1
|
Kanel D, Fox NA, Pine DS, Zeanah CH, Nelson CA, McLaughlin KA, Sheridan MA. Altered associations between white matter structure and psychopathology in previously institutionalized adolescents. Dev Cogn Neurosci 2024; 69:101440. [PMID: 39241456 PMCID: PMC11405635 DOI: 10.1016/j.dcn.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024] Open
Abstract
Previously institutionalized adolescents show increased risk for psychopathology, though placement into high-quality foster care can partially mitigate this risk. White matter (WM) structure is associated with early institutional rearing and psychopathology in youth. Here we investigate associations between WM structure and psychopathology in previously institutionalized youth. Adolescent psychopathology data were collected using the MacArthur Health and Behavior Questionnaire. Participants underwent diffusion MRI, and data were processed using fixel-based analyses. General linear models investigated interactions between institutionalization groups and psychopathology on fixel metrics. Supplementary analyses also examined the main effects of psychopathology and institutionalization group on fixel metrics. Ever-Institutionalized children included 41 randomized to foster care (Mage=16.6), and 40 to care-as-usual (Mage=16.7)). In addition, 33 participants without a history of institutionalization were included as a reference group (Mage=16.9). Ever-Institutionalized adolescents displayed altered general psychopathology-fixel associations within the cerebellar peduncles, inferior longitudinal fasciculi, corticospinal tract, and corpus callosum, and altered externalizing-fixel associations within the cingulum and fornix. Our findings indicate brain-behavior associations reported in the literature may not be generalizable to all populations. Previously institutionalized youth may develop differential brain development, which in turn leads to altered neural correlates of psychopathology that are still apparent in adolescence.
Collapse
Affiliation(s)
- Dana Kanel
- Department of Human Development, University of Maryland, United States; Emotion and Development Branch, National Institute of Mental Health, United States.
| | - Nathan A Fox
- Department of Human Development, University of Maryland, United States
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, United States
| | - Charles H Zeanah
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, United States
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, United States; Department of Pediatrics, Harvard Medical School, United States; Harvard Graduate School of Education, United States
| | | | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
2
|
Gilchrist CP, Kelly CE, Cumberland A, Dhollander T, Treyvaud K, Lee K, Cheong JLY, Doyle LW, Inder TE, Thompson DK, Tolcos M, Anderson PJ. Fiber-Specific Measures of White Matter Microstructure and Macrostructure Are Associated With Internalizing and Externalizing Symptoms in Children Born Very Preterm and Full-term. Biol Psychiatry 2023; 93:575-585. [PMID: 36481064 DOI: 10.1016/j.biopsych.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Tensor-based investigations suggest that delayed or disrupted white matter development may relate to adverse behavioral outcomes in individuals born very preterm (VP); however, metrics derived from such models lack specificity. Here, we applied a fixel-based analysis framework to examine white matter microstructural and macrostructural correlates of concurrent internalizing and externalizing problems in VP and full-term (FT) children at 7 and 13 years. METHODS Diffusion imaging data were collected in a longitudinal cohort of VP and FT individuals (130 VP and 29 FT at 7 years, 125 VP and 44 FT at 13 years). Fixel-based measures of fiber density, fiber-bundle cross-section, and fiber density and cross-section were extracted from 21 white matter tracts previously implicated in psychopathology. Internalizing and externalizing symptoms were assessed using the Strengths and Difficulties Questionnaire parent report at 7 and 13 years. RESULTS At age 7 years, widespread reductions in fiber-bundle cross-section and fiber density and cross-section and tract-specific reductions in fiber density were related to more internalizing and externalizing symptoms irrespective of birth group. At age 13 years, fixel-based measures were not related to internalizing symptoms, while tract-specific reductions in fiber density, fiber-bundle cross-section, and fiber density and cross-section measures were related to more externalizing symptoms in the FT group only. CONCLUSIONS Age-specific neurobiological markers of internalizing and externalizing problems identified in this study extend previous tensor-based findings to inform pathophysiological models of behavior problems and provide the foundation for investigations into novel preventative and therapeutic interventions to mitigate risk in VP and other high-risk infant populations.
Collapse
Affiliation(s)
- Courtney P Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia; Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Claire E Kelly
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karli Treyvaud
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Psychology and Counselling, La Trobe University, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Katherine Lee
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Terrie E Inder
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Deanne K Thompson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Pimenta RA, Fuchs C, Fears NE, Mariano M, Tamplain P. Distinct mental health profiles in children with Developmental Coordination Disorder: A latent class analysis and associations. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 132:104377. [PMID: 36423431 DOI: 10.1016/j.ridd.2022.104377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/24/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Children with Developmental Coordination Disorder (DCD) show indications for mental health problems. However, these problems are poorly understood. AIMS To identify patterns (profiles) of mental health in this population and to analyze the associations between profiles and child characteristics. METHODS AND PROCEDURES Parents of 119 children with DCD completed the Strengths and Difficulties Questionnaire. OUTCOMES AND RESULTS Results indicated that a four latent class was the best model. Profile 1 was defined as "no" mental health problems (n = 28; 24 %), Profile 2 was defined as "hyperactivity" problems (n = 53; 43.3 %), for clinical indications for hyperactivity, Profile 3 was defined as "internalizing" problems (n = 8; 7.3 %), for clinical indications for emotional symptoms and peer problems, and Profile 4 was defined as "internalizing and externalizing problems" (n = 30; 25.4 %), for clinical indications for problems in both areas. In addition, having a co-occurring disorder, accommodation plans, and using medications were associated with the profiles. CONCLUSIONS AND IMPLICATIONS There are distinct and unique profiles that children with DCD exhibit. Clinicians can use these profiles to better understand the presentation of mental health symptoms in this population and provide adequate services or support if mental health difficulties are present.
