1
|
Greil W, de Bardeci M, Nievergelt N, Toto S, Grohmann R, Seifert J, Schoretsanitis G. Twenty-Three Years of Declining Lithium Use: Analysis of a Pharmacoepidemiological Dataset from German-Speaking Countries. PHARMACOPSYCHIATRY 2024; 57:296-303. [PMID: 39173675 PMCID: PMC11543241 DOI: 10.1055/a-2374-2386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Pharmacoepidemiological data suggest that lithium prescriptions for bipolar disorder are gradually decreasing, with less attention having been paid to other indications. METHODS We examined lithium prescriptions between 1994 and 2017 in data provided by the Drug Safety in Psychiatry Program AMSP, including psychiatric hospitals in Germany, Austria and Switzerland. We compared lithium use for different diagnoses before and after 2001 and in three periods (T1: 1994-2001, T2: 2002-2009, and T3: 2010-2017). RESULTS In a total of 158,384 adult inpatients (54% female, mean age 47.4±17.0 years), we observed a statistically significant decrease in lithium prescriptions between 1994-2000 and 2001-2017 in patients with schizophrenia spectrum disorder from 7.7% to 5.1% and in patients with affective disorders from 16.8% to 9.6%. Decreases in use were also observed for diagnostic subgroups: schizoaffective disorder (ICD-10 F25: 27.8% to 17.4%), bipolar disorder (F31: 41.3% to 31%), depressive episode (F32: 8.1% to 3.4%), recurrent depression (F33: 17.9% to 7.5%, all: p<0.001) and emotionally unstable (borderline) personality disorder (6.3% to 3.9%, p=0.01). The results in T1 vs. T2 vs. T3 were for F25: 26.7% vs. 18.2% vs. 16.2%, F32: 7.7% vs. 4.2% vs. 2.7%, F33: 17.2% vs. 8.6% vs. 6.6% and for F31: 40.8% vs. 31.7% vs 30.0%, i. e. there was no further decrease for lithium use in bipolar disorder after 2002. Lithium's main psychotropic co-medications were quetiapine (21.1%), lorazepam (20.6%), and olanzapine (15.2%). DISCUSSION In inpatients, the use of lithium has decreased in patients with bipolar disorder and also with various other psychiatric diagnoses.
Collapse
Affiliation(s)
- Waldemar Greil
- Department of Psychiatry and Psychotherapy, LMU University Hospital,
LMU Munich, Germany
- Psychiatric Private Hospital, Sanatorium Kilchberg, Zurich,
Switzerland
| | - Mateo de Bardeci
- Psychiatric Private Hospital, Sanatorium Kilchberg, Zurich,
Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of
Psychiatry, University of Zurich, Zurich, Switzerland
| | - Nadja Nievergelt
- Psychiatric Private Hospital, Sanatorium Kilchberg, Zurich,
Switzerland
| | - Sermin Toto
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover
Medical School, Hannover, Germany
| | - Renate Grohmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital,
LMU Munich, Germany
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover
Medical School, Hannover, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of
Psychiatry, University of Zurich, Zurich, Switzerland
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health,
Glen Oaks, New York, USA
- Department of Psychiatry at the Donald and Barbara Zucker School of
Medicine at Northwell/Hofstra, Hempstead, NY, USA
| |
Collapse
|
2
|
Deng Y, Li G, Xie L, Li X, Wu Y, Zheng J, Xian S, Zhou J, Chen J, Liu Y, Yang Q, Wang Q, Liu L. Associations of occupational exposure to micro-LiNiCoMnO 2 particles with systemic inflammation and cardiac dysfunction in cathode material production for lithium batteries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124694. [PMID: 39127333 DOI: 10.1016/j.envpol.2024.124694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Micro-LiNiCoMnO2 (MNCM), a cathode material with highest market share, has increasing demand with the growth of lithium battery industry. However, whether MNCM exposure brings adverse effects to workers remains unclear. This study aimed to explore the association between MNCM exposure with systemic inflammation and cardiac function. A cross-sectional study of 347 workers was undertaken from the MNCM production industry in Guangdong province, China in 2020. Metals in urine were measured using ICP-MS. The associations between metals, systemic inflammation, and cardiac function were appraised using a linear or logistic regression model. Bayesian kernel machine regression (BKMR) and generalized weighted quantile sum (gWQS) models were used to explore mixed metal exposures. The analysis of interaction and mediation was adopted to assess the role of inflammation in the relation between urinary metals and cardiac function. We observed that the levels of lithium (Li) and cobalt (Co) were positively associated with systemic inflammation and heart rate. The amount of Co contributed the highest weight on the increased systemic immune-inflammation index (SII) (59.8%), the system inflammation response index (SIRI) (44.3%), and heart rate (65.0%). Based on the mediation analysis, we estimated that SII mediated 32.3% and 20.9% of the associations between Li and Co with heart rate, and SIRI mediated 44.6% and 22.2% of the associations between Li and Co with heart rate, respectively. This study demonstrated for the first time that MNCM exposure increased the risk of workers' systemic inflammation and elevated heart rate, which were contributed by the excessive Li and Co exposure. Additionally, it indicates that systemic inflammation was a major mediator of the associations of Li and Co with cardiac function in MNCM production workers.
