1
|
Gawish AS, ElMofty MS, Jambi S, Felemban D, Ragheb YS, Elsayed SA. Phytotherapy in periodontics as an effective and sustainable supplemental treatment: a narrative review. J Periodontal Implant Sci 2024; 54:209-223. [PMID: 38290997 PMCID: PMC11377892 DOI: 10.5051/jpis.2301420071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 02/01/2024] Open
Abstract
PURPOSE Periodontal disease is a chronic condition caused by microbial infection and mediated by the host's immune response. Phytotherapy is a therapeutic approach that utilizes a renewable resource capable of supplying less expensive medicines for the world's growing population. This review aimed to present clinical evidence on the use of complementary medicinal herbs in the treatment of periodontal diseases. METHODS Different databases were searched using the terms "herbal" and "periodontitis." All included studies were examined with a focus on herbal indications, type, and prescription length. Dentists' therapeutic and prophylactic herbal prescribing habits were also assessed. RESULTS Various herbs such as turmeric, neem, aloe-vera, pomegranate, catechu, tulsi, cloves, lemon grass, green tea, tea tree oil, peppermint, garlic, pineapple, oak bark, babul, bakul, sage, coriander, moringa, amla, guava, and grape seed extract have been used in the treatment of periodontitis. These herbs have been reported to exhibit a range of therapeutic effects, including anti-inflammatory, antiplaque, antihalitosis, antiresorptive, antioxidant, antibacterial, antifungal, antiviral, and antimicrobial properties. These components can be utilized in various forms such as mouth rinse, gel, oil, toothpaste, aqueous extract, mouthwash, or tooth powder. CONCLUSIONS Several readily available herbal formulations are now available on the market and have been shown to be effective as supplemental periodontal phytotherapy. However, these should be used under the supervision of a dental professional to ensure optimal benefits and effectiveness. Therefore, it is necessary to improve the understanding of suggested herbal prescription practices among dental professionals.
Collapse
Affiliation(s)
- Abeer Saad Gawish
- Dean of Postgraduate Faculty, Sinai University, El Arish Branch, El Arish, Egypt
- Department of Oral Medicine and Periodontology, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohammed Sherif ElMofty
- Community Service and Environmental Development, Faculty of Dentistry, Nahda University, Beni Suef, Egypt
- Department of Oral Medicine, Periodontology and Oral Diagnosis Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Safa Jambi
- Department of Preventive Dental Sciences, College of Dentistry, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Doaa Felemban
- Department of Oral & Maxillofacial Diagnostic Sciences, College of Dentistry, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | | | - Shadia Abdelhameed Elsayed
- Department of Oral Medicine and Periodontology, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt
- Department of Oral & Maxillofacial Diagnostic Sciences, College of Dentistry, Taibah University, Almadinah Almunawwarah, Saudi Arabia.
| |
Collapse
|
2
|
Neuhauser C, Schwarzinger B, Schwarzinger C, Feichtinger M, Stadlbauer V, Arnaut V, Drotarova I, Blank-Landeshammer B, Weghuber J. Insulin-Mimetic Activity of Herbal Extracts Identified with Large-Scale Total Internal Reflection Fluorescence Microscopy. Nutrients 2024; 16:2182. [PMID: 39064624 PMCID: PMC11280383 DOI: 10.3390/nu16142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus is a spreading global pandemic. Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes, in which a reduction in blood glucose uptake is caused by impaired glucose transporter 4 (GLUT4) translocation to the plasma membrane in adipose and muscle cells. Antihyperglycemic drugs play a pivotal role in ameliorating diabetes symptoms but often are associated with side effects. Hence, novel antidiabetic compounds and nutraceutical candidates are urgently needed. Phytogenic therapy can support the prevention and amelioration of impaired glucose homeostasis. Using total internal reflection fluorescence microscopy (TIRFM), 772 plant extracts of an open-access plant extract library were screened for their GLUT4 translocation activation potential, resulting in 9% positive hits. Based on commercial interest and TIRFM assay-based GLUT4 translocation activation, some of these extracts were selected, and their blood glucose-reducing effects in ovo were investigated using a modified hen's egg test (Gluc-HET). To identify the active plant part, some of the available candidate plants were prepared in-house from blossoms, leaves, stems, or roots and tested. Acacia catechu (catechu), Pulmonaria officinalis (lungwort), Mentha spicata (spearmint), and Saponaria officinalis (common soapwort) revealed their potentials as antidiabetic nutraceuticals, with common soapwort containing GLUT4 translocation-activating saponarin.
