1
|
Jovalekic A, Bullich S, Roé-Vellvé N, Kolinger GD, Howard LR, Elsholz F, Lagos-Quintana M, Blanco-Rodriguez B, Pérez-Martínez E, Gismondi R, Perrotin A, Chapleau M, Keegan R, Mueller A, Stephens AW, Koglin N. Experiences from Clinical Research and Routine Use of Florbetaben Amyloid PET-A Decade of Post-Authorization Insights. Pharmaceuticals (Basel) 2024; 17:1648. [PMID: 39770490 PMCID: PMC11728731 DOI: 10.3390/ph17121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Florbetaben (FBB) is a radiopharmaceutical approved by the FDA and EMA in 2014 for the positron emission tomography (PET) imaging of brain amyloid deposition in patients with cognitive impairment who are being evaluated for Alzheimer's disease (AD) or other causes of cognitive decline. Initially, the clinical adoption of FBB PET faced significant barriers, including reimbursement challenges and uncertainties regarding its integration into diagnostic clinical practice. This review examines the progress made in overcoming these obstacles and describes the concurrent evolution of the diagnostic landscape. Advances in quantification methods have further strengthened the traditional visual assessment approach. Over the past decade, compelling evidence has emerged, demonstrating that amyloid PET has a strong impact on AD diagnosis, management, and outcomes across diverse clinical scenarios, even in the absence of amyloid-targeted therapies. Amyloid PET imaging has become essential in clinical trials and the application of new AD therapeutics, particularly for confirming eligibility criteria (i.e., the presence of amyloid plaques) and monitoring biological responses to amyloid-lowering therapies. Since its approval, FBB PET has transitioned from a purely diagnostic tool aimed primarily at excluding amyloid pathology to a critical component in AD drug development, and today, it is essential in the diagnostic workup and therapy management of approved AD treatments.
Collapse
Affiliation(s)
| | - Santiago Bullich
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | - Núria Roé-Vellvé
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | | | | | - Floriana Elsholz
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | | | | | | | | | - Audrey Perrotin
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | - Marianne Chapleau
- Life Molecular Imaging Inc., 75 State Street, Floor 1, Boston, MA 02109, USA
| | - Richard Keegan
- Life Molecular Imaging Inc., 75 State Street, Floor 1, Boston, MA 02109, USA
| | - Andre Mueller
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | | | - Norman Koglin
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| |
Collapse
|
2
|
Rhodius-Meester HFM, van Maurik IS, Collij LE, van Gils AM, Koikkalainen J, Tolonen A, Pijnenburg YAL, Berkhof J, Barkhof F, van de Giessen E, Lötjönen J, van der Flier WM. Computerized decision support is an effective approach to select memory clinic patients for amyloid-PET. PLoS One 2024; 19:e0303111. [PMID: 38768188 PMCID: PMC11104589 DOI: 10.1371/journal.pone.0303111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The use of amyloid-PET in dementia workup is upcoming. At the same time, amyloid-PET is costly and limitedly available. While the appropriate use criteria (AUC) aim for optimal use of amyloid-PET, their limited sensitivity hinders the translation to clinical practice. Therefore, there is a need for tools that guide selection of patients for whom amyloid-PET has the most clinical utility. We aimed to develop a computerized decision support approach to select patients for amyloid-PET. METHODS We included 286 subjects (135 controls, 108 Alzheimer's disease dementia, 33 frontotemporal lobe dementia, and 10 vascular dementia) from the Amsterdam Dementia Cohort, with available neuropsychology, APOE, MRI and [18F]florbetaben amyloid-PET. In our computerized decision support approach, using supervised machine learning based on the DSI classifier, we first classified the subjects using only neuropsychology, APOE, and quantified MRI. Then, for subjects with uncertain classification (probability of correct class (PCC) < 0.75) we enriched classification by adding (hypothetical) amyloid positive (AD-like) and negative (normal) PET visual read results and assessed whether the diagnosis became more certain in at least one scenario (PPC≥0.75). If this was the case, the actual visual read result was used in the final classification. We compared the proportion of PET scans and patients diagnosed with sufficient certainty in the computerized approach with three scenarios: 1) without amyloid-PET, 2) amyloid-PET according to the AUC, and 3) amyloid-PET for all patients. RESULTS The computerized approach advised PET in n = 60(21%) patients, leading to a diagnosis with sufficient certainty in n = 188(66%) patients. This approach was more efficient than the other three scenarios: 1) without amyloid-PET, diagnostic classification was obtained in n = 155(54%), 2) applying the AUC resulted in amyloid-PET in n = 113(40%) and diagnostic classification in n = 156(55%), and 3) performing amyloid-PET in all resulted in diagnostic classification in n = 154(54%). CONCLUSION Our computerized data-driven approach selected 21% of memory clinic patients for amyloid-PET, without compromising diagnostic performance. Our work contributes to a cost-effective implementation and could support clinicians in making a balanced decision in ordering additional amyloid PET during the dementia workup.