Collapse
Affiliation(s)
- Yaotang Deng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Guoliang Li
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Lijie Xie
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoliang Li
- The Third People's Hospital of Zhuhai, Zhuhai, 519099, China
| | - Youyi Wu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Jiewei Zheng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Simin Xian
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China; Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiazhen Zhou
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Jiabin Chen
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiaoyuan Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 510182, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lili Liu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China.
| |
Collapse
|
3
|
Weiss F, Brancati GE, Elefante C, Petrucci A, Gemmellaro T, Lattanzi L, Perugi G. Type 2 diabetes mellitus is associated with manic morbidity in elderly patients with mood disorders. Int Clin Psychopharmacol 2024; 39:294-304. [PMID: 37824397 DOI: 10.1097/yic.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The association between mood disorders, especially bipolar disorder (BD), and metabolic disorders, is long known. However, to which extent metabolic disorders affect the course of mood disorders in late life is still open to inquiring. To assess the impact of type 2 diabetes mellitus (T2DM) on late-life mood disorders a retrospective chart review was performed. Elderly depressive patients (≥ 65 years) diagnosed with Major Depressive Disorder (N = 57) or BD (N = 43) and followed up for at least 18 months were included and subdivided according to the presence of T2DM comorbidity. Vascular encephalopathy (39.1% vs. 15.6%, P = 0.021) and neurocognitive disorders (21.7% vs. 5.2%, P = 0.028), were more frequently reported in patients with T2DM than in those without. Patients with T2DM showed a greater percentage of follow-up time in manic episodes (r = -0.23, P = 0.020) and a higher rate of manic episode(s) during follow-up (21.7% vs. 5.2%, P = 0.028) than those without. When restricting longitudinal analyses to patients with bipolar spectrum disorders, results were confirmed. In line with the well-known connection between BD and metabolic disorders, our data support an association between T2DM and unfavorable course of illness in the elderly with BD.
Collapse
Affiliation(s)
- Francesco Weiss
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | | | - Camilla Elefante
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
| | | | - Teresa Gemmellaro
- Department of Psychiatry, North-Western Tuscany Region, NHS, Local Health Unit, Cecina-LI
| | | | - Giulio Perugi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
- Institute of Behavioral Science 'G. De Lisio', Pisa, Italy
| |
Collapse
|
4
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
5
|
Chen Z, Wang B, Huang Y, Wang X, Li W, Wang M. Pathogenesis or a response to lithium? A novel perspective for mitochondrial mass fluctuation of naïve T cells in patients with bipolar disorder. J Affect Disord 2024; 355:86-94. [PMID: 38521135 DOI: 10.1016/j.jad.2024.03.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Immune imbalances are associated with the pathogenesis and pharmacological efficacy of bipolar disorder (BD). The underlying mechanisms remain largely obscure but may involve immunometabolic dysfunctions of T-lymphocytes. METHODS We investigated if inflammatory cytokines and the immunometabolic function of T-lymphocytes, including frequencies of subsets, mitochondrial mass (MM), and low mitochondrial membrane potential (MMPLow) differed between BD patients (n = 47) and healthy controls (HC, n = 43). During lithium treatment of hospitalized patients (n = 33), the association between weekly T-lymphocyte immune metabolism and clinical symptoms was analyzed, and preliminary explorations on possible mechanisms were conducted. RESULTS In comparison to HC, BD patients predominantly showed a trend toward CD4+ naïve T (Tn) activation and exhibited mitochondrial metabolic disturbances such as decreased MM and increased MMPLow. Lower CD4+ Tn-MM correlated with elevated IL-6, IL-8, and decreased IL-17 A in BD patients. With lithium treatment effective, MM of CD4+ T/Tn was negatively correlated with depression score HAMD. When lithium intolerance was present, MM of CD4+ T/Tn was positively correlated with depression score HAMD and mania score BRMS. Lithium does not mediate through the inositol depletion hypothesis, but the mRNA level of IMPA2 in peripheral blood is associated with mitochondrial function in CD8+ T cells. LIMITATIONS The cross-sectional design and short-term follow-up meant that we could not directly examine the causality of BD and immune dysregulation. CONCLUSION The altered metabolism of CD4+ Tn was strongly associated with remodeling of the inflammatory landscape in BD patients and can also be used to reflect the short-term therapeutic effects of lithium.