Collapse
Affiliation(s)
- Cathrina Neuhauser
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| | - Bettina Schwarzinger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| | - Clemens Schwarzinger
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University, 4040 Linz, Austria;
| | - Michaela Feichtinger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
| | - Verena Stadlbauer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| | - Verena Arnaut
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
| | - Ivana Drotarova
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
| | - Bernhard Blank-Landeshammer
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria; (C.N.); (B.S.); (M.F.); (V.S.); (V.A.); (I.D.)
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria;
| |
Collapse
|
3
|
Shekh MR, Ahmed N, Kumar V. A Review of the Occurrence of Rheumatoid Arthritis and Potential Treatments through Medicinal Plants from an Indian Perspective. Curr Rheumatol Rev 2024; 20:241-269. [PMID: 38018201 DOI: 10.2174/0115733971268416231116184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 11/30/2023]
Abstract
Arthritis is a medical condition that affects the joints and causes inflammation, pain, and stiffness. There are different types of arthritis, and it can affect people of all ages, even infants and the elderly. Recent studies have found that individuals with diabetes, heart disease, and obesity are more likely to experience arthritis symptoms. According to the World Health Organization, over 21% of people worldwide suffer from musculoskeletal problems. Roughly 42.19 million individuals in India, constituting around 0.31% of the populace, have been documented as having Rheumatic Arthritis (RA). Compared to other common diseases like diabetes, cancer, and AIDS, arthritis is more prevalent in the general population. Unfortunately, there is no specific cure for arthritis, and treatment plans usually involve non-pharmacological methods, surgeries, and medications that target specific symptoms. Plant-based remedies have also been shown to be effective in managing inflammation and related complications. In addition to therapies, maintaining a healthy diet, exercise, and weight management are essential for managing arthritis. This review discusses the causes, prevalence, diagnostic methods, current and prospective future treatments, and potential medicinal plants that may act as anti-inflammatory or anti-rheumatic agents. However, more research is necessary to identify the underlying mechanisms and active molecules that could improve arthritis treatment.
Collapse
Affiliation(s)
- Mohammad Raeesh Shekh
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| | - Nasir Ahmed
- Forensic Anthropology-1, Department of Forensic Medicine, YMC, Yenepoya Deemed to be University, University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Vivek Kumar
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Ma J, Li Q, Wang T, Lu H, Liu J, Cai R, Zhang Y, Zhang J, Xie X, Su J. A comprehensive review of Shengdeng in Tibetan medicine: textual research, herbal and botanical distribution, traditional uses, phytochemistry, and pharmacology. Front Pharmacol 2023; 14:1303902. [PMID: 38174223 PMCID: PMC10762315 DOI: 10.3389/fphar.2023.1303902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
"Shengdeng", a group of Tibetan medicines with diverse biological origins, has long been utilized in Tibet for the treatment of rheumatoid arthritis. It showcases remarkable efficacy in alleviating rheumatism, reducing swelling, and relieving pain. This study aimed to clarify the plant species used as "Shengdeng" and summarize their botanical distribution, traditional uses, phytochemistry, and pharmacology to promote its utilization and development. "Shengdeng" is derived from a remarkable collection of 14 plant species belonging to six distinct families. Extensive phytochemical investigations have led to the identification of 355 chemical constituents within "Shengdeng". Pharmacological studies conducted on "Shengdeng" have revealed a wide range of beneficial properties, including antioxidant, anticancer, antimicrobial, antiviral, antiparasitic, anti-inflammatory, and anti-arthritic activities. Notably, flavonoids and triterpenoids emerge as the predominant groups among these constituents, contributing to the therapeutic potential and diverse applications of "Shengdeng". The present review provides a concise summary of the recent advancements in textual research concerning the herbal and botanical distribution, traditional uses, phytochemistry, and pharmacological activities of "Shengdeng". It is crucial to note that future research on "Shengdeng" should prioritize the analysis of its active ingredients and the establishment of rigorous quality standards. These aspects are essential for ensuring consistency, efficacy, and safety in its clinical application.
