1
|
Piva A, Benvegnù G, Negri S, Commisso M, Ceccato S, Avesani L, Guzzo F, Chiamulera C. Whole Plant Extracts for Neurocognitive Disorders: A Narrative Review of Neuropsychological and Preclinical Studies. Nutrients 2024; 16:3156. [PMID: 39339756 PMCID: PMC11434991 DOI: 10.3390/nu16183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The incidence of neurodegenerative disorders like Alzheimer's or Parkinson's Disease, characterized by a progressive cognitive decline, is rising worldwide. Despite the considerable efforts to unveil the neuropsychological bases of these diseases, there is still an unmet medical need for effective therapies against cognitive deficits. In recent years, increasing laboratory evidence indicates the potential of phytotherapy as an integrative aid to improve cognitive functions. In this review, we describe the data of plant whole extracts or single compounds' efficacy on validated preclinical models and neuropsychological tests, aiming to correlate brain mechanisms underlying rodent behavioral responses to human findings. After a search of the literature, the overview was limited to the following plants: Dioscorea batatas, Ginkgo biloba, Melissa officinalis, Nigella sativa, Olea europaea, Panax ginseng, Punica granatum, and Vitis vinifera. Results showed significant improvements in different cognitive functions, such as learning and memory or visuospatial abilities, in both humans and rodents. However, despite promising laboratory evidence, clinical translation has been dampened by a limited pharmacological characterization of the single bioactive components of the herbal products. Depicting the contribution of the single phytochemicals to the phytocomplex's pharmacological efficacy could enable the comprehension of their potential synergistic activity, leading to phytotherapy inclusion in the existing therapeutic package against cognitive decline.
Collapse
Affiliation(s)
- Alessandro Piva
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
| | - Giulia Benvegnù
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
| | - Stefano Negri
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mauro Commisso
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Sofia Ceccato
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
| | - Linda Avesani
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Flavia Guzzo
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Cristiano Chiamulera
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
| |
Collapse
|
2
|
Georg Jensen M, Goode M, Heinrich M. Herbal medicines and botanicals for managing insomnia, stress, anxiety, and depression: A critical review of the emerging evidence focusing on the Middle East and Africa. PHARMANUTRITION 2024; 29:100399. [DOI: 10.1016/j.phanu.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Wu L, Guo X, Gao Y, Yu W, Qin W, Kuang H, Su Y. Untargeted metabolomics reveals intervention effects of wine-processed Schisandra chinensis polysaccharide on Alzheimer's disease mice. Int J Biol Macromol 2024; 267:130804. [PMID: 38565361 DOI: 10.1016/j.ijbiomac.2024.130804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Schisandra chinensis (Turcz.) Baill (SC) is a traditional sedative in China, with wide applications for treating various neurological disorders. Its polysaccharide component has been gaining increased attention for its potential in nerve protection. While raw SC is the primary focus of current research, its processed products are primarily utilized as clinical medicines. Notably, limited research exists on the mechanisms underlying the effects of wine-processed Schisandra chinensis polysaccharide (WSCP) in Alzheimer's Disease (AD). Therefore, this study seeks to assess the therapeutic impact of WSCP on AD mice and investigate the underlying mechanisms through biochemical and metabolomics analyses. The results demonstrate that WSCP exerts significant therapeutic effects on AD mice by enhancing learning and memory abilities, mitigating hippocampal neuronal damage, reducing abnormal amyloid-beta (Aβ) deposition, and attenuating hyperphosphorylation of Tau. Biochemical analysis revealed that WSCP can increase SOD content and decrease MDA, IL-6, and TNF-α content in AD mice. Furthermore, serum metabolomic results showed that WSCP intervention can reverse metabolic disorders in AD mice. 43 endogenous metabolites were identified as potential biomarkers for WSCP treatment of AD, and the major metabolic pathways were Ala, Glu and Asp metabolism, TCA cycle. Overall, these findings will provide a basis for further development of WSCP.