Collapse
|
4
|
Thomson P, Vijayakumar N, Fuelscher I, Malpas CB, Hazell P, Silk TJ. White matter and sustained attention in children with attention/deficit-hyperactivity disorder: A longitudinal fixel-based analysis. Cortex 2022; 157:129-141. [PMID: 36283135 DOI: 10.1016/j.cortex.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/29/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Sustained attention is a cognitive function with known links to academic success and mental health disorders such as attention/deficit-hyperactivity disorder (ADHD). Several functional networks are critical to sustained attention, however the association between white matter maturation in tracts linking functional nodes and sustained attention in typical and atypical development is unknown. 309 diffusion-weighted imaging scans were acquired from 161 children and adolescents (80 ADHD, 81 control) at up to three timepoints over ages 9-14. A fixel-based analysis approach was used to calculate mean fiber density and fiber-bundle cross section in tracts of interest. Sustained attention was measured using omission errors and response time variability on the out-of-scanner sustained attention to response task. Linear mixed effects models examined associations of age, group and white matter metrics with sustained attention. Greater fiber density in the bilateral superior longitudinal fasciculus (SLF) I and right SLF II was associated with fewer attention errors in the control group only. In ADHD and control groups, greater fiber density in the left ILF and right thalamo-premotor pathway, as well as greater fiber cross-section in the left SLF I and II and right SLF III, was associated with better sustained attention. Relationships were consistent across the age span. Results suggest that greater axon diameter or number in the dorsal and middle SLF may facilitate sustained attention in neurotypical children but does not assist those with ADHD potentially due to disorder-related alterations in this region. Greater capacity for information transfer across the SLF was associated with attention maintenance in 9-14-year-olds regardless of diagnostic status, suggesting white matter macrostructure may also be important for attention maintenance. White matter and sustained attention associations were consistent across the longitudinal study, according with the stability of structural organization over this time. Future studies can investigate modifiability of white matter properties through ADHD medications.
Collapse
Affiliation(s)
- Phoebe Thomson
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia.
| | | | - Ian Fuelscher
- School of Psychology, Deakin University, Melbourne, Australia
| | - Charles B Malpas
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Philip Hazell
- Discipline of Psychiatry, The University of Sydney, Sydney, Australia
| | - Timothy J Silk
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia; School of Psychology, Deakin University, Melbourne, Australia
| |
Collapse
|
5
|
Lautarescu A, Bonthrone AF, Pietsch M, Batalle D, Cordero-Grande L, Tournier JD, Christiaens D, Hajnal JV, Chew A, Falconer S, Nosarti C, Victor S, Craig MC, Edwards AD, Counsell SJ. Maternal depressive symptoms, neonatal white matter, and toddler social-emotional development. Transl Psychiatry 2022; 12:323. [PMID: 35945202 PMCID: PMC9363426 DOI: 10.1038/s41398-022-02073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Maternal prenatal depression is associated with increased likelihood of neurodevelopmental and psychiatric conditions in offspring. The relationship between maternal depression and offspring outcome may be mediated by in-utero changes in brain development. Recent advances in magnetic resonance imaging (MRI) have enabled in vivo investigations of neonatal brains, minimising the effect of postnatal influences. The aim of this study was to examine associations between maternal prenatal depressive symptoms, infant white matter, and toddler behaviour. 413 mother-infant dyads enrolled in the developing Human Connectome Project. Mothers completed the Edinburgh Postnatal Depression Scale (median = 5, range = 0-28, n = 52 scores ≥ 11). Infants (n = 223 male) (median gestational age at birth = 40 weeks, range 32.14-42.29) underwent MRI (median postmenstrual age at scan = 41.29 weeks, range 36.57-44.71). Fixel-based fibre metrics (mean fibre density, fibre cross-section, and fibre density modulated by cross-section) were calculated from diffusion imaging data in the left and right uncinate fasciculi and cingulum bundle. For n = 311, internalising and externalising behaviour, and social-emotional abilities were reported at a median corrected age of 18 months (range 17-24). Statistical analysis used multiple linear regression and mediation analysis with bootstrapping. Maternal depressive symptoms were positively associated with infant fibre density in the left (B = 0.0005, p = 0.003, q = 0.027) and right (B = 0.0006, p = 0.003, q = 0.027) uncinate fasciculus, with left uncinate fasciculus fibre density, in turn, positively associated with social-emotional abilities in toddlerhood (B = 105.70, p = 0.0007, q = 0.004). In a mediation analysis, higher maternal depressive symptoms predicted toddler social-emotional difficulties (B = 0.342, t(307) = 3.003, p = 0.003), but this relationship was not mediated by fibre density in the left uncinate fasciculus (Sobel test p = 0.143, bootstrapped indirect effect = 0.035, SE = 0.02, 95% CI: [-0.01, 0.08]). There was no evidence of an association between maternal depressive and cingulum fibre properties. These findings suggest that maternal perinatal depressive symptoms are associated with neonatal uncinate fasciculi microstructure, but not fibre bundle size, and toddler behaviour.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - J-Donald Tournier