Collapse
Affiliation(s)
- Jing Ma
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyue Li
- Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ting Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Lu
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rangji Cai
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolong Xie
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinsong Su
- Ethnic Medicine Academic Heritage Innovation Research Center, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Yimam M, Horm T, O’Neal A, Jiao P, Hong M, Brownell L, Jia Q, Lin M, Gauthier A, Wu J, Venkat Mateti K, Yang X, Dial K, Zefi S, Mantell LL. A Standardized Botanical Composition Mitigated Acute Inflammatory Lung Injury and Reduced Mortality through Extracellular HMGB1 Reduction. Molecules 2023; 28:6560. [PMID: 37764336 PMCID: PMC10538186 DOI: 10.3390/molecules28186560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
HMGB1 is a key late inflammatory mediator upregulated during air-pollution-induced oxidative stress. Extracellular HMGB1 accumulation in the airways and lungs plays a significant role in the pathogenesis of inflammatory lung injury. Decreasing extracellular HMBG1 levels may restore innate immune cell functions to protect the lungs from harmful injuries. Current therapies for air-pollution-induced respiratory problems are inadequate. Dietary antioxidants from natural sources could serve as a frontline defense against air-pollution-induced oxidative stress and lung damage. Here, a standardized botanical antioxidant composition from Scutellaria baicalensis and Acacia catechu was evaluated for its efficacy in attenuating acute inflammatory lung injury and sepsis. Murine models of disorders, including hyperoxia-exposed, bacterial-challenged acute lung injury, LPS-induced sepsis, and LPS-induced acute inflammatory lung injury models were utilized. The effect of the botanical composition on phagocytic activity and HMGB1 release was assessed using hyperoxia-stressed cultured macrophages. Analyses, such as hematoxylin-eosin (HE) staining for lung tissue damage evaluation, ELISA for inflammatory cytokines and chemokines, Western blot analysis for proteins, including extracellular HMGB1, and bacterial counts in the lungs and airways, were performed. Statistically significant decreases in mortality (50%), proinflammatory cytokines (TNF-α, IL-1β, IL-6) and chemokines (CINC-3) in serum and bronchoalveolar lavage fluid (BALF), and increased bacterial clearance from airways and lungs; reduced airway total protein, and decreased extracellular HMGB1 were observed in in vivo studies. A statistically significant 75.9% reduction in the level of extracellular HMGB1 and an increase in phagocytosis were observed in cultured macrophages. The compilations of data in this report strongly suggest that the botanical composition could be indicated for oxidative-stress-induced lung damage protection, possibly through attenuation of increased extracellular HMGB1 accumulation.
Collapse
Affiliation(s)
- Mesfin Yimam
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Teresa Horm
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Alexandria O’Neal
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Ping Jiao
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Mei Hong
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Lidia Brownell
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Qi Jia
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Mosi Lin
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Alex Gauthier
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Jiaqi Wu
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Kranti Venkat Mateti
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Xiaojian Yang
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Katelyn Dial
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Sidorela Zefi
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Lin L. Mantell
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| |
Collapse
|
6
|
Lewis ED, Crowley DC, Guthrie N, Evans M. Role of Acacia catechu and Scutellaria baicalensis in Enhancing Immune Function Following Influenza Vaccination of Healthy Adults: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:678-690. [PMID: 36413261 DOI: 10.1080/27697061.2022.2145525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The study aimed to examine the role of an Acacia catechu and Scutellaria baicalensis formulation, UP446, on supporting immune function in response to influenza vaccination. METHODS A randomized, triple-blind, placebo-controlled, parallel study consisted of a 56-day intervention period with a 28-day pre-vaccination period, an influenza vaccination on Day 28 and 28-day post-vaccination period. Fifty healthy adults 40-80 years of age who had not received their flu vaccine were randomized to either UP446 or Placebo. At baseline, Days 28 and 56, immune and oxidative stress markers were measured in blood and a quality of life questionnaire was administered. Participants completed the Wisconsin Upper Respiratory Symptom Survey (WURSS)-24 daily. RESULTS In the post-vaccination period, total IgA and IgG levels increased in participants supplemented with UP446 vs. those on Placebo (p ≤ 0.026). As well, influenza B-specific IgG increased 19.4% from Day 28 to 56 and 11.6% from baseline at Day 56 (p ≤ 0.0075). Serum glutathione peroxidase (GSH-Px) was increased in the pre-vaccination period and from baseline at Day 56 with UP446 supplementation (p ≤ 0.0270). CONCLUSION These results suggest a 56-day supplementation with UP446 was beneficial in mounting a robust humoral response following vaccination. Increasing GSH-Px in the pre-vaccination period may help improve antioxidant functions and potentially mitigate the oxidative stress induced following vaccination.
