1
|
Spacing and Interleaving Effects Require Distinct Theoretical Bases: a Systematic Review Testing the Cognitive Load and Discriminative-Contrast Hypotheses. EDUCATIONAL PSYCHOLOGY REVIEW 2021. [DOI: 10.1007/s10648-021-09613-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSpaced and interleaved practices have been identified as effective learning strategies which sometimes are conflated as a single strategy and at other times treated as distinct. Learning sessions in which studying information or practicing problems are spaced in time with rest-from-deliberate-learning periods between sessions generally result in better learning outcomes than massed practice without rest-from-deliberate-learning periods. Interleaved practice also consists of spaced sessions, but by interleaving topics rather than having rest-from-deliberate-learning periods. Interleaving is usually contrasted with blocking in which each learning topic is taught in a single block that provides an example of massed practice. The general finding that interleaved practice is more effective for learning than blocked practice is sometimes attributed to spacing. In the current paper, the presence of rest-from-deliberate-learning periods is used to distinguish between spaced and interleaved practice. We suggest that spaced practice is a cognitive load effect that can be explained by working memory resource depletion during cognitive effort with recovery during rest-from-deliberate-learning, while interleaved practice can be explained by the discriminative-contrast hypothesis positing that interleaving assists learners to discriminate between topic areas. A systematic review of the literature provides evidence for this suggestion.
Collapse
|
2
|
Li W, Zhang KJ, Yao S, Xie X, Han W, Xiong WB, Tian J. Simulation-Based Arthroscopic Skills Using a Spaced Retraining Schedule Reduces Short-Term Task Completion Time and Camera Path Length. Arthroscopy 2020; 36:2866-2872. [PMID: 32502713 DOI: 10.1016/j.arthro.2020.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate whether acquiring basic knee arthroscopic skills via a spaced retraining schedule could prevent skills deterioration and achieve further skills improvement. METHODS In the learning phase, 16 residents with no previous hands-on experience in practicing arthroscopic skills were asked to perform basic arthroscopic tasks on a simulator until they attained perfect scores in each task. Immediately after completing the learning phase, a pretest was performed to assess their performance. Next, they were randomly assigned into 2 groups. The spaced retraining group, which undertook a spaced repetitive training phase with a fixed-time interval, returned on days 2, 4 and 6 to repeat the same tasks for 20 minutes per day, whereas the control group did nothing. On day 7, all participants performed a posttest. A 2 × 2 mixed analysis of variance model was used for statistical analysis. RESULTS Significant differences between the 2 groups were found in task completion time (P = .003) and camera path length (P = .043) but not cartilage injury (P = .186). Residents in the spaced retraining group decreased their task completion time (163.2 ± 23.9 seconds) whereas the task time in the control group increased (351.3 ± 25.5 seconds). The same pattern was found with the camera path length. CONCLUSIONS Implementing a spaced retraining schedule in 1 week resulted in a reduced task completion time and camera path length but no significant reduction in cartilage injury. It appears that introducing a spaced retraining schedule to retain arthroscopic skills acquired through massed learning may be advantageous. CLINICAL RELEVANCE In consideration of the training time available to residents and the trend toward massed learning, this spaced retraining schedule may offer a cost-effective and convenient way for residents to maintain and improve their basic arthroscopic skills with no significant increase in time invested.
Collapse
Affiliation(s)
- Wei Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China
| | - Kai-Jun Zhang
- The Second Clinical Medical School, Southern Medical University, Baiyun, Guangzhou, China
| | - Shun Yao
- The Second Clinical Medical School, Southern Medical University, Baiyun, Guangzhou, China
| | - Xiaobo Xie
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China
| | - Weiyu Han
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China
| | - Wei-Bin Xiong
- Clinical Skills Training Center, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China
| | - Jing Tian
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China.
| |
Collapse
|
3
|
Lauterborn JC, Schultz MN, Le AA, Amani M, Friedman AE, Leach PT, Gall CM, Lynch GS, Crawley JN. Spaced training improves learning in Ts65Dn and Ube3a mouse models of intellectual disabilities. Transl Psychiatry 2019; 9:166. [PMID: 31182707 PMCID: PMC6557858 DOI: 10.1038/s41398-019-0495-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 12/29/2022] Open
Abstract
Benefits of distributed learning strategies have been extensively described in the human literature, but minimally investigated in intellectual disability syndromes. We tested the hypothesis that training trials spaced apart in time could improve learning in two distinct genetic mouse models of neurodevelopmental disorders characterized by intellectual impairments. As compared to training with massed trials, spaced training significantly improved learning in both the Ts65Dn trisomy mouse model of Down syndrome and the maternally inherited Ube3a mutant mouse model of Angelman syndrome. Spacing the training trials at 1 h intervals accelerated acquisition of three cognitive tasks by Ts65Dn mice: (1) object location memory, (2) novel object recognition, (3) water maze spatial learning. Further, (4) spaced training improved water maze spatial learning by Ube3a mice. In contrast, (5) cerebellar-mediated rotarod motor learning was not improved by spaced training. Corroborations in three assays, conducted in two model systems, replicated within and across two laboratories, confirm the strength of the findings. Our results indicate strong translational relevance of a behavioral intervention strategy for improving the standard of care in treating the learning difficulties that are characteristic and clinically intractable features of many neurodevelopmental disorders.