Collapse
Affiliation(s)
- Hanneke F. M. Rhodius-Meester
- Alzheimer Center Amsterdam, Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Internal Medicine, Geriatric Medicine Section, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Ingrid S. van Maurik
- Alzheimer Center Amsterdam, Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| | - Lyduine E. Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Aniek M. van Gils
- Alzheimer Center Amsterdam, Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | | | | | - Yolande A. L. Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Johannes Berkhof
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Elsmarieke van de Giessen
- Alzheimer Center Amsterdam, Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Rhodius-Meester HFM, Paajanen T, Lötjönen J. cCOG Web-Based Cognitive Assessment Tool. Methods Mol Biol 2024; 2785:311-320. [PMID: 38427202 DOI: 10.1007/978-1-0716-3774-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cognitive testing is an essential part of clinical diagnostics and clinical trials in Alzheimer's disease. Digital cognitive tests hold a great opportunity to provide more versatile and cost-efficient patient pathways through flexible testing including at home. In this work, we describe a web-based cognitive test, cCOG, that can be used in screening, differential diagnosis, and monitoring the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hanneke F M Rhodius-Meester
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Department of Internal medicine, Geriatric Medicine section, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway.
| | - Teemu Paajanen
- Work ability and Working Careers, Finnish Institute of Occupational Health, Helsinki, Finland
| | | |
Collapse
|
4
|
van Maurik IS, Bakker ED, van Unnik AAJM, Broulikova HM, Zwan MD, van de Giessen E, Berkhof J, Bouwman FH, Bosmans JE, van der Flier WM. How healthy participants value additional diagnostic testing with amyloid-PET in patients diagnosed with mild cognitive impairment - a bidding game experiment. Alzheimers Res Ther 2023; 15:208. [PMID: 38017549 PMCID: PMC10683285 DOI: 10.1186/s13195-023-01346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND To estimate the perceived value of additional testing with amyloid-PET in Euros in healthy participants acting as analogue patients with mild cognitive impairment (MCI). METHODS One thousand four hundred thirty-one healthy participants acting as analogue MCI patients (mean age 65 ± 8, 929 (75%) female) were recruited via the Dutch Brain Research Registry. Participants were asked to identify with a presented case (video vignette) of an MCI patient and asked whether they would prefer additional diagnostic testing with amyloid PET in this situation. If yes, respondents were asked how much they would be willing to pay for additional diagnostic testing. Monetary value was elicited via a bidding game in which participants were randomized over three conditions: (A) additional testing results in better patient management, (B) Same as condition A and a delay in institutionalization of 3 months, and (C) same as A and a delay in institutionalization of 6 months. Participants who were not willing to take a test were compared with participants who were willing to take a test using logit models. The highest monetary value per condition was analyzed using random-parameter mixed models. RESULTS The vast majority of participants acting as analogue MCI patients (87% (n = 1238)) preferred additional testing with amyloid PET. Participants who were not interested were more often female (OR = 1.61 95% CI [1.09-2.40]) and expressed fewer worries to get AD (OR = 0.64 [0.47-0.87]). The median "a priori" (i.e., before randomization) monetary value of additional diagnostic testing was €1500 (IQR 500-1500). If an additional amyloid PET resulted in better patient management (not further specified; condition A), participants were willing to pay a median price of €2000 (IQR = 1000-3500). Participants were willing to pay significantly more than condition A (better patient management) if amyloid-PET testing additionally resulted in a delay in institutionalization of 3 months (€530 [255-805] on top of €2000, condition B) or 6 months (€596 [187-1005] on top of €2000, condition C). CONCLUSIONS Members of the general population acting as MCI patients are willing to pay a substantial amount of money for amyloid-PET and this increases when diagnostic testing leads to better patient management and the prospect to live longer at home.