Collapse
Affiliation(s)
- Zhenni Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Bingqi Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yiran Huang
- School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wanzhen Li
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
Herrera-Rivero M, Adli M, Akiyama K, Akula N, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Bellivier F, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Birner A, Cearns M, Cervantes P, Chen HC, Chillotti C, Cichon S, Clark SR, Colom F, Cruceanu C, Czerski PM, Dalkner N, Degenhardt F, Del Zompo M, DePaulo JR, Etain B, Falkai P, Ferensztajn-Rochowiak E, Forstner AJ, Frank J, Frisén L, Frye MA, Fullerton JM, Gallo C, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Grof P, Hashimoto R, Hasler R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hou L, Hsu YH, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kelsoe J, Kittel-Schneider S, Kuo PH, Kusumi I, König B, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Maj M, Manchia M, Marie-Claire C, Martinsson L, McCarthy MJ, McElroy SL, Millischer V, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Novák T, Nöthen MM, O'Donovan C, Ozaki N, Papiol S, Pfennig A, Pisanu C, Potash JB, Reif A, Reininghaus E, Richard-Lepouriel H, Roberts G, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schubert KO, Schulte EC, Schweizer BW, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Streit F, Tekola-Ayele F, Thalamuthu A, Tortorella A, Turecki G, Veeh J, Vieta E, Viswanath B, Witt SH, Zandi PP, Alda M, Bauer M, McMahon FJ, Mitchell PB, Rietschel M, Schulze TG, Baune BT. Exploring the genetics of lithium response in bipolar disorders. Int J Bipolar Disord 2024; 12:20. [PMID: 38865039 PMCID: PMC11169116 DOI: 10.1186/s40345-024-00341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. RESULTS We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. CONCLUSIONS Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Psychiatry, University of Münster and Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Fliedner Klinik Berlin, Berlin, Germany
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Unitat de Zoologia i Antropologia Biològica (Dpt. Biologia Evolutiva, Ecologia i Ciències Ambientals), Facultat de Biologia and Institut de Biomedicina (IBUB), University of Barcelona, CIBERSAM, Barcelona, Spain
| | - Jean-Michel Aubry
- Department of Psychiatry, Division of Psychiatric Specialities, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lena Backlund
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, INSERM UMR-S 1144, Université Paris Cité, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière, F. Widal, Paris, France
| | - Antonio Benabarre
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | | | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, USA
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Micah Cearns
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Pablo Cervantes
- The Neuromodulation Unit, McGill University Health Centre, Montreal, Canada
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Scott R Clark
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Francesc Colom
- Mental Health Research Group, IMIM-Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznań, Poland
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Maria Del Zompo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Bruno Etain
- Département de Psychiatrie et de Médecine Addictologique, INSERM UMR-S 1144, Université Paris Cité, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière, F. Widal, Paris, France
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | | | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Louise Frisén
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, USA
| | - Janice M Fullerton
- Neuroscience Research, Australia and School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porres, Peru
| | - Sébastien Gard
- Service de Psychiatrie, Hôpital Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Paul Grof
- Mood Disorders Center of Ottawa, Ottawa, Canada
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Roland Hasler
- Department of Psychiatry, Division of Psychiatric Specialities, Geneva University Hospitals, Geneva, Switzerland
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznań, Poland
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Herms
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Per Hoffmann
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Yi-Hsiang Hsu
- Program for Quantitative Genomics, Harvard School of Public Health and HSL Institute for Aging Research, Harvard Medical School, Boston, USA
| | - Stephane Jamain
- Univ. Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France
| | - Esther Jiménez
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy - Université, Nancy, France
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Tadafumi Kato
- Department of Psychiatry & Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Barbara König
- Department of Psychiatry and Psychotherapeutic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Gonzalo Laje
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Marion Leboyer
- Univ. Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Mondor University Hospital, DMU Impact, Fondation FondaMental, Créteil, France
| | - Susan G Leckband
- Office of Mental Health, VA San Diego Healthcare System, California, USA
| | - Mario Maj
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Cynthia Marie-Claire
- Université Paris Cité, Inserm UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006, Paris, France
| | - Lina Martinsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, USA
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan L McElroy
- Department of Psychiatry, Lindner Center of Hope/University of Cincinnati, Cincinnati, USA
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Marina Mitjans
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Institut de Biomedicina de La Universitat de Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | | | - Tomas Novák
- National Institute of Mental Health, Klecany, Czech Republic
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | | | - Norio Ozaki