Collapse
Affiliation(s)
- Lun Wu
- Institute of Traditional Chinese Medicine, Heilongjiang University Of Chinese Medicine, Heilongjiang 150040, China
| | - Xingyu Guo
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Heilongjiang 150040, China
| | - Yue Gao
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Heilongjiang 150040, China
| | - Wenting Yu
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Heilongjiang 150040, China
| | - Wen Qin
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Heilongjiang 150040, China
| | - Haixue Kuang
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Heilongjiang 150040, China
| | - Yang Su
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Heilongjiang 150040, China.
| |
Collapse
|
4
|
Lopresti AL, Smith SJ, Pouchieu C, Pourtau L, Gaudout D, Pallet V, Drummond PD. Effects of a polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment: A randomized, double-blind, placebo-controlled study. Front Psychol 2023; 14:1144231. [PMID: 37063535 PMCID: PMC10095830 DOI: 10.3389/fpsyg.2023.1144231] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundPolyphenols are naturally occurring organic compounds found in plants. Research suggests that their intake reduces the risk of cognitive decline and related dementias. Grapes and blueberries are polyphenol-rich foods that have attracted attention for their potential cognitive-enhancing effects.PurposeExamine the effects of supplementation with a standardized and patented polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment.Study designTwo-arm, 6 month, parallel-group, randomized, double-blind, placebo-controlled trial.MethodsOne hundred and forty-three volunteers aged 60 to 80 years with mild cognitive impairment were supplemented with either 150 mg of Memophenol™, twice daily or a placebo. Outcome measures included computer-based cognitive tasks, the Behavior Rating Inventory of Executive Function (BRIEF-A), the Cognitive Failures Questionnaire, and the CASP-19.ResultsCompared to the placebo, Memophenol™ supplementation was associated with greater improvements in the speed of information processing (p = 0.020), visuospatial learning (p = 0.012), and the BRIEF-A global score (p = 0.046). However, there were no other statistically significant between-group differences in the performance of other assessed cognitive tests or self-report questionnaires. Memophenol™ supplementation was well-tolerated with no reports of significant adverse reactions.ConclusionThe promising results from this trial suggest that 6-months of supplementation with Memophenol™ may improve aspects of cognitive function in adults with mild cognitive impairment. Further research will be important to expand on the current findings and identify the potential mechanisms of action associated with the intake of this polyphenol-rich extract.
Collapse
Affiliation(s)
- Adrian L. Lopresti
- Clinical Research Australia, Perth, WA, Australia
- Healthy Ageing Research Centre and Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Adrian L. Lopresti,
| | - Stephen J. Smith
- Clinical Research Australia, Perth, WA, Australia
- Healthy Ageing Research Centre and Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | | | | | | | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR, Bordeaux, France
| | - Peter D. Drummond
- Healthy Ageing Research Centre and Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
5
|
Experimentally Induced Animal models for Cognitive dysfunction and Alzheimer's disease. MethodsX 2022; 9:101933. [DOI: 10.1016/j.mex.2022.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
|
6
|
Sharma K, Verma R, Kumar D, Nepovimova E, Kuča K, Kumar A, Raghuvanshi D, Dhalaria R, Puri S. Ethnomedicinal plants used for the treatment of neurodegenerative diseases in Himachal Pradesh, India in Western Himalaya. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115318. [PMID: 35469830 DOI: 10.1016/j.jep.2022.115318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are considered as a healthcare resource and widely used by rural people in their traditional medicine system for curing neurodegenerative diseases. Neurodegenerative diseases refer to incurable and debilitating conditions that result in progressive degeneration/death of nerve cells or neurons in the human brain. This review is mainly focused on the usage of different ethnomedicinal plants in the treatment of different neurodegenerative diseases in Himachal Pradesh. Study reveals total of 73 ethnomedicinal plants, which are used for treating different neurological disorders in different areas of Himachal Pradesh. The data is compiled from the different sources that described the detailed information of plants in tabular form and highlights the significance of different phytochemicals on neuroprotective function. The present study also provides the scientific data and clinical (in-vivo and in-vitro) studies in support of ethnomedicinal use. AIM OF THE STUDY This review aims to provide information of ethnomedicinal plants which are used for the treatment of neurodegenerative diseases in Himachal Pradesh. MATERIALS AND METHODS Information on the use of ethnomedicinal plants to treat various neurological disorders has been gathered from a variety of sources, including various types of literature, books, and relevant publications in Google Scholar, Research Gate, Science Direct, Scopus, and Pub Med, among others. The collected data is tabulated, including the botanical names of plants, mode of use and the disease for which it is used for curing, etc. RESULTS: There are 73 ethnomedicinal plants that are used to cure various neurological disorders, with the most plants being used to treat epilepsy problem in Himachal Pradesh. CONCLUSION Numerous phytochemicals and extracts from diverse plants were found to have a protective effect against neurodegenerative diseases. Antioxidant activity is known to exist in a variety of herbal plants. The most common bioactive antioxidant chemicals having their significant impacts include flavonoids, flavones, coumarins, lignans, isoflavones, catechins, anthocyanins, and isocatechins.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005, Hradec, Kralove, Czech Republic.