Collapse
Affiliation(s)
- I S van Maurik
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
| | - E D Bakker
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - A A J M van Unnik
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - H M Broulikova
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - M D Zwan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - E van de Giessen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - J Berkhof
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| | - F H Bouwman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - J E Bosmans
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - W M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Altomare D, Barkhof F, Caprioglio C, Collij LE, Scheltens P, Lopes Alves I, Bouwman F, Berkhof J, van Maurik IS, Garibotto V, Moro C, Delrieu J, Payoux P, Saint-Aubert L, Hitzel A, Molinuevo JL, Grau-Rivera O, Gispert JD, Drzezga A, Jessen F, Zeyen P, Nordberg A, Savitcheva I, Jelic V, Walker Z, Edison P, Demonet JF, Gismondi R, Farrar G, Stephens AW, Frisoni GB. Clinical Effect of Early vs Late Amyloid Positron Emission Tomography in Memory Clinic Patients: The AMYPAD-DPMS Randomized Clinical Trial. JAMA Neurol 2023:2804755. [PMID: 37155177 PMCID: PMC10167601 DOI: 10.1001/jamaneurol.2023.0997] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Importance Amyloid positron emission tomography (PET) allows the direct assessment of amyloid deposition, one of the main hallmarks of Alzheimer disease. However, this technique is currently not widely reimbursed because of the lack of appropriately designed studies demonstrating its clinical effect. Objective To assess the clinical effect of amyloid PET in memory clinic patients. Design, Setting, and Participants The AMYPAD-DPMS is a prospective randomized clinical trial in 8 European memory clinics. Participants were allocated (using a minimization method) to 3 study groups based on the performance of amyloid PET: arm 1, early in the diagnostic workup (within 1 month); arm 2, late in the diagnostic workup (after a mean [SD] 8 [2] months); or arm 3, if and when the managing physician chose. Participants were patients with subjective cognitive decline plus (SCD+; SCD plus clinical features increasing the likelihood of preclinical Alzheimer disease), mild cognitive impairment (MCI), or dementia; they were assessed at baseline and after 3 months. Recruitment took place between April 16, 2018, and October 30, 2020. Data analysis was performed from July 2022 to January 2023. Intervention Amyloid PET. Main Outcome and Measure The main outcome was the difference between arm 1 and arm 2 in the proportion of participants receiving an etiological diagnosis with a very high confidence (ie, ≥90% on a 50%-100% visual numeric scale) after 3 months. Results A total of 844 participants were screened, and 840 were enrolled (291 in arm 1, 271 in arm 2, 278 in arm 3). Baseline and 3-month visit data were available for 272 participants in arm 1 and 260 in arm 2 (median [IQR] age: 71 [65-77] and 71 [65-77] years; 150/272 male [55%] and 135/260 male [52%]; 122/272 female [45%] and 125/260 female [48%]; median [IQR] education: 12 [10-15] and 13 [10-16] years, respectively). After 3 months, 109 of 272 participants (40%) in arm 1 had a diagnosis with very high confidence vs 30 of 260 (11%) in arm 2 (P < .001). This was consistent across cognitive stages (SCD+: 25/84 [30%] vs 5/78 [6%]; P < .001; MCI: 45/108 [42%] vs 9/102 [9%]; P < .001; dementia: 39/80 [49%] vs 16/80 [20%]; P < .001). Conclusion and Relevance In this study, early amyloid PET allowed memory clinic patients to receive an etiological diagnosis with very high confidence after only 3 months compared with patients who had not undergone amyloid PET. These findings support the implementation of amyloid PET early in the diagnostic workup of memory clinic patients. Trial Registration EudraCT Number: 2017-002527-21.