- Department of Psychiatry & Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Hélène Richard-Lepouriel
- Department of Psychiatry, Division of Psychiatric Specialities, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Martin Schalling
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Peter R Schofield
- Neuroscience Research, Australia and School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Klaus Oliver Schubert
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Local Health Network, Mental Health Services, Adelaide, Australia
| | - Eva C Schulte
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Medical Faculty University of Bonn, Bonn, Germany
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Katzutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Christian Simhandl
- Medical Faculty, Bipolar Center Wiener Neustadt, Sigmund Freud University, Vienna, Austria
| | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Julia Veeh
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Spain
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas G Schulze
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster and Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
- Department of Psychiatry, Melbourne Medical School, University of Melbourne and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
7
|
Queissner R, Fellendorf FT, Dalkner N, Bengesser SA, Maget A, Birner A, Platzer M, Reininghaus B, Häussl A, Schönthaler E, Tmava-Berisha A, Lenger M, Reininghaus EZ. The influence of chronic inflammation on the illnesscourse of bipolar disorder: A longitudinal study. J Psychiatr Res 2024; 174:258-262. [PMID: 38670061 DOI: 10.1016/j.jpsychires.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION C-reactive protein (CRP) is a systemic inflammatory marker, which indicates systemic inflammatory processes It is involved in different inflammatory processes of the body and is a reliable marker for the general inflammatory state of the body. High sensitive CRP seems to play a key role as a state and trait marker of bipolar disorder (BD). In the current study, we tried to determine the long-term effect of CRP levels on clinical symptoms and illness course of bipolar disorder. METHODS For the current study, we examined 106 patients with BD for a period of four years. Participants underwent a clinical screening for depressive and manic episodes with the Hamilton Depression Scale (HAMD) and the Young Mania Rating Score (YMRS) and a serological diagnostic for inflammatory parameters every six months, thus leading to 8 measurement times in total. Patients with the presence of severe medical or neurological comorbidities such as active cancer, chronic obstructive lung disease, rheumatoid arthritis, systemic lupus erythematosus, Alzheimer's disease, Parkinson's disease, Huntington's disease or multiple sclerosis and acute infections were not included in the study. RESULTS In our sample, 26% showed a mean hsCRP above 5 mg/dl. Those patients showed a significantly higher mean YMRS score than those with a mean hsCRP under 5 mg/dl during our observation period. Regarding HAMD there was no significant difference in hsCRP values. The existence of lithium treatment showed no significant influence on mean hsCRP levels between the start and endpoint. CONCLUSION Individuals who were exposed to a higher level of inflammation over time suffered from more manic symptoms in this period. These findings underline the hypothesis that inflammatory processes have an accumulative influence on the illness course of BD, especially concerning manic symptoms and episodes.
Collapse
Affiliation(s)
- Robert Queissner
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Frederike T Fellendorf
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria.
| | - Nina Dalkner
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Susanne A Bengesser
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Alexander Maget
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Armin Birner
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Martina Platzer
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Bernd Reininghaus
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Alfred Häussl
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Elena Schönthaler
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Adelina Tmava-Berisha
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Melanie Lenger
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Eva Z Reininghaus
- Medical University Graz, Department for Psychiatry and Psychotherapeutic Medicine, Auenbruggerplatz 31, 8036, Graz, Austria
| |
Collapse
|
8
|
Herrera-Rivero M, Gutiérrez-Fragoso K, Kurtz J, Baune BT. Immunogenetics of lithium response and psychiatric phenotypes in patients with bipolar disorder. Transl Psychiatry 2024; 14:174. [PMID: 38570518 PMCID: PMC10991481 DOI: 10.1038/s41398-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we performed an exploratory study of the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. Overall, we observed relatively weak associations (p < 1 × 10-4) with BP phenotypes within immune-related genes. Network and functional enrichment analyses of the top findings from the association analyses of Li response variables showed an overrepresentation of pathways participating in cell adhesion and intercellular communication. These appeared to converge on the well-known Li-induced inhibition of GSK-3β. Association analyses of age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation suggested modest contributions of genes such as RTN4, XKR4, NRXN1, NRG1/3 and GRK5 to disease characteristics. PGS analyses returned weak associations (p < 0.05) between inflammation markers and the studied BP phenotypes. Our results suggest a modest relationship between immunity and clinical features in BP. More research is needed to assess the potential therapeutic relevance.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany
| | - Karina Gutiérrez-Fragoso
- Division of Engineering in Computational Systems, Higher Technological Institute of the East of the State of Hidalgo, Hidalgo, Mexico
| | - Joachim Kurtz
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany.