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.
| | - Disha Raghuvanshi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| |
Collapse
|
7
|
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. mTOR signaling as a molecular target for the alleviation of Alzheimer's disease pathogenesis. Neurochem Int 2022; 155:105311. [PMID: 35218870 DOI: 10.1016/j.neuint.2022.105311] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR) belongs to the phosphatidylinositol kinase-related kinase (PIKK) family. mTOR signaling is required for the commencement of essential cell functions including autophagy. mTOR primarily governs cell growth in response to favourable nutrients and other growth stimuli. However, it also influences aging and other aspects of nutrient-related physiology such as protein synthesis, ribosome biogenesis, and cell proliferation in adults with very limited growth. The major processes for survival such as synaptic plasticity, memory storage and neuronal recovery involve a significant mTOR activity. mTOR dysregulation is becoming a prevalent motif in a variety of human diseases, including cancer, neurological disorders, and other metabolic syndromes. The use of rapamycin to prolong life in different animal models may be attributable to the multiple roles played by mTOR signaling in various processes involved in ageing, protein translation, autophagy, stem cell pool turnover, inflammation, and cellular senescence. mTOR activity was found to be altered in AD brains and rodent models, supporting the notion that aberrant mTOR activity is one of the key events contributing to the onset and progression of AD hallmarks This review assesses the molecular association between the mTOR signaling pathway and pathogenesis of Alzheimer's disease. The research data supporting this theme are also reviewed.
Collapse
Affiliation(s)
- Deepthi Rapaka
- A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India.
| | | | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, 61614, USA.
| | - Paul C Adiukwu
- School of Pharmacy, University of Botswana, Gaborone, 0022, Botswana.
| |
Collapse
|
8
|
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. Potentiation of microglial endocannabinoid signaling alleviates neuroinflammation in Alzheimer's disease. Neuropeptides 2021; 90:102196. [PMID: 34508923 DOI: 10.1016/j.npep.2021.102196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) isaprogressive neurodegenerative disorder characterized by chronic inflammation due to the presence of neurotoxic Aβ and tau proteins. Increased microglial activation and inflated immune response are the other factors to be considered in AD pathology. Microglial cells own biochemical machinery that synthesizes and release endocannabinoids. The exploitation of therapeutic actions of endocannabinoid system has newly emerged in the field of Alzheimer's disease. The activation of cannabinoid receptors/ cannabinoid system modulates inflammatory responses. This review assesses the association between the microglial endocannabinoid system and neuroinflammation in AD. The data supporting the anti-inflammatory role of pharmacological agents modulating cannabinoid system are also reviewed.
Collapse
Affiliation(s)
- Deepthi Rapaka
- A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, India.
| | | | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61614, USA
| | - Paul C Adiukwu
- School of Pharmacy, University of Botswana, P/Bag-0022, Gaborone, Botswana
| |
Collapse
|
9
|
Gayathri S, Chandrashekar H R, Fayaz S M. Phytotherapeutics Against Alzheimer's Disease: Mechanism, Molecular Targets and Challenges for Drug Development. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:409-426. [PMID: 34544351 DOI: 10.2174/1871527320666210920120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is inflating worldwide and is combatted by only a few approved drugs. At best, these drugs treat symptomatic conditions by targeting cholinesterase and N-methyl-D-aspartate receptors. Most of the clinical trials in progress are focused to develop disease-modifying agents that aim single targets. The 'one drug-one target' approach is failing in the case of Alzheimer's disease due to its labyrinth etiopathogenesis. Traditional medicinal systems like ayurveda uses a holistic approach encompassing legion of medicinal plants exhibiting multimodal activity. Recent advances in high-throughput technologies have catapulted the research in the arena of ayurveda, specifically in identifying plants with potent anti-Alzheimer's disease properties and their phytochemical characterization. Nonetheless, clinical trials of very few herbal medicines are in progress. This review is a compendium of Indian plants and ayurvedic medicines against Alzheimer's disease and their paraphernalia. A record of 230 plants that are found in India with anti-Alzheimer's disease potential and about 500 phytochemicals from medicinal plants has been solicited with the hope of exploring the unexplored. Further, the molecular targets of phytochemicals isolated from commonly used medicinal plants such as Acorus calamus, Bacopa monnieri, Convolvulus pluricaulis, Tinospora cordifolia and Withania somnifera have been reviewed with respect to their multidimensional property such as antioxidant, anti-inflammation, anti-aggregation, synaptic plasticity modulation, cognition and memory enhancing activity. In addition, the strengths, and challenges in ayurvedic medicine that limit its use as mainstream therapy is discussed and a framework for the development of herbal medicine has been proposed.