Collapse
|
7
|
Lewis ED, Crowley DC, Guthrie N, Evans M. Healthy adults supplemented with a nutraceutical formulation containing Aloe vera gel, rosemary and Poria cocos enhances the effect of influenza vaccination in a randomized, triple-blind, placebo-controlled trial. Front Nutr 2023; 10:1116634. [PMID: 37168053 PMCID: PMC10165552 DOI: 10.3389/fnut.2023.1116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
The study objective was to examine the role of a formulation, UP360, containing rosemary and Poria cocos extracts and Aloe vera gel powder, in healthy adults on supporting immune function with influenza vaccination. A 56-day randomized, triple-blind, placebo-controlled, parallel study consisted of a 28-day pre-vaccination period, an influenza vaccination on Day 28 and a 28-day post-vaccination period. Men and women ages 40-80 who had not yet been vaccinated for the flu were randomized to UP360 or Placebo (n = 25/group). At baseline, Days 28 and 56, blood lymphocyte populations, immunoglobulins (Ig), and cytokines were measured, and quality of life (QoL) questionnaires administered. The Wisconsin Upper Respiratory Symptom Survey (WURSS)-24 was completed daily by participants to measure incidence of upper respiratory tract infection (URTIs). In the post-vaccination period, TCR gamma-delta (γδ+) cells, known as γδ T cells, increased with UP360 supplementation compared to Placebo (p < 0.001). The UP360 group had a 15.6% increase in influenza B-specific IgG levels in the post-vaccination period (p = 0.0006). UP360 significantly increased the amount of circulating glutathione peroxidase (GSH-Px) from baseline at Day 28 (p = 0.0214), an enzyme that is important for neutralizing free radicals. While UP360 supplementation initially decreased levels of anti-inflammatory cytokine IL-1RA in the pre-vaccination period, IL-1RA levels were increased in the post-vaccination period (p ≤ 0.0482). Levels of IL-7 increased from baseline at Day 56 with UP360 supplementation (p = 0.0458). Despite these changes in immune markers, there were no differences in URTI symptoms or QoL between UP360 and Placebo. These results suggest UP360 supplementation was beneficial in eliciting a healthy, robust immune response in the context of vaccination. No changes in subjective measures of URTI illness or QoL demonstrated that participants' QoL was not negatively impacted by UP360 supplementation. There were no differences in clinical chemistry, vitals or adverse events confirming the good safety profile of UP360. The trial was registered on the International Clinical Trials Registry Platform (ISRCTN15838713).
Collapse
|
8
|
Kumari M, Kumar M, Zhang B, Amarowicz R, Puri S, Pundir A, Rathour S, Kumari N, Chandran D, Dey A, Sharma N, Rajalingam S, Mohankumar P, Sandhu S, Pant N, Ravichandran RP, Subramani M, Pandi K, Muthukumar M, Zengin G, Mekhemar M, Lorenzo JM. Acacia catechu (L.f.) Willd.: A Review on Bioactive Compounds and Their Health Promoting Functionalities. PLANTS (BASEL, SWITZERLAND) 2022; 11:3091. [PMID: 36432824 PMCID: PMC9697042 DOI: 10.3390/plants11223091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
With the advent of pandemics and infectious diseases, numerous research activities on natural products have been carried out to combat them. Researchers are investigating natural products for the treatment and/or management of various infectious diseases and/or disorders. Acacia catechu (L.f.) Willd. belongs to the family Fabaceae (subfamily Mimosoideae) known as Khair or Cutch tree, possesses diverse pharmacological actions, and has been widely used in Asia and different parts of the world. The purpose of the present study is to highlight the phytochemical profile of different parts of A. catechu, the different biological activities of A. catechu extract, and the utilization of A. catechu as food and beverage. The present work constitutes a review of A. catechu; we performed searches (books, Google, Google Scholar, and Scopus publications) to compile the work/investigations made on A. catechu to the present. From our survey, it was concluded that the main phytochemicals compounds in A. catechu are protocatechuic acid, taxifolin, epicatechin, epigallocatechin, catechin, epicatechin gallate, procyanidin, phloroglucin, aldobiuronic acid, gallic acid, D-galactose, afzelchin gum, L-arabinose, D-rhamnose, and quercetin. The whole plant of A. catechu possesses a comprehensive variety of medicinal potentials such as antimicrobial, antidiarrheal, antinociceptive, antihyperlipidemic, antiulcer, antioxidant, antidiabetic, antiproliferative, haemolytic, and anti-inflammatory properties due to the presence of bioactive compounds like flavonoids, alkaloids, and tannins. However, even though the plant's metabolites were reported to have many different pharmacological uses, there is limited information about their toxicity or clinical trials. Further research on diverse metabolites of A. catechu should be carried out to ensure the safety or utilization of this plant in the pharma or food industries and in the development of potent plant-based drugs.