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
9
|
Sakrajda K, Bilska K, Czerski PM, Narożna B, Dmitrzak-Węglarz M, Heilmann-Heimbach S, Brockschmidt FF, Herms S, Nöthen MM, Cichon S, Więckowska B, Rybakowski JK, Pawlak J, Szczepankiewicz A. Abelson Helper Integration Site 1 haplotypes and peripheral blood expression associates with lithium response and immunomodulation in bipolar patients. Psychopharmacology (Berl) 2024; 241:727-738. [PMID: 38036661 DOI: 10.1007/s00213-023-06505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
RATIONALE In bipolar disorder (BD), immunological factors play a role in the pathogenesis and treatment of the illness. Studies showed the potential link between Abelson Helper Integration Site 1 (AHI1) protein, behavioural changes and innate immunity regulation. An immunomodulatory effect was suggested for lithium, a mood stabilizer used in BD treatment. OBJECTIVES We hypothesized that AHI1 may be an important mediator of lithium treatment response. Our study aimed to investigate whether the AHI1 haplotypes and expression associates with lithium treatment response in BD patients. We also examined whether AHI1 expression and lithium treatment correlate with innate inflammatory response genes. RESULTS We genotyped seven AHI1 single nucleotide polymorphisms in 97 euthymic BD patients and found that TG haplotype (rs7739635, rs9494332) was significantly associated with lithium response. We also showed significantly increased AHI1 expression in the blood of lithium responders compared to non-responders and BD patients compared to healthy controls (HC). We analyzed the expression of genes involved in the innate immune response and inflammatory response regulation (TLR4, CASP4, CASP5, NLRP3, IL1A, IL1B, IL6, IL10, IL18) in 21 lithium-treated BD patients, 20 BD patients treated with other mood stabilizer and 19 HC. We found significantly altered expression between BD patients and HC, but not between BD patients treated with different mood stabilizers. CONCLUSIONS Our study suggests the involvement of AHI1 in the lithium mode of action. Moreover, mood-stabilizing treatment associated with the innate immunity-related gene expression in BD patients and only the lithium-treated BD patients showed significantly elevated expression of anti-inflammatory IL10, suggesting lithium's immunomodulatory potential.
Collapse
Affiliation(s)
- Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr M Czerski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Barbara Więckowska
- Department of Computer Sciences and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
10
|
Queissner R, Buchmann A, Demjaha R, Tafrali C, Benkert P, Kuhle J, Jerkovic A, Dalkner N, Fellendorf F, Birner A, Platzer M, Tmava-Berisha A, Maget A, Stross T, Lenger M, Häussl A, Khalil M, Reininghaus E. Serum neurofilament light as a potential marker of illness duration in bipolar disorder. J Affect Disord 2024; 350:366-371. [PMID: 38215991 DOI: 10.1016/j.jad.2024.01.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
INTRODUCTION Investigation on specific biomarkers for diagnostic or prognostic usage in mental diseases and especially bipolar disorder BD seems to be one outstanding field in current research. Serum neurofilament light (sNfL), a marker for neuro-axonal injury, is increased in various acute and chronic neurological disorders, but also neuro-psychiatric conditions, including affective disorders. The aim of our study was to determine a potential relation between a neuron-specific marker like sNfL and different clinical states of BD. METHODS In the current investigation, 51 patients with BD and 35 HC were included. Mood ratings with the Hamilton depression scale (HAMD) and the Young mania rating scale (YMRS) have been included. Illness duration was defined as the period from the time of diagnosis out of self-report and medical records. sNFL was quantified by a commercial ultrasensitive single molecule array (Simoa). RESULTS There was a significant positive correlation between the number of manic episodes in the past and sNfL, controlled for age and duration of illness. (R = 0.49, p = 0.03) Depressive episodes were not associated to sNfL values. (R = 0.311, p = n.s.) Patients with >3 years of illness duration showed significantly higher levels of sNfL (M18.59; SD 11.89) than patients with shorter illness duration (M = 12.38, p = 0.03) and HC (M = 11.35, p = 0.02). Patients with <3 years of illness and HC did not differ significantly in sNfL levels. DISCUSSION Interestingly, individuals with BD and HC did not differ in sNFL levels in general. Nevertheless, looking at the BD cohort more specifically, we found that individuals with BD with longer duration of illness (>3 years) had higher levels of sNfL than those with an illness duration below 3 years. Our results confirm previous reports on the relation of neuro-axonal injury as evidenced by sNfL and illness specific variables in bipolar disorder. Further studies are needed to clarify if sNfL may predict the disease course and/or indicated response to treatment regimes.