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Andrew Chew
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Female Hormone Clinic, South London and Maudsley National Health Service Foundation Trust, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- EPSRC/Wellcome Centre for Medical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
6
|
Taniguchi A, Hayakawa M, Kataoka E, Fujishiro N, Sato Y. Relationship between Neonatal MRI Findings and Emotional/Behavioral Evaluation in Early Childhood for Extremely Low-Birth-Weight Infants. J Clin Med 2022; 11:jcm11030772. [PMID: 35160224 PMCID: PMC8837173 DOI: 10.3390/jcm11030772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is to investigate whether it is possible to detect future behavioral and emotional problems in extremely low-birth-weight infants by evaluating the neonatal head magnetic resonance imaging (MRI) using a scoring system. This study included 62 extremely low-birth-weight infants born between April 2015 and March 2017 and those who had undergone MRI at 36 to 42 weeks of gestation. These subjects were administered with the Strength and Difficulties Questionnaire (SDQ) at age 4–5, and the patients who responded to the questionnaire were included in the study. A positive correlation was observed between the Global Brain Abnormality Score and Total Difficulties Score of the SDQ (r = 0.26, p = 0.038). However, no significant difference was observed between the median Global Brain Abnormality Score of the normal and borderline-range group and the Total Difficulties Score of the clinical-range group (p = 0.51). This study demonstrated the relationship between the MRI findings in the newborn period and the emotional and behavioral problems in early childhood, but it is not clinically useful as a predictive marker.
Collapse
Affiliation(s)
- Akinobu Taniguchi
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya 466-8560, Japan; (M.H.); (Y.S.)
- Correspondence: ; Tel./Fax: +81-52-744-2974
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya 466-8560, Japan; (M.H.); (Y.S.)
| | - Erina Kataoka
- Department of Pediatrics, Anjo Kosei Hospital, Anjo 446-8602, Japan;
| | - Naozumi Fujishiro
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya 453-8511, Japan;
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya 466-8560, Japan; (M.H.); (Y.S.)
| |
Collapse
|
7
|
Medeiros PD, Cardoso FL, Silva WRD, Zequinão MA, Tamplain P. Externalizing problems mediate the relationship between motor proficiency and internalizing problems in children: An extension of the Environmental Stress Hypothesis. Hum Mov Sci 2021; 81:102916. [PMID: 34953291 DOI: 10.1016/j.humov.2021.102916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022]
Abstract
The Environmental Stress Hypothesis (ESH) is a causal theoretical framework that provides a flexible context for understanding factors that mediate the relationship between low motor proficiency and internalizing problems in children. The purpose of the present study was to use the ESH framework to determine whether body mass index (BMI), physical activity levels, psychosocial health and physical health, self-efficacy, perceived social status, prosocial behavior and externalizing problems were potential mediators between motor proficiency and internalizing factors in a population of Brazilian children. 431 children aged 7- to 10 years (240 females, 191 males) participated in the study. The variables were measured with the Movement Assessment Battery for Children, 2nd ed. (MABC-2), the Pediatric Quality of Life Inventory (PedsQL), the Strengths and Difficulties Questionnaire (SDQ), the MacArthur Subjective Social Status Scale (MacArthur SSS), the Self-efficacy Sense Assessment Roadmap (RASAE), and the Physical Activity Questionnaire (PAQ). The results indicated a direct relationship between motor proficiency and internalizing problems in a population of Brazilian children, with externalizing problems being the only variable mediating that relationship. To the best of our knowledge, this is the first time that externalizing problems were tested in the context of the ESH. Understanding and evaluating potential mediators in the relationship between motor proficiency and internalizing problems using the ESH framework is essential to promote prevention policies and interventions for school-age children.
Collapse
Affiliation(s)
- Pâmella de Medeiros
- Department of Physical Education, State University of Santa Catarina, Brazil
| | | | | | | | | |
Collapse
|
8
|
Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. Neuroimage 2021; 241:118417. [PMID: 34298083 DOI: 10.1016/j.neuroimage.2021.118417] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.
Collapse
|