1
|
Chang X, He Y, Liu Y, Fei J, Qin X, Song B, Yu Q, Shi M, Guo D, Hui L, Chen J, Wang A, Xu T, He J, Zhang Y, Zhu Z. Serum brain derived neurotrophic factor levels and post-stroke depression in ischemic stroke patients. J Affect Disord 2024; 361:341-347. [PMID: 38897298 DOI: 10.1016/j.jad.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is crucial for neuronal survival and may be implicated in the pathophysiological process of depression. This study aimed to prospectively investigate the association between serum BDNF and post-stroke depression (PSD) at 3 months in a multicenter cohort study. METHODS A total of 611 ischemic stroke patients with serum BDNF measurements from the China Antihypertensive Trial in Acute Ischemic Stroke were included in this analysis. We used the 24-item Hamilton Depression Rating Scale to assess depression status at 3 months after ischemic stroke, and PSD was defined as a score of ≥8. RESULTS Baseline serum BDNF was inversely associated with the risk of depression after ischemic stroke. The multivariable-adjusted odds ratio of PSD for the highest tertile of BDNF was 0.53 (95 % confidence interval, 0.34-0.82; P for trend = 0.004) compared with the lowest tertile. Multivariable-adjusted spline regression model also showed a linear does-response association between serum BDNF levels and PSD at 3 months (P for linearity = 0.006). In addition, adding serum BDNF to conventional risk factors significantly improved the risk reclassification of PSD (net reclassification improvement: 16.98 %, P = 0.039; integrated discrimination index: 0.93 %, P = 0.026). LIMITATIONS All patients in this study were Chinese, so our findings should be applied to other populations cautiously. CONCLUSIONS Higher serum BDNF levels at baseline were significantly associated with a decreased risk of PSD at 3 months, suggesting that BDNF might be a valuable predictive biomarker and potential therapeutic target for PSD among ischemic stroke patients.
Collapse
Affiliation(s)
- Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiawen Fei
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoli Qin
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Beiping Song
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Quan Yu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Li Hui
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aili Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America.
| |
Collapse
|
2
|
Xu M, Li L, Xu B, Yuan S, Zheng Q, Sun W. Observations on the efficacy of edaravone dexborneol in preventing post-stroke depression and its inflammatory mechanism: a prospective, randomized, control trial. Front Neurosci 2024; 18:1451060. [PMID: 39315079 PMCID: PMC11417031 DOI: 10.3389/fnins.2024.1451060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Objective This study aimed to observe the effect of edaravone dexborneol (EDB) on the incidence of early post-stroke depression (PSD) and explore its inflammatory mechanisms. Methods A prospective, randomized controlled study was conducted from January 2022 to June 2023, involving patients with acute ischemic stroke (AIS) at the Neurology Department of the Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine. The control group received routine treatment, while the experimental group received routine combined EDB treatment. The main outcome measures included PSD incidence, Patient Health Questionnaire (PHQ-9) and Hamilton Depression Scale (HAMD) scores on days 14 and 30, and inflammatory factor levels on day 14. Results A total of 93 patients were included in the study, 51 in the experimental group and 42 in the control group. On day 14, the PSD incidence was 13.7% in the experimental group, lower than 31.0% in the control group (95%CI 0.127-0.996; p = 0.044). Compared to the control group, the experimental group showed significantly lower concentrations of pro-inflammatory cytokines IL-1β (95%CI 3.353-5.184), IL-6 (95%CI 2.694-3.426), TNF-α (95%CI 4.985-12.196), IFN-γ (95%CI 0.163-0.451), MCP-1 (95%CI 0.335-0.787), IL-17A (95%CI 0.543-1.024), and IL-23p19 (95%CI 1.677-1.959) (all p < 0.001), and higher levels of anti-inflammatory cytokines IL-4 (95%CI -1.087 to -0.941), IL-10 (95%CI -6.125 to -1.662), and IL-13 (95%CI -6.078 to -2.953) (all p ≤ 0.001). On day 30, the PSD incidence in the experimental group was 15.7%, lower than 40.5% in the control group (95%CI 0.103-0.725; p = 0.007). Compared with the control group, the experimental group had lower PHQ-9 scores on day 14 (95%CI 0.034-1.577; p = 0.041) and day 30 (95%CI 0.018-1.573; p = 0.045), and also had lower HAMD scores on day 14 (95% CI 0.281-2.856; p = 0.018) and day 30 (95% CI 0.647-3.482; p = 0.005). Conclusion EDB could reduce the incidence of early PSD, reduce pro-inflammatory cytokine levels, and elevate anti-inflammatory cytokine levels, which was possibly related to the anti-inflammatory mechanism of EDB. Clinical trial registration http://www.chictr.org.cn/, identifier [ChiCTR2300067750].