Collapse
Affiliation(s)
- R Queissner
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Buchmann
- Medical University of Graz, Department for Neurology, Austria
| | - R Demjaha
- Medical University of Graz, Department for Neurology, Austria
| | - C Tafrali
- Medical University of Graz, Department for Neurology, Austria
| | - P Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - J Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - A Jerkovic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - N Dalkner
- Medical University of Graz, Department for Psychiatry, Austria
| | - F Fellendorf
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Birner
- Medical University of Graz, Department for Psychiatry, Austria
| | - M Platzer
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Tmava-Berisha
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Maget
- Medical University of Graz, Department for Psychiatry, Austria
| | - T Stross
- Medical University of Graz, Department for Psychiatry, Austria
| | - M Lenger
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Häussl
- Medical University of Graz, Department for Psychiatry, Austria
| | - M Khalil
- Medical University of Graz, Department for Neurology, Austria.
| | - E Reininghaus
- Medical University of Graz, Department for Psychiatry, Austria
| |
Collapse
|
11
|
Herrera-Rivero M, Adli M, Akiyama K, Akula N, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Bellivier F, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Birner A, Cearns M, Cervantes P, Chen HC, Chillotti C, Cichon S, Clark SR, Colom F, Cruceanu C, Czerski PM, Dalkner N, Degenhardt F, Del Zompo M, DePaulo JR, Etain B, Falkai P, Ferensztajn-Rochowiak E, Forstner AJ, Frank J, Frisén L, Frye MA, Fullerton JM, Gallo C, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Grof P, Hashimoto R, Hasler R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hou L, Hsu YH, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kelsoe J, Kittel-Schneider S, Kuo PH, Kusumi I, König B, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Maj M, Manchia M, Marie-Claire C, Martinsson L, McCarthy MJ, McElroy SL, Millischer V, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Novák T, Nöthen MM, O'Donovan C, Ozaki N, Papiol S, Pfennig A, Pisanu C, Potash JB, Reif A, Reininghaus E, Richard-Lepouriel H, Roberts G, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schubert KO, Schulte EC, Schweizer BW, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Streit F, Tekola-Ayele F, Thalamuthu A, Tortorella A, Turecki G, Veeh J, Vieta E, Viswanath B, Witt SH, Zandi PP, Alda M, Bauer M, McMahon FJ, Mitchell PB, Rietschel M, Schulze TG, Baune BT. Exploring the genetics of lithium response in bipolar disorders. RESEARCH SQUARE 2023:rs.3.rs-3677630. [PMID: 38077040 PMCID: PMC10705597 DOI: 10.21203/rs.3.rs-3677630/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Background Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
Collapse
Affiliation(s)
| | | | | | - Nirmala Akula
- United States Department of Health and Human Services
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Josef Frank
- Central Institute of Mental Health, University of Heidelberg
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Liping Hou
- United States Department of Health and Human Services
| | | | | | | | | | - Layla Kassem
- United States Department of Health and Human Services
| | | | | | | | | | | | | | - Gonzalo Laje
- United States Department of Health and Human Services
| | | | | | | | | | - Mario Maj
- University of Campania 'Luigi Vanvitelli'
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea Pfennig
- University Hospital Carl Gustav Carus, Technische Universität Dresden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fabian Streit
- Central Institute of Mental Health, University of Heidelberg
| | | | | | | | | | | | - Eduard Vieta
- Hospital Clinic, University of Barcelona, IDIBAPS
| | | | | | | | | | - Michael Bauer
- University Hospital Carl Gustav Carus, Technische Universität Dresden
| | | | | | | | | | | |
Collapse
|
12
|
Herrera-Rivero M, Gutiérrez-Fragoso K, Thalamuthu A, Amare AT, Adli M, Akiyama K, Akula N, Ardau R, Arias B, Aubry JM, Backlund L, Bellivier F, Benabarre A, Bengesser S, Abesh B, Biernacka J, Birner A, Cearns M, Cervantes P, Chen HC, Chillotti C, Cichon S, Clark S, Colom F, Cruceanu C, Czerski P, Dalkner N, Degenhardt F, Del Zompo M, DePaulo JR, Etain B, Falkai P, Ferensztajn-Rochowiak E, Forstner AJ, Frank J, Frisen L, Frye M, Fullerton J, Gallo C, Gard S, Garnham J, Goes F, Grigoroiu-Serbanescu M, Grof P, Hashimoto R, Hasler R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hou L, Hsu Y, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kelsoe J, Kittel-Schneider S, Kuo PH, Kurtz J, Kusumi I, König B, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband S, Maj M, Manchia M, Marie-Claire C, Martinsson L, McCarthy M, McElroy SL, Millischer V, Mitjans M, Mondimore F, Monteleone P, Nievergelt C, Novak