Collapse
Affiliation(s)
- Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC)-Location VUmc, Amsterdam, the Netherlands
- Institute of Neurology, Institute of Healthcare Engineering, University College London, London, United Kingdom
| | - Camilla Caprioglio
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC)-Location VUmc, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center, Department of Neurology, Amsterdam University Medical Centers-Location VUmc, Amsterdam, the Netherlands
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC)-Location VUmc, Amsterdam, the Netherlands
| | - Femke Bouwman
- Alzheimer Center, Department of Neurology, Amsterdam University Medical Centers-Location VUmc, Amsterdam, the Netherlands
| | - Johannes Berkhof
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers-Location VUmc, Amsterdam, the Netherlands
| | - Ingrid S van Maurik
- Alzheimer Center, Department of Neurology, Amsterdam University Medical Centers-Location VUmc, Amsterdam, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers-Location VUmc, Amsterdam, the Netherlands
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Moro
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Julien Delrieu
- Gérontopôle, Department of Geriatrics, Toulouse University Hospital, Toulouse, France
- Maintain Aging Research Team, CERPOP, Inserm, Université Paul Sabatier, Toulouse, France
| | - Pierre Payoux
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), UMR1214 Inserm, Université de Toulouse III, Toulouse, France
| | - Laure Saint-Aubert
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), UMR1214 Inserm, Université de Toulouse III, Toulouse, France
| | - Anne Hitzel
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- H. Lundbeck, Copenhagen, Denmark
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Excellence Cluster Cellular Stress Responses in Aging-Related Diseases (CECAD), Medical Faculty, University of Cologne, Cologne, Germany
| | - Philip Zeyen
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center of Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Vesna Jelic
- Cognitive Disorders Clinic, Theme Inflammation and Aging, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Zuzana Walker
- Division of Psychiatry, University College London, London, United Kingdom
- St Margaret's Hospital, Essex Partnership University NHS Foundation Trust, Essex, United Kingdom
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | | | | | | | | | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
6
|
Turk KW, Vives‐Rodriguez A, Schiloski KA, Marin A, Wang R, Singh P, Hajos GP, Powsner R, DeCaro R, Budson AE. Amyloid PET ordering practices in a memory disorders clinic. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12333. [PMID: 35992217 PMCID: PMC9382692 DOI: 10.1002/trc2.12333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/14/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Introduction This study assessed the ordering of amyloid positron emission tomography (PET) scans in a Veterans Affairs (VA) memory disorders clinic as part of routine clinical care, with possible implications for the extent to which ordering may occur outside of the VA in the future if covered by insurance. Methods Clinical features predictive of ordering amyloid PET scans were retrospectively assessed; the percentage of patients who met appropriate use criteria were evaluated. Results Among 565 veterans, 34.9% of received an amyloid PET scan and 98.0% of these were consistent with appropriate use criteria. Patients with a PET were younger and more likely to have an initial diagnosis of Alzheimer's disease (AD). Of patients without an amyloid PET scan ordered, 64.4% would have met appropriate use criteria for amyloid PET. Discussion The majority of scans ordered were consistent with appropriate use criteria and more patients were eligible than received a scan. The current study's findings that approximately one-third of patients in a memory disorders clinic received an amyloid PET scan has implications for memory disorders clinics inside and outside of the US Veterans Health Administration.
Collapse
Affiliation(s)
- Katherine W. Turk
- Center for Translational Cognitive NeuroscienceVA Boston Healthcare SystemBostonMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterDepartment of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Ana Vives‐Rodriguez
- Center for Translational Cognitive NeuroscienceVA Boston Healthcare SystemBostonMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Kylie A. Schiloski
- Center for Translational Cognitive NeuroscienceVA Boston Healthcare SystemBostonMassachusettsUSA
| | - Anna Marin
- Center for Translational Cognitive NeuroscienceVA Boston Healthcare SystemBostonMassachusettsUSA
- Neuroscience DepartmentBoston University School of Medicine BostonBostonMassachusettsUSA
| | - Ryan Wang
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Prabhjyot Singh
- Center for Translational Cognitive NeuroscienceVA Boston Healthcare SystemBostonMassachusettsUSA
| | - Gabor P. Hajos
- Center for Translational Cognitive NeuroscienceVA Boston Healthcare SystemBostonMassachusettsUSA
| | - Rachel Powsner
- Department of RadiologyVA Boston Healthcare SystemBostonMassachusettsUSA
| | - Renée DeCaro
- Center for Translational Cognitive NeuroscienceVA Boston Healthcare SystemBostonMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Andrew E. Budson
- Center for Translational Cognitive NeuroscienceVA Boston Healthcare SystemBostonMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterDepartment of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
7
|
Incremental diagnostic value of 18F-Fluetemetamol PET in differential diagnoses of Alzheimer's Disease-related neurodegenerative diseases from an unselected memory clinic cohort. Sci Rep 2022; 12:10385. [PMID: 35725910 PMCID: PMC9209498 DOI: 10.1038/s41598-022-14532-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022] Open
Abstract
To evaluate the incremental diagnostic value of 18F-Flutemetamol PET following MRI measurements on an unselected prospective cohort collected from a memory clinic. A total of 84 participants was included in this study. A stepwise study design was performed including initial analysis (based on clinical assessments), interim analysis (revision of initial analysis post-MRI) and final analysis (revision of interim analysis post-18F-Flutemetamol PET). At each time of evaluation, every participant was categorized into SCD, MCI or dementia syndromal group and further into AD-related, non-AD related or non-specific type etiological subgroup. Post 18F-Flutemetamol PET, the significant changes were seen in the syndromal MCI group (57%, p < 0.001) involving the following etiological subgroups: AD-related MCI (57%, p < 0.01) and non-specific MCI (100%, p < 0.0001); and syndromal dementia group (61%, p < 0.0001) consisting of non-specific dementia subgroup (100%, p < 0.0001). In the binary regression model, amyloid status significantly influenced the diagnostic results of interim analysis (p < 0.01). 18F-Flutemetamol PET can have incremental value following MRI measurements, particularly reflected in the change of diagnosis of individuals with unclear etiology and AD-related-suspected patients due to the role in complementing AD-related pathological information.