Collapse
Affiliation(s)
- Monika Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Ashok Pundir
- School of Mechanical and Civil Engineering, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Sonia Rathour
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Pran Mohankumar
- School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Surinder Sandhu
- Department of Plant Breeding and Genetics Punjab Agricultural University, Ludhiana 141004, India
| | - Nutan Pant
- Department of Botany, Doon College of Agriculture, Science and Technology, Camp Road, Selaqui, Dehradun 248011, India
| | - Raja Priya Ravichandran
- Department of Agronomy, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Marimuthu Subramani
- Department of Agronomy, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu 603201, India
| | - Kunjammal Pandi
- Department of Agronomy, S. Thangapazham Agricultural College, Vasudevanallur, Tenkasi 627760, India
| | - Muthamilselvan Muthukumar
- Department of Agricultural Entomology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu 603201, India
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
9
|
Acacia catechu Bark Alkaloids as Novel Green Inhibitors for Mild Steel Corrosion in a One Molar Sulphuric Acid Solution. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3040044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In situ corrosion inhibition in acid cleaning processes by using green inhibitors is at the forefront of corrosion chemistry. Plant extracts, especially alkaloids, are known to be good corrosion inhibitors against mild steel corrosion. In this research, alkaloids extracted from Acacia catechu have been used as green corrosion inhibitors for mild steel corrosion in a 1 M H2SO4 solution. Qualitative chemical tests and FTIR measurements have been performed to confirm the alkaloids in the extract. The inhibition efficiency of the extract has been studied by using weight-loss and potentiodynamic polarization methods. A weight-loss measurement has been adopted for the study of inhibitor’s concentration effect, with a variation employed to measure the inhibition efficiency for time and temperature. The weight-loss measurement revealed a maximum efficiency of 93.96% after 3 h at 28 °C for a 1000 ppm alkaloid solution. The 1000 ppm inhibitor is effective up to a temperature of 48 °C, with 84.39% efficiency. The electrochemical measurement results revealed that the alkaloids act as a mixed type of inhibitor. Inhibition efficiencies of 98.91% and 98.54% in the 1000 ppm inhibitor concentration solution for the as-immersed and immersed conditions, respectively, have been achieved. The adsorption isotherm has indicated the physical adsorption of alkaloids. Further, the spontaneous and endothermic adsorption processes have been indicated by the thermodynamic parameters. The results show that alkaloids extracted from the bark of Acacia catechu can be a promising green inhibitors for mild steel corrosion.