T, Nöthen M, Odonovan C, Ozaki N, Papiol S, Pfennig A, Pisanu C, Potash J, Reif A, Reininghaus E, Richard-Lepouriel H, Roberts G, Rouleau G, Rybakowski JK, Schalling M, Schofield P, Schubert KO, Schulte E, Schweizer B, Severino G, Shekhtman T, Shilling P, Shimoda K, Simhandl C, Slaney C, Squassina A, Stamm T, Stopkova P, Streit F, Ayele F, Tortorella A, Turecki G, Veeh J, Vieta E, Viswanath B, Witt S, Zandi P, Alda M, Bauer M, McMahon F, Mitchell P, Rietschel M, Schulze T, Baune B. Immunogenetics of lithium response and psychiatric phenotypes in patients with bipolar disorder. RESEARCH SQUARE 2023:rs.3.rs-3068352. [PMID: 37461719 PMCID: PMC10350128 DOI: 10.21203/rs.3.rs-3068352/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we investigated the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4,925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2,374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. We found several genes associated with Li response at p < 1×10- 4 values, including HAS3, CNTNAP5 and NFIB. Network and functional enrichment analyses uncovered an overrepresentation of pathways involved in cell adhesion and intercellular communication, which appear to converge on the well-known Li-induced inhibition of GSK-3β. We also found various genes associated with BP's age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation at the exploratory threshold. These included RTN4, XKR4, NRXN1, NRG1/3 and GRK5. Additionally, PGS analyses suggested serum FAS, ECP, TRANCE and cytokine ligands, amongst others, might represent potential circulating biomarkers of Li response and clinical presentation. Taken together, our results support the notion of a relatively weak association between immunity and clinically relevant features of BP at the genetic level.
Collapse
Affiliation(s)
| | | | | | | | | | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University
| | - Nirmala Akula
- National Institutes of Health, US Dept of Health & Human Services
| | | | - Bárbara Arias
- Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, CIBERSAM
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich
| | | | | | - Liping Hou
- National Institute of Mental Health Intramural Research Program, National Institutes of Health
| | | | | | | | | | | | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | - Po-Hsiu Kuo
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marina Mitjans
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | - Tomas Novak
- National Institute of Mental Health, Klecany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Stamm
- Charité - Universitätsmedizin Berlin, Campus Charité Mitte
| | | | | | | | | | - Gustavo Turecki
- Douglas Institute, Department of Psychiatry, McGill University
| | | | | | - Biju Viswanath
- National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | | | | | | | | | - Francis McMahon
- National Institute of Mental Health Intramural Research Program; National Institutes of Health
| | | | | | | | | |
Collapse
|
13
|
Patel S, Keating BA, Dale RC. Anti-inflammatory properties of commonly used psychiatric drugs. Front Neurosci 2023; 16:1039379. [PMID: 36704001 PMCID: PMC9871790 DOI: 10.3389/fnins.2022.1039379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Mental health and neurodevelopmental disorders are extremely common across the lifespan and are characterized by a complicated range of symptoms that affect wellbeing. There are relatively few drugs available that target disease mechanisms for any of these disorders. Instead, therapeutics are focused on symptoms and syndromes, largely driven by neurotransmitter hypotheses, such as serotonin or dopamine hypotheses of depression. Emerging evidence suggests that maternal inflammation during pregnancy plays a key role in neurodevelopmental disorders, and inflammation can influence mental health expression across the lifespan. It is now recognized that commonly used psychiatric drugs (anti-depressants, anti-psychotics, and mood stabilizers) have anti-inflammatory properties. In this review, we bring together the human evidence regarding the anti-inflammatory mechanisms for these main classes of psychiatric drugs across a broad range of mental health disorders. All three classes of drugs showed evidence of decreasing levels of pro-inflammatory cytokines, particularly IL-6 and TNF-α, while increasing the levels of the anti-inflammatory cytokine, IL-10. Some studies also showed evidence of reduced inflammatory signaling via nuclear factor- (NF-)κB and signal transducer and activator of transcription (STAT) pathways. As researchers, clinicians, and patients become increasingly aware of the role of inflammation in brain health, it is reassuring that these psychiatric drugs may also abrogate this inflammation, in addition to their effects on neurotransmission. Further studies are required to determine whether inflammation is a driver of disease pathogenesis, and therefore should be a therapeutic target in future clinical trials.