Collapse
|
8
|
Smedinga M, Bunnik EM, Richard E, Schermer MHN. Should Doctors Offer Biomarker Testing to Those Afraid to Develop Alzheimer's Dementia? : Applying the Method of Reflective Equilibrium for a Clinical Dilemma. JOURNAL OF BIOETHICAL INQUIRY 2022; 19:287-297. [PMID: 35306635 DOI: 10.1007/s11673-022-10167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
An increasing number of people seek medical attention for mild cognitive symptoms at older age, worried that they might develop Alzheimer's disease. Some clinical practice guidelines suggest offering biomarker testing in such cases, using a brain scan or a lumbar puncture, to improve diagnostic certainty about Alzheimer's disease and enable an earlier diagnosis. Critics, on the other hand, point out that there is no effective Alzheimer treatment available and argue that biomarker tests lack clinical validity. The debate on the ethical desirability of biomarker testing is currently polarized; advocates and opponents tend to focus on their own line of arguments. In this paper, we show how the method of reflective equilibrium (RE) can be used to systematically weigh the relevant arguments on both sides of the debate to decide whether to offer Alzheimer biomarker testing. In the tradition of RE, we reflect upon these arguments in light of their coherence with other argumentative elements, including relevant facts (e.g. on the clinical validity of the test), ethical principles, and theories on societal ideals or relevant concepts, such as autonomy. Our stance in the debate therefore rests upon previously set out in-depth arguments and reflects a wide societal perspective.
Collapse
Affiliation(s)
- Marthe Smedinga
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4, 6525 GC, Nijmegen, The Netherlands.
| | - Eline M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4, 6525 GC, Nijmegen, The Netherlands
| | - Maartje H N Schermer
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Smedinga M, Bunnik EM, Richard E, Schermer MHN. The Framing of "Alzheimer's Disease": Differences Between Scientific and Lay Literature and Their Ethical Implications. THE GERONTOLOGIST 2021; 61:746-755. [PMID: 33140824 PMCID: PMC8276613 DOI: 10.1093/geront/gnaa113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The meaning of Alzheimer's disease (AD) is changing in research. It now refers to a pathophysiological process, regardless of whether clinical symptoms are present. In the lay literature, on the other hand, AD is understood as a form of dementia. This raises the question of whether researchers and the lay audience are still talking about the same thing. If not, how will these different understandings of AD shape perspectives on (societal) needs for people with AD? RESEARCH DESIGN AND METHODS We use framing analysis to retrieve the understandings of the term AD that are upheld in the research literature and in national Dutch newspaper articles. We make explicit how the framings of AD steer our normative attitudes toward the disease. RESULTS In the analyzed research articles, AD is framed as a pathological cascade, reflected by biomarkers, starting in cognitively healthy people and ending, inevitably, in dementia. In the lay literature, AD is used as a synonym for dementia, and an AD diagnosis is understood as an incentive to enjoy "the time that is left." DISCUSSION AND IMPLICATIONS The two different uses of the term AD in research and in the lay literature may result in misunderstandings, especially those research framings that falsely imply that people with AD biomarkers will inevitably develop dementia. Adoption of the research understanding of AD in clinical practice will have normative implications for our view on priority setting in health care. For example, it legitimizes biomarker testing in people without dementia as improving "diagnostic" certainty.