Collapse
Affiliation(s)
- J C Lauterborn
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M N Schultz
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - A A Le
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - M Amani
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - A E Friedman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Harvard University, Cambridge, MA, USA
| | - P T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Biogen Inc., Cambridge, MA, USA
| | - C M Gall
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - G S Lynch
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - J N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
4
|
San Martin A, Rela L, Gelb B, Pagani MR. The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes. J Neurosci 2017; 37:4992-5007. [PMID: 28432141 PMCID: PMC5426186 DOI: 10.1523/jneurosci.2607-16.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/16/2017] [Accepted: 04/08/2017] [Indexed: 11/21/2022] Open
Abstract
In contrast to trials of training without intervals (massed training), training trials spaced over time (spaced training) induce a more persistent memory identified as long-term memory (LTM). This phenomenon, known as the spacing effect for memory, is poorly understood. LTM is supported by structural synaptic plasticity; however, how synapses integrate spaced stimuli remains elusive. Here, we analyzed events of structural synaptic plasticity at the single-synapse level after distinct patterns of stimulation in motoneurons of Drosophila We found that the spacing effect is a phenomenon detected at synaptic level, which determines the specificity and the precision in structural synaptic plasticity. Whereas a single pulse of stimulation (massed) induced structural synaptic plasticity, the same amount of stimulation divided in three spaced stimuli completely prevented it. This inhibitory effect was determined by the length of the interstimulus intervals. The inhibitory effect of the spacing was lost by suppressing the activity of Ras or mitogen-activated protein kinase, whereas the overexpression of Ras-WT enhanced it. Moreover, dividing the same total time of stimulation into five or more stimuli produced a higher precision in the number of events of plasticity. Ras mutations associated with intellectual disability abolished the spacing effect and led neurons to decode distinct stimulation patterns as massed stimulation. This evidence suggests that the spacing effect for memory may result from the effect of the spacing in synaptic plasticity, which appears to be a property not limited to neurons involved in learning and memory. We propose a model of spacing-dependent structural synaptic plasticity.SIGNIFICANCE STATEMENT Long-term memory (LTM) induced by repeated trials spaced over time is known as the spacing effect, a common property in the animal kingdom. Altered mechanisms in the spacing effect have been found in animal models of disorders with intellectual disability, such as Noonan syndrome. Although LTM is sustained by structural synaptic plasticity, how synapses integrate spaced stimuli and decode them into specific plastic changes remains elusive. Here, we show that the spacing effect is a phenomenon detected at the synaptic level, which determines the properties of the response in structural plasticity, including precision of such response. Whereas suppressing or enhancing Ras/mitogen-activated protein kinase signaling changed how synapses decode a pattern of stimuli, a disease-related Ras allele abolished the spacing effect for plastic changes.
Collapse
Affiliation(s)
- Alvaro San Martin
- Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires, The National Scientific and Technical Research Council, Buenos Aires C1121ABG, Argentina, and
| | - Lorena Rela
- Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires, The National Scientific and Technical Research Council, Buenos Aires C1121ABG, Argentina, and
| | - Bruce Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Mario Rafael Pagani
- Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires, The National Scientific and Technical Research Council, Buenos Aires C1121ABG, Argentina, and
| |
Collapse
|
5
|
Possin KL, Sanchez PE, Anderson-Bergman C, Fernandez R, Kerchner GA, Johnson ET, Davis A, Lo I, Bott NT, Kiely T, Fenesy MC, Miller BL, Kramer JH, Finkbeiner S. Cross-species translation of the Morris maze for Alzheimer's disease. J Clin Invest 2016; 126:779-83. [PMID: 26784542 DOI: 10.1172/jci78464] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/03/2015] [Indexed: 12/28/2022] Open
Abstract
Analogous behavioral assays are needed across animal models and human patients to improve translational research. Here, we examined the extent to which performance in the Morris water maze - the most frequently used behavioral assay of spatial learning and memory in rodents - translates to humans. We designed a virtual version of the assay for human subjects that includes the visible-target training, hidden-target learning, and probe trials that are typically administered in the mouse version. We compared transgenic mice that express human amyloid precursor protein (hAPP) and patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD) to evaluate the sensitivity of performance measures in detecting deficits. Patients performed normally during visible-target training, while hAPP mice showed procedural learning deficits. In hidden-target learning and probe trials, hAPP mice and MCI-AD patients showed similar deficits in learning and remembering the target location. In addition, we have provided recommendations for selecting performance measures and sample sizes to make these assays sensitive to learning and memory deficits in humans with MCI-AD and in mouse models. Together, our results demonstrate that with careful study design and analysis, the Morris maze is a sensitive assay for detecting AD-relevant impairments across species.
Collapse
|
6
|
Philips GT, Kopec AM, Carew TJ. Pattern and predictability in memory formation: from molecular mechanisms to clinical relevance. Neurobiol Learn Mem 2013; 105:117-24. [PMID: 23727358 PMCID: PMC4020421 DOI: 10.1016/j.nlm.2013.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/08/2013] [Accepted: 05/12/2013] [Indexed: 12/13/2022]
Abstract
Most long-term memories are formed as a consequence of multiple experiences. The temporal spacing of these experiences is of considerable importance: experiences distributed over time (spaced training) are more easily encoded and remembered than either closely spaced experiences, or a single prolonged experience (massed training). In this article, we first review findings from studies in animal model systems that examine the cellular and molecular properties of the neurons and circuits in the brain that underlie training pattern sensitivity during long-term memory (LTM) formation. We next focus on recent findings which have begun to elucidate the mechanisms that support inter-trial interactions during the induction of LTM. Finally, we consider the implications of these findings for developing therapeutic strategies to address questions of direct clinical relevance.
Collapse
Affiliation(s)
- Gary T Philips
- Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, United States.
| | | | | |
Collapse
|