Collapse
Affiliation(s)
- Shrujna Patel
- Faculty of Medicine and Health, Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Clinical School, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Brooke A. Keating
- Faculty of Medicine and Health, Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Russell C. Dale
- Faculty of Medicine and Health, Kids Neuroscience Centre, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Clinical School, The Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia,Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia,*Correspondence: Russell C. Dale ✉
| |
Collapse
|
14
|
Severe psychiatric disorders and general medical comorbidities: inflammation-related mechanisms and therapeutic opportunities. Clin Sci (Lond) 2022; 136:1257-1280. [PMID: 36062418 DOI: 10.1042/cs20211106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Individuals with severe psychiatric disorders, such as mood disorders and schizophrenia, are at increased risk of developing other medical conditions, especially cardiovascular and metabolic diseases. These medical conditions are underdiagnosed and undertreated in these patients contributing to their increased morbidity and mortality. The basis for this increased comorbidity is not well understood, possibly reflecting shared risks factors (e.g. lifestyle risk factors), shared biological mechanisms and/or reciprocal interactions. Among overlapping pathophysiological mechanisms, inflammation and related factors, such as dysbiosis and insulin resistance, stand out. Besides underlying the association between psychiatric disorders and cardiometabolic diseases, these mechanisms provide several potential therapeutic targets.
Collapse
|
15
|
Schoretsanitis G, de Filippis R, Brady BM, Homan P, Suppes T, Kane JM. Prevalence of impaired kidney function in patients with long-term lithium treatment: A systematic review and meta-analysis. Bipolar Disord 2022; 24:264-274. [PMID: 34783413 DOI: 10.1111/bdi.13154] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Although lithium renal effects have been extensively investigated, prevalence rates of chronic kidney disease (CKD) in lithium-treated patients vary. Our aim was to provide prevalence estimates and related moderators. METHODS We performed a systematic review in PubMed/Embase until November 01, 2021, conducting a random effects meta-analysis of studies evaluating CKD prevalence rates in lithium-treated patients calculating overall prevalence ±95% confidence intervals (CIs). Meta-regression analyses included sex, age, body mass index, smoking, hypertension, diabetes, cardiovascular disease, lithium-treatment dose, duration, and blood levels. Subgroup analyses included sample size, diagnoses, and study design. Pooled odds ratios (OR) were estimated for studies including patients receiving nonlithium treatment. Study quality was assessed using the Newcastle-Ottawa scale. RESULTS Five, nine, and six trials were rated as high, fair, and low quality, respectively. In 20 studies (n = 25,907 patients), we estimated an overall prevalence of 25.5% (95% CI = 19.8-32.2) of impaired kidney function; despite lack of differences (p = 0.18), prevalence rates were higher in elderly samples than mixed samples of elderly and nonelderly (35.6%, 95% CI = 21.4-52.9, k = 2, n = 3,161 vs. 25.1%, 95% CI = 19.1-31.3, k = 18, n = 22,746). Prevalence rates were associated with longer lithium treatment duration (p = 0.04). Cross-sectional studies provided lower rates than retrospective studies (14.5%, 95% CI = 13.5-15.5, k = 6, n = 4,758 vs. 29.5%, 95% CI = 22.1-38.0, k = 12, n = 17,988, p < 0.001). Compared with 722,529 patients receiving nonlithium treatment, the OR of impaired kidney function in 14,187 lithium-treated patients was 2.09 (95% CI = 1.24-3.51, k = 8, p = 0.005). CONCLUSIONS One-fourth of patients receiving long-term lithium may develop impaired kidney function, although research suffers from substantial heterogeneity between studies. This risk may be twofold higher compared with nonlithium treatment and may increase for a longer lithium treatment duration.
Collapse
Affiliation(s)
- Georgios Schoretsanitis
- University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry Research, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, New York, USA.,Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York, USA
| | - Renato de Filippis
- Psychiatry Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Brian M Brady
- Division of Nephrology, Clinical Excellence Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Philipp Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry Research, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, New York, USA.,Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York, USA.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Trisha Suppes
- Stanford University School of Medicine and the US Department of Veterans Affairs Palo Alto Health Care System, Stanford, California, USA
| | - John M Kane
- Department of Psychiatry Research, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, New York, USA.,Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York, USA.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|