Collapse
Affiliation(s)
- Gayathri S
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka - 576104. India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka - 576104. India
| | - Fayaz S M
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka - 576104. India
| |
Collapse
|
10
|
Rapaka D, Bitra VR, Ummidi R, Akula A. Benincasa hispida alleviates amyloid pathology by inhibition of Keap1/Nrf2-axis: Emphasis on oxidative and inflammatory stress involved in Alzheimer's disease model. Neuropeptides 2021; 88:102151. [PMID: 33932860 DOI: 10.1016/j.npep.2021.102151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/03/2021] [Accepted: 04/18/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Alzheimer's disease is a progressive neurodegenerative disorder with cognitive and memory impairment. Benincasa hispida is being used in the treatment of various neurological diseases in Ayurveda system of medicine. The objective of the study was to investigate the effect of Benincasa hispida fruit extract in the Alzheimer's disease rats. METHODS Benincasa hispida fruits extract was administered orally for 16 weeks at doses of 250 and 500-mg/kg/day. The cognitive deficits were examined by behavioural tests like Morris water maze test, Y-maze and rota-rod test. Biochemical and neurochemical analysis of Acetylcholine, dopamine, serotonin levels and anti-oxidant, anti-inflammatory markers were evaluated and the mRNA expression of Keap/Nrf2 axis was analysed by RT-PCR. RESULTS Aluminum chloride (AlCl3) induction altered the behavioural profile and produced significant alterations in the cortical and hippocampal regions of the brain and the treatment with Benincasa hispida extract at doses of 250-mg/kg/day (p<0.05) and 500mg/kg/day (p<0.05) alleviated the acetylcholine, dopamine and serotonin neurotransmitter levels. The antioxidant enzyme markers such as superoxide dismutase (SOD), Catalase (CAT), glutathione (GSH) were increased and the oxidative stress marker malondialdehyde(MDA) was decreased. The inflammatory cytokine levels of TNF-α, IL-1β were decreased in Alzheimer's disease induced rats. We further estimated Keap/Nrf2/HO-1 genes these anti-oxidant genes were upregulated(p < 0.001) in treatment groups. Further, the neuroprotective activity of Benincasa was further confirmed by histopathological studies of hippocampal CA3 fields. CONCLUSIONS The findings of the current study indicates Benincasa hispida as a possible neuroprotective alternative for Alzheimer's disease.
Collapse
Affiliation(s)
- Deepthi Rapaka
- A. U. College of Pharmaceutical Sciences, Andhra University Visakhapatnam, 530003, India.
| | - Veera Raghavulu Bitra
- A. U. College of Pharmaceutical Sciences, Andhra University Visakhapatnam, 530003, India
| | | | - Annapurna Akula
- A. U. College of Pharmaceutical Sciences, Andhra University Visakhapatnam, 530003, India
| |
Collapse
|
11
|
Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int 2021; 149:105124. [PMID: 34245808 DOI: 10.1016/j.neuint.2021.105124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Brain and neuronal circuits constitute the most complex organ networks in human body. They not only control and coordinate functions of all other organs, but also represent one of the most-affected systems with stress, lifestyle and age. With global increase in aging populations, these neuropathologies have emerged as major concern for maintaining quality of life. Recent era has witnessed a surge in nutritional remediation of brain dysfunctions primarily by "nutraceuticals" that refer to functional foods and supplements with pharmacological potential. Specific dietary patterns with a balanced intake of carbohydrates, fatty acids, vitamins and micronutrients have also been ascertained to promote brain health. Dietary herbs and their phytochemicals with wide range of biological and pharmacological activities and minimal adverse effects have gained remarkable attention as neuro-nutraceuticals. Neuro-nutraceutical potentials of herbs are often expressed as effects on cognitive response, circadian rhythm, neuromodulatory, antioxidant and anti-inflammatory activities that are mediated by effects on gene expression, epigenetics, protein synthesis along with their turnover and metabolic pathways. Epidemiological and experimental evidence have implicated enormous applications of herbal supplementation in neurodegenerative and psychiatric disorders. The present review highlights the identification, experimental evidence and applications of some herbs including Bacopa monniera, Withania somnifera, Curcuma longa, Helicteres angustifolia, Undaria pinnatifida, Haematococcus pluvialis, and Vitis vinifera, as neuro-nutraceuticals.