Collapse
|
10
|
Ansari P, Akther S, Hannan JMA, Seidel V, Nujat NJ, Abdel-Wahab YHA. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022; 27:molecules27134278. [PMID: 35807526 PMCID: PMC9268530 DOI: 10.3390/molecules27134278] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-1323-879720
| | - Samia Akther
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - J. M. A. Hannan
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Nusrat Jahan Nujat
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | | |
Collapse
|
11
|
An integrative approach to harnessing the potential of Traditional Indian Medicinal plants for acute viral infections. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
A Comprehensive Review on the Chemical Composition and Pharmacological Activities of Acacia catechu (L.f.) Willd. J CHEM-NY 2021. [DOI: 10.1155/2021/2575598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With the emergence of epidemics, pandemics, and infectious diseases, several research activities have been carried out on natural products to tackle them. As there are structural diversities in natural products, researchers are focused on exploring them for treatment and/or management of various infections and/or diseases. Acacia catechu (L.f.) Willd. belonging to the order Fabales and family Fabaceae shows a wide range of pharmacological functions in the management of diseases in humankind. This review was carried out to gather and provide information about the chemical constituents and pharmacological activities of A. catechu through the literature survey of scientific articles. On preliminary assessments, A. catechu is demonstrated as a significant wellspring of bioactive compounds with a wide range of biological and pharmaceutical applications such as antidiabetic, antioxidant, antimicrobial, anticancer, antidiarrheal, anti-inflammatory, antiviral, hepatoprotective, immunomodulatory, and so on. Although the metabolites from the plant are reported with diverse pharmacological applications, there is little information in regards to toxicity and clinical trials on bioactive compounds of this plant. Further research on diverse bioactive compounds from the plant is required to develop them as a successful potent drug.
Collapse
|
13
|
Balkrishna A, Sakat S, Joshi K, Singh R, Verma S, Nain P, Bhattacharya K, Varshney A. Modulation of psoriatic-like skin inflammation by traditional Indian medicine Divya-Kayakalp-Vati and Oil through attenuation of pro-inflammatory cytokines. J Tradit Complement Med 2021; 12:335-344. [PMID: 35747349 PMCID: PMC9210137 DOI: 10.1016/j.jtcme.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
|
14
|
LC-HRMS Profiling and Antidiabetic, Antioxidant, and Antibacterial Activities of Acacia catechu (L.f.) Willd. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7588711. [PMID: 34435049 PMCID: PMC8380500 DOI: 10.1155/2021/7588711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Acacia catechu (L.f.) Willd is a profoundly used traditional medicinal plant in Asia. Previous studies conducted in this plant are more confined to extract level. Even though bioassay-based studies indicated the true therapeutic potential of this plant, compound annotation was not performed extensively. This research is aimed at assessing the bioactivity of different solvent extracts of the plant followed by annotation of its phytoconstituents. Liquid chromatography equipped with high resolution mass spectrometry (LC-HRMS) is deployed for the identification of secondary metabolites in various crude extracts. On activity level, its ethanolic extract showed the highest inhibition towards α-amylase and α-glucosidase with an IC50 of 67.8 ± 1 μg/mL and 10.3 ± 0.1 μg/mL respectively, inspected through the substrate-based method. On the other hand, the plant extract showed an antioxidant activity of 23.76 ± 1.57 μg/mL, measured through radical scavenging activity. Similarly, ethyl acetate and aqueous extracts of A. catechu showed significant inhibition against Staphylococcus aureus with a zone of inhibition (ZoI) of 13 and 14 mm, respectively. With the LC-HRMS-based dereplication strategy, we have identified 28 secondary metabolites belonging to flavonoid and phenolic categories. Identification of these metabolites from A. catechu and its biological implication also support the community-based usage of this plant and its medicinal value.
Collapse
|
15
|
Anywar G, Akram M, Chishti MA. African and Asian Medicinal Plants as a Repository for Prospective Antiviral Metabolites Against HIV-1 and SARS CoV-2: A Mini Review. Front Pharmacol 2021; 12:703837. [PMID: 34512337 PMCID: PMC8424073 DOI: 10.3389/fphar.2021.703837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction: The worldwide burden of viral infections has triggered a resurgence in the search for new and more efficient antiviral drugs. Scientists are also repurposing existing natural compounds such as the antimalarial drug artemisinin from Artemesia annua L. as potential drug candidates for some of the emerging and re-emerging viral infections such as covid-19 Aim: The aim of this review was to analyse the existing literature to explore the actual or potential natural antiviral compounds from African and Asian medicinal plants as lead compounds in the drug discovery process. Methods: We searched the literature on African and Asian medicinal plant species as antiviral agents for HIV-1 and the novel coronavirus (SARS-CoV-2) in various databases and search engines such as Web of Science, Google Scholar and PubMed. The search was limited to in vitro, in vivo, and clinical studies and excluded in silico studies. Results: We present 16 plant species with actual or potential antiviral activity against HIV-1 and SARS-CoV-2. These plant species span the continents of Africa and Asia where they are widely used for treating several other ailments. Conclusion: Natural compounds from plants can play a significant role in the clinical management of HIV/AIDS and the covid-19 pandemic. More research needs to be conducted to investigate the potential toxicities of the various compounds and their efficacies in clinical settings.