Collapse
Affiliation(s)
- Mingyuan Xu
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lan Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
| | - Bu Xu
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shanfang Yuan
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Zheng
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjun Sun
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Wardlaw JM, Chabriat H, de Leeuw FE, Debette S, Dichgans M, Doubal F, Jokinen H, Katsanos AH, Ornello R, Pantoni L, Pasi M, Pavlovic AM, Rudilosso S, Schmidt R, Staals J, Taylor-Rowan M, Hussain S, Lindgren AG. European stroke organisation (ESO) guideline on cerebral small vessel disease, part 2, lacunar ischaemic stroke. Eur Stroke J 2024; 9:5-68. [PMID: 38380638 PMCID: PMC10916806 DOI: 10.1177/23969873231219416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 02/22/2024] Open
Abstract
A quarter of ischaemic strokes are lacunar subtype, typically neurologically mild, usually resulting from intrinsic cerebral small vessel pathology, with risk factor profiles and outcome rates differing from other stroke subtypes. This European Stroke Organisation (ESO) guideline provides evidence-based recommendations to assist with clinical decisions about management of lacunar ischaemic stroke to prevent adverse clinical outcomes. The guideline was developed according to ESO standard operating procedures and Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. We addressed acute treatment (including progressive lacunar stroke) and secondary prevention in lacunar ischaemic stroke, and prioritised the interventions of thrombolysis, antiplatelet drugs, blood pressure lowering, lipid lowering, lifestyle, and other interventions and their potential effects on the clinical outcomes recurrent stroke, dependency, major adverse cardiovascular events, death, cognitive decline, mobility, gait, or mood disorders. We systematically reviewed the literature, assessed the evidence and where feasible formulated evidence-based recommendations, and expert concensus statements. We found little direct evidence, mostly of low quality. We recommend that patients with suspected acute lacunar ischaemic stroke receive intravenous alteplase, antiplatelet drugs and avoid blood pressure lowering according to current acute ischaemic stroke guidelines. For secondary prevention, we recommend single antiplatelet treatment long-term, blood pressure control, and lipid lowering according to current guidelines. We recommend smoking cessation, regular exercise, other healthy lifestyle modifications, and avoid obesity for general health benefits. We cannot make any recommendation concerning progressive stroke or other drugs. Large randomised controlled trials with clinically important endpoints, including cognitive endpoints, are a priority for lacunar ischaemic stroke.