Collapse
|
12
|
Pazos-Tomas CC, Cruz-Venegas A, Pérez-Santiago AD, Sánchez-Medina MA, Matías-Pérez D, García-Montalvo IA. Vitis vinifera: An Alternative for the Prevention of Neurodegenerative Diseases. J Oleo Sci 2020; 69:1147-1161. [PMID: 32908097 DOI: 10.5650/jos.ess20109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To present a systematic review of published studies in databases such as PUBMED, REDALYC, SCIELO, DIALNET, SCOPUS, EBSCO and CONRICYT related to the role-played by the components present in the vegetable oil of grape seed (Vitis vinífera) and the prevention or delay in the onset or progression of neurodegenerative diseases. The analysis of the research revealed that neurodegenerative diseases causes alterations in consciousness or in the nervous system leading to severe damage in neuronal cells, these pathologies are considered gradual and progressive. Various syndromes manifest the degenerative diseases of the nervous system; in some of them the predominant symptom is the progressive dementia. Among the components of the diet that in numerous epidemiological studies have shown an inverse association are vitamins, minerals, carotenoids, polyunsaturated fatty acids and polyphenols, the latter being the ones addressed in this document. There is an important evidence that a nutritional support based on polyunsaturated fatty acids and antioxidants can be applied to subjects with a history of neurodegenerative conditions in order to act as neuroprotectors. This requires the determination of the nutritional benefits of these nutrients or of nutraceuticals for the health of this group of patients.
Collapse
Affiliation(s)
- Claudia Cecilia Pazos-Tomas
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca
| | - Araceli Cruz-Venegas
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca
| | - Alma Dolores Pérez-Santiago
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca
| | | | - Diana Matías-Pérez
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico de Oaxaca
| | | |
Collapse
|
13
|
Al-Okbi SY, Mohammed SE, Al-Siedy ESK, Ali NA. Fish Oil and Primrose Oil Suppress the Progression of Alzheimer's Like Disease Induced by Aluminum in Rats. J Oleo Sci 2020; 69:771-782. [PMID: 32522946 DOI: 10.5650/jos.ess20015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The role of fish oil, primrose oil and their mixture in ameliorating the changes in Alzheimer's like model was evaluated in rats. Primrose oil and primrose/fish oil mixture fatty acids composition was assessed by gas chromatography. The rat experiment consisted of 5 groups; the first fed on balanced diet as control normal (CN); the other four groups treated with intraperitoneal aluminum lactate and consumed dyslipidemic diet; one group served as control Alzheimer's like disease (CA) while the other three groups (test groups) received daily oral dose from primrose oil, fish oil and primrose/fish oil mixture separately for 5 weeks. Results showed primrose oil and primrose/ fish oil mixture to contain gamma linolenic acid as 9.15 and 4.3% of total fatty acids, respectively. Eicosapentaenoic and docosahexaenoic were present as 10.9 and 6.5 %, respectively in the oil mixture. Dyslipidemia and increased erythrocyte sedimentation rate (ESR), plasma butyrylcholinesterase (BChE), brain malondialdehyde (MDA) and NO with decrease in plasma magnesium, brain catalase, reduced glutathione, body weight gain and brain weight were demonstrated in CA compared to CN. Brain histopathology and immuno-histochemistry showed neuronal degeneration and neurofibrillary tangles with elevated myeloperoxidase and nuclear factor-kappa B in CA compared to CN. The tested oils demonstrated neuro-protection reflected in the variable significant improvement of biochemical parameters, immuno-histochemistry and brain histopathology. Primrose/fish oil mixture was superior in reducing ESR, brain MDA, plasma activity of BChE and brain histopathological changes along with elevating plasma magnesium. Primrose/fish oil mixture and fish oil were more promising in improving plasma high density lipoprotein cholesterol (HDL-C) than primrose. Fish oil was the most efficient in improving plasma total cholesterol (T-C), low density lipoprotein cholesterol and T-C /HDL-C. Primrose/fish oil mixture and primrose oil were superior in elevating brain catalase compared to fish oil. Other parameters were equally improved by the different oil treatments. Primrose oil, fish oil and their mixture reduced the progression of Alzheimer's disease in rats with superiority to primrose/fish oil mixture.
Collapse
Affiliation(s)
- Sahar Y Al-Okbi
- Nutrition and Food Sciences Department, National Research Centre
| | | | | | - Naglaa A Ali
- Hormones Department, Medical Research Division, National Research Centre
| |
Collapse
|