Collapse
Affiliation(s)
- Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amjad Chishti
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
16
|
Cytokines and Water Distribution in Anorexia Nervosa. Mediators Inflamm 2021; 2021:8811051. [PMID: 33867858 PMCID: PMC8035023 DOI: 10.1155/2021/8811051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 01/02/2023] Open
Abstract
In patients with anorexia nervosa (AN), decreased intracellular (ICW), extracellular (ECW), and total body water (TBW) as well as changes in serum cytokine concentrations have been reported. In this exploratory study, we measured body composition and serum cytokine levels in patients with AN (n = 27) and healthy controls (HCs; n = 13). Eating disorder symptom severity was assessed using the Eating Disorder Examination-Questionnaire (EDE-Q). Body composition was determined by bioimpedance analysis (BIA) which provided information on ICW, ECW, and TBW. Following blood collection, 27 cytokines and chemokines were quantified using multiplex ELISA-based technology: Eotaxin, Eotaxin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon- (IFN-) γ, interleukin- (IL-) 1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-12p70, IL-13, IL-15, IL-16, IL-17A, interferon γ-induced protein- (IP-) 10, macrophage inflammatory protein- (MIP-) 1α, MIP-1β, monocyte chemoattractant protein- (MCP-) 1, MCP-4, thymus and activation-regulated chemokine (TARC), TNF-α, and TNF-β. ICW, ECW, and TBW volumes were significantly lower in patients with AN than in HCs. In the whole sample, GM-CSF, MCP-4, and IL-4 were positively, whereas IFN-γ, IL-6, and IL-10 were negatively associated with all three parameters of body water. In AN participants, we found a statistically significant negative correlation of IL-10 with ICW, ECW, and TBW. Our results suggest an interaction between body water and the cytokine system. Underlying mechanisms are unclear but may involve a loss of water from the gut, kidneys, or skin due to AN-associated inflammatory processes.
Collapse
|
17
|
Ahmad S, Zahiruddin S, Parveen B, Basist P, Parveen A, Gaurav, Parveen R, Ahmad M. Indian Medicinal Plants and Formulations and Their Potential Against COVID-19-Preclinical and Clinical Research. Front Pharmacol 2021; 11:578970. [PMID: 33737875 PMCID: PMC7962606 DOI: 10.3389/fphar.2020.578970] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The cases of COVID-19 are still increasing day-by-day worldwide, even after a year of its first occurrence in Wuhan city of China. The spreading of SARS-CoV-2 infection is very fast and different from other SARS-CoV infections possibly due to structural differences in S proteins. The patients with severe diseases may die due to acute respiratory distress syndrome (ARDS) caused by systemic inflammatory reactions due to the excessive release of pro-inflammatory cytokines and chemokines by the immune effector cells. In India too, it is spreading very rapidly, although the case fatality rate is below 1.50% (https://www.statista.com), which is markedly less than in other countries, despite the dense population and minimal health infrastructure in rural areas. This may be due to the routine use of many immunomodulator medicinal plants and traditional AYUSH formulations by the Indian people. This communication reviews the AYUSH recommended formulations and their ingredients, routinely used medicinal plants and formulations by Indian population as well as other promising Indian medicinal plants, which can be tested against COVID-19. Special emphasis is placed on Indian medicinal plants reported for antiviral, immunomodulatory and anti-allergic/anti-inflammatory activities and they are categorized for prioritization in research on the basis of earlier reports. The traditional AYUSH medicines currently under clinical trials against COVID-19 are also discussed as well as furtherance of pre-clinical and clinical testing of the potential traditional medicines against COVID-19 and SARS-CoV-2. The results of the clinical studies on AYUSH drugs will guide the policymakers from the AYUSH systems of medicines to maneuver their policies for public health, provide information to the global scientific community and could form a platform for collaborative studies at national and global levels. It is thereby suggested that promising AYUSH formulations and Indian medicinal plants must be investigated on a priority basis to solve the current crisis.