Collapse
Affiliation(s)
- Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Hugues Chabriat
- CNVT and Department of Neurology, Hopital Lariboisière, Paris, France
| | - Frank-Erik de Leeuw
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Stéphanie Debette
- Bordeaux Population Health Research Center; University of Bordeaux – Inserm U1219; Bordeaux; Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Medical Center, Munich; Munich Cluster for Systems Neurology (SyNergy), Munich; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich; German Centre for Cardiovascular Research (DZHK, Munich), Munich, Germany
| | - Fergus Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, UK
| | - Hanna Jokinen
- Neurocenter, Helsinki University Hospital and University of Helsinki, HUS, Helsinki, Finland
| | - Aristeidis H Katsanos
- Neurology, McMaster University & Population Health Research Institute, Hamilton, ON, Canada
| | - Raffaele Ornello
- Neurology/Department of Biotechnological ad Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Marco Pasi
- Department of Neurology, University of Tours, Tours, France
| | - Aleksandra M Pavlovic
- University of Belgrade, Faculty of Special Education and Rehabilitation, Belgrade, Serbia
| | - Salvatore Rudilosso
- Comprehensive Stroke Center, Department of Neurology, Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - Julie Staals
- Department of Neurology and CARIM School for cardiovascular diseases, MUMC+, Maastricht, The Netherlands
| | - Martin Taylor-Rowan
- School of Health and Wellbeing; General Practice and Primary Care, Clarice Pears Building, University of Glasgow, Glasgow, UK
| | | | - Arne G Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Skånes Universitetssjukhus, Lund, Sweden
| |
Collapse
|
4
|
Stulberg EL, Sachdev PS, Murray AM, Cramer SC, Sorond FA, Lakshminarayan K, Sabayan B. Post-Stroke Brain Health Monitoring and Optimization: A Narrative Review. J Clin Med 2023; 12:7413. [PMID: 38068464 PMCID: PMC10706919 DOI: 10.3390/jcm12237413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Significant advancements have been made in recent years in the acute treatment and secondary prevention of stroke. However, a large proportion of stroke survivors will go on to have enduring physical, cognitive, and psychological disabilities from suboptimal post-stroke brain health. Impaired brain health following stroke thus warrants increased attention from clinicians and researchers alike. In this narrative review based on an open timeframe search of the PubMed, Scopus, and Web of Science databases, we define post-stroke brain health and appraise the body of research focused on modifiable vascular, lifestyle, and psychosocial factors for optimizing post-stroke brain health. In addition, we make clinical recommendations for the monitoring and management of post-stroke brain health at major post-stroke transition points centered on four key intertwined domains: cognition, psychosocial health, physical functioning, and global vascular health. Finally, we discuss potential future work in the field of post-stroke brain health, including the use of remote monitoring and interventions, neuromodulation, multi-morbidity interventions, enriched environments, and the need to address inequities in post-stroke brain health. As post-stroke brain health is a relatively new, rapidly evolving, and broad clinical and research field, this narrative review aims to identify and summarize the evidence base to help clinicians and researchers tailor their own approach to integrating post-stroke brain health into their practices.
Collapse
Affiliation(s)
- Eric L. Stulberg
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA;
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, Sydney, NSW 2052, Australia;
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anne M. Murray
- Berman Center for Outcomes and Clinical Research, Minneapolis, MN 55415, USA;
- Department of Medicine, Geriatrics Division, Hennepin Healthcare Research Institute, Minneapolis, MN 55404, USA
| | - Steven C. Cramer
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- California Rehabilitation Institute, Los Angeles, CA 90067, USA
| | - Farzaneh A. Sorond
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Kamakshi Lakshminarayan
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Behnam Sabayan
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Neurology, Hennepin Healthcare Research Institute, Minneapolis, MN 55404, USA
| |
Collapse
|
5
|
Shan W, Zhao J, Qiu C, Xu G, Feng J. Glial Fibrillary Acidic Protein Levels in Post-Stroke Depression: A Prospective Ischemic Stroke Cohort. Neuropsychiatr Dis Treat 2023; 19:2171-2178. [PMID: 37873533 PMCID: PMC10590582 DOI: 10.2147/ndt.s435006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Background and Purpose Increased glial fibrillary acidic protein (GFAP) levels were found in cerebrovascular disease patients. The pathogenesis of depression after ischemic stroke remains largely unknown. Here, we aim to determine whether GFAP concentrations were associated with post-stroke depression (PSD) at 3 months. Methods From March 2022 to September 2022, patients with first-ever ischemic stroke were prospectively recruited. GFAP concentrations were detected within 24 h using an enzyme-linked immunosorbent assay. The PSD was defined as a Hamilton Depression Rating Scale 24-Item score ≥ 8. Results A total of 206 subjects with ischemic stroke (mean age: 63.6 years; 49.0% female) were enrolled. During the 90-day follow-up, 57 participants (27.7%) were observed in PSD. The median serum GFAP concentrations were 0.67 ng/mL. After adjustment for the covariates, higher increased GFAP levels were associated with increased risk of PSD (odds ratio [OR], 7.12; 95% confidence interval [CI], 3.29-15.44; P < 0.001). Also, the multivariate-adjusted OR of PSD associated with the fourth quartile of GFAP was 10.89 (95% CI, 3.53-33.60; P < 0.001) compared with the first quartile. Furthermore, the restricted cubic spline confirmed a linear association between GFAP and the risk of PSD (P for linearity < 0.001). Conclusion Our results indicated that increased circulating GFAP concentrations were significantly correlated with the risk of PSD at 3 months. Measuring the GFAP levels after ischemic stroke may add some values for the risk stratifying of PSD.
