN, McMorris CA, Bray S, McGirr A. The death-implicit association test and suicide attempts: a systematic review and meta-analysis of discriminative and prospective utility. Psychol Med 2021; 51:1789-1798. [PMID: 34030752 DOI: 10.1017/s0033291721002117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Suicide risk assessment involves integrating patient disclosure of suicidal ideation and non-specific risk factors such as family history, past suicidal behaviour, and psychiatric symptoms. A death version of the implicit association test (D-IAT) has been developed to provide an objective measure of the degree to which the self is affiliated with life or death. However, this has inconsistently been associated with past and future suicidal behaviour. Here, we systematically review and quantitatively synthesize the literature examining the D-IAT and suicide attempts. We searched psychINFO, Medline, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) from inception until 9 February 2021 to identify publications reporting D-IAT scores and suicide attempts (PROSPERO; CRD42020194394). Using random-effects models, we calculated standardized mean differences (SMD) and odds ratios (ORs) for retrospective suicide attempts. We then calculated ORs for future suicide attempts. ORs were dichotomized using a cutoff of zero representing equipoise between self-association with life and death. Eighteen studies met our inclusion criteria (n = 9551). The pooled SMD revealed higher D-IAT scores in individuals with a history of suicide attempt (SMD = 0.25, 95% CI 0.15 to 0.35); however, subgroup analyses demonstrated heterogeneity with acute care settings having lower effect sizes than community settings. Dichotomized D-IAT scores discriminated those with a history of suicide attempt from those without (OR 1.38 95% CI 1.01 to 1.89) and predicted suicide attempt over a six-month follow-up period (OR 2.99 95% CI 1.45 to 6.18; six studies, n = 781). The D-IAT may have a supplementary role in suicide risk assessment; however, determination of acute suicide risk and related clinical decisions should not be based solely on D-IAT performance.
Collapse
Affiliation(s)
- Maya N Sohn
- Department of Psychiatry, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Alberta, Canada
| | - Carly A McMorris
- Werklund School of Education, University of Calgary, Calgary, Alberta, Canada
- The Owerko Centre, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Child and Adolescent Imaging Research (CAIR) Program, University of Calgary, Calgary, Alberta, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Alberta, Canada
| |
Collapse
|