Collapse
Affiliation(s)
- Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Parakh Basist
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Abida Parveen
- Centre for Translational and Clinical Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Gaurav
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Rabea Parveen
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, India
| | - Minhaj Ahmad
- Department of Surgery, School of Unani Medical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| |
Collapse
|
18
|
Nille GC, Chaudhary AK. Potential implications of Ayurveda in Psoriasis: A clinical case study. J Ayurveda Integr Med 2021; 12:172-177. [PMID: 33546993 PMCID: PMC8039350 DOI: 10.1016/j.jaim.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/24/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Immune response of a human body to the uncertain factors leads to the accelerated inflammatory proliferation of the ailing cells of the skin known as Psoriasis. Although the condition found described many decades ago, the etiology and treatment look under-researched. In Ayurveda, many herbs have proven efficacy in psoriasis, but the multifaceted etiology of the disease needs a multimodal treatment approach. We report about Ayurveda treatment in a 68-year-old female patient with plaque psoriasis presented with erythematous plaques on the anterior surface of the legs, right forehand, and neck region. The Auspitz sign and Koebner phenomenon were positive. The treatment protocol was adopted as per Ayurvedic samprapti (pathophysiology) and the patient cured completely without reporting any adverse events after the one year of treatment. No recurrence observed even after one year of the halted treatment. The importance of a wholesome diet as a health promoter is also revalidated. Photographic documentation was recorded with the proper consent of the patient during successive treatment and regular follow-ups. Altogether, multimodal Ayurveda treatment led to speedy and substantial recovery from a chronic case of psoriasis.
Collapse
Affiliation(s)
- Guruprasad C Nille
- Department of Rasa Shastra and Bhaishjya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Anand Kumar Chaudhary
- Department of Rasa Shastra and Bhaishjya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
19
|
Sari LM, Hakim RF, Mubarak Z, Andriyanto A. Analysis of phenolic compounds and immunomodulatory activity of areca nut extract from Aceh, Indonesia, against Staphylococcus aureus infection in Sprague-Dawley rats. Vet World 2020; 13:134-140. [PMID: 32158163 PMCID: PMC7020107 DOI: 10.14202/vetworld.2020.134-140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/11/2019] [Indexed: 11/23/2022] Open
Abstract
Aim: The aim of the study was to investigate the immunomodulatory activity of areca nut extract. The phytochemical content and phenolic composition of the extract were also determined. Materials and Methods: An extract of areca nut was prepared using 96% ethanol and subsequently screened for phytochemical content using a high-performance liquid chromatography (HPLC) method. The immunomodulatory activity of the extract was tested in 35 Sprague-Dawley rats, divided into four groups: One control group and three experimental groups in which the rats received 500, 1000, or 1500 mg/kg of oral areca nut extract biweekly (BW). The extract was orally administered 14 days before the intraperitoneal challenge with Staphylococcus aureus (1×108 CFU/mL). On the 14th day of the experiment, rats in all the four groups were sacrificed. Measurement of the levels of red blood cells, hematocrit (Hct), hemoglobin (Hb), white blood cells (WBCs), lymphocytes, monocytes, neutrophils, basophils, eosinophil, and macrophages were recorded. The activities of serum glutamate oxalate transaminase, serum glutamate pyruvate transaminase, urea, and creatinine were also determined. Results: Areca nut was found to contain an alkaloid, tannin, and flavonoid compounds. HPLC analysis revealed the presence of catechin as the major compound along with quercetin. Administration of areca nut extract in rats infected with S. aureus produced a significant increase in the concentration of WBC but did not affect Hct, Hb, and other cell types. Among the different doses tested, 1000 mg/kg BW was found to be most effective in cellular immunity models. No harmful effects on the liver and kidney functions were observed. Conclusion: The antioxidant activity of areca nut might be attributed to the presence of catechin and quercetin. Administration of areca nut extract increased the number of WBCs and improved the activity and capacity of macrophages significantly in rats infected with S. aureus.
Collapse
Affiliation(s)
- Liza Meutia Sari
- Department of Oral Medicine, Faculty of Dentistry, University of Syiah Kuala, Banda Aceh, Indonesia
| | - Rachmi Fanani Hakim
- Department of Oral Biology, Faculty of Dentistry, University of Syiah Kuala, Banda Aceh, Indonesia
| | - Zaki Mubarak
- Department of Oral Biology, Faculty of Dentistry, University of Syiah Kuala, Banda Aceh, Indonesia
| | - Andriyanto Andriyanto
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|