Collapse
Affiliation(s)
- Wanying Shan
- Department of Neurology, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| | - Jie Zhao
- Department of Gerontology, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| | - Chunfang Qiu
- Department of Neurology, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| | - Guoli Xu
- Department of Neurology, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| | - Jie Feng
- Department of Neurology, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, 215200, People’s Republic of China
| |
Collapse
|
6
|
Role of cerebral microbleeds in acute ischemic stroke and atrial fibrillation. J Thromb Thrombolysis 2022; 55:553-565. [PMID: 36571659 DOI: 10.1007/s11239-022-02761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Abstract
Cerebral microbleeds (CMBs) are commonly detected in the brains of patients with acute ischemic stroke (AIS). With the development of neuroimaging, clinicians are paying more attention to the presence of CMBs. CMBs were found to significantly increase the risk of intracranial hemorrhagic transformation and hemorrhage in patients with AIS, especially in patients with concurrent atrial fibrillation (AF). Additionally, the presence of CMBs is thought to be a symbol of a high risk of recurrent ischemic stroke (IS). A few researchers have found that the presence of CMBs has no significant effect on the prognosis of patients with AIS. Therefore, the current views on the role of CMBs in the prognoses of patients with IS are controversial. The use of anticoagulants and other drugs has also become a dilemma due to the special influence of CMBs on the prognosis of these patients. Due to the large number of patients with AF and CMBs, many studies have been conducted on the effects of CMBs on these patients and subsequent pharmacological treatments. However, at present, there are no relevant guidelines to guide the secondary preventive treatment of patients with stroke, CMBs, and AF. In this paper, we summarized the role of CMBs in AIS combined with AF and relevant preventive measures against the recurrence of stroke and the occurrence of intracerebral hemorrhage to help clarify the specifics of drug therapies for this group of patients.
Collapse
|
7
|
Li M, Ding R, Yang X, Ran D. Study on Biomarkers Related to the Treatment of Post-Stroke Depression and Alternative Medical Treatment Methods. Neuropsychiatr Dis Treat 2022; 18:1861-1873. [PMID: 36052274 PMCID: PMC9426768 DOI: 10.2147/ndt.s370848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE PSD is a syndrome that occurs after a stroke, which manifests as a series of depressive symptoms and corresponding physiological symptoms. Relevant studies have shown that the drug therapy is often accompanied by drug side effects and patient resistance. Acupuncture has attracted attention as a treatment method without adverse reactions of patients. The purpose of this study was to investigate the possible mechanism of action of acupuncture in PSD. PATIENTS AND METHODS Download depression and stroke datasets from public databases. Bioinformatics methods were used to analyze the key gene targets related to stroke and depression. Functional enrichment analysis assesses important pathways. Further screen PSD-related biological pathways and genes. After the experimental model was established, the expression differences of key genes and related pathways were compared between the model group and the control group through acupuncture treatment and qPCR verification. RESULTS Depression and stroke-related genes were obtained by bioinformatics methods, and then important biological processes and biological pathways related to depression and stroke were analyzed by GO and KEGG. And further screen out the disease targets closely related to PSD. In the follow-up animal experiments, we confirmed that acupuncture can intervene on these key pathways and targets, and then play a role in the targeted therapy of diseases. CONCLUSION The results of this study show that five genes ("NRBP1", "SIRT1", "BDNF", "MAPK3", "CREB1".) and key biological pathways such as NFkB, PI3K/AKT activation, and MAPK are the keys to the occurrence and development of PSD biomarkers, which can also be therapeutically intervened by acupuncture.
Collapse
Affiliation(s)
- Menghan Li
- Acupuncture-Moxibustion Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ran Ding
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xinming Yang
- Acupuncture-Moxibustion Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Dawei Ran
- Acupuncture-Moxibustion Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|