Collapse
Affiliation(s)
- Marthe Smedinga
- Department of Medical Ethics and Philosophy and History of Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eline M Bunnik
- Department of Medical Ethics and Philosophy and History of Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje H N Schermer
- Department of Medical Ethics and Philosophy and History of Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Willemse EAJ, Scheltens P, Teunissen CE, Vijverberg EGB. A neurologist's perspective on serum neurofilament light in the memory clinic: a prospective implementation study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:101. [PMID: 34006321 PMCID: PMC8132439 DOI: 10.1186/s13195-021-00841-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Background Neurofilament light in serum (sNfL) is a biomarker for axonal damage with elevated levels in many neurological disorders, including neurodegenerative dementias. Since within-group variation of sNfL is large and concentrations increase with aging, sNfL’s clinical use in memory clinic practice remains to be established. The objective of the current study was to evaluate the clinical use of serum neurofilament light (sNfL), a cross-disease biomarker for axonal damage, in a tertiary memory clinic cohort. Methods Six neurologists completed questionnaires regarding the usefulness of sNfL (n = 5–42 questionnaires/neurologist). Patients that visited the Alzheimer Center Amsterdam for the first time between May and October 2019 (n = 109) were prospectively included in this single-center implementation study. SNfL levels were analyzed on Simoa and reported together with normal values in relation to age, as part of routine diagnostic work-up and in addition to cerebrospinal fluid (CSF) biomarker analysis. Results SNfL was perceived as useful in 53% (n = 58) of the cases. SNfL was more often perceived as useful in patients < 62 years (29/48, 60%, p = 0.05) and males (41/65, 63%, p < 0.01). Availability of CSF biomarker results at time of result discussion had no influence. We observed non-significant trends for increased perceived usefulness of sNfL for patients with the diagnosis subjective cognitive decline (64%), psychiatric disorder (71%), or uncertain diagnosis (67%). SNfL was mostly helpful to neurologists in confirming or excluding neurodegeneration. Whether sNfL was regarded as useful strongly depended on which neurologist filled out the questionnaire (ranging from 0 to 73% of useful cases/neurologist). Discussion Regardless of the availability of CSF biomarker results, sNfL was perceived as a useful tool in more than half of the evaluated cases in a tertiary memory clinic practice. Based on our results, we recommend the analysis of the biomarker sNfL to confirm or exclude neurodegeneration in patients below 62 years old and in males. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00841-4.
Collapse
Affiliation(s)
- E A J Willemse
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands.
| | - P Scheltens
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - C E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - E G B Vijverberg
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Juengling FD, Allenbach G, Bruehlmeier M, Klaeser B, Wissmeyer MP, Garibotto V, Felbecker A, Georgescu D. Appropriate use criteria for dementia amyloid imaging in Switzerland - mini-review and statement on behalf of the Swiss Society of Nuclear Medicine and the Swiss Memory Clinics. Nuklearmedizin 2021; 60:7-9. [PMID: 33080626 DOI: 10.1055/a-1277-6014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
While FDG-PET imaging of the brain for the differential diagnosis of dementia has been covered by the compulsory health insurance in Switzerland for more than a decade, beta-amyloid-PET just recently has been added to the catalogue of procedures that have been cleared for routine use, provided that a set of appropriate use criteria (AUC) be followed. To provide guidance to dementia care practitioners, the Swiss Society of Nuclear Medicine and the Swiss Memory Clinics jointly report a mini-review on beta-amyloid-PET and discuss the AUC set into effect by the Swiss Federal Office of Public Health, as well as their application and limitations.
Collapse
Affiliation(s)
| | - Gilles Allenbach
- Centre hospitalier universitaire vaudois (CHUV), Lausanne, Switzerland
| | | | - Bernd Klaeser
- Cantonal hospital Winterthur, Winterthur, Switzerland
| | | | | | - Ansgar Felbecker
- Clinic for Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | |
Collapse
|
12
|
Bao YW, Chau ACM, Chiu PKC, Shea YF, Kwan JSK, Chan FHW, Mak HKF. Heterogeneity of Amyloid Binding in Cognitively Impaired Patients Consecutively Recruited from a Memory Clinic: Evaluating the Utility of Quantitative 18F-Flutemetamol PET-CT in Discrimination of Mild Cognitive Impairment from Alzheimer's Disease and Other Dementias. J Alzheimers Dis 2021; 79:819-832. [PMID: 33361593 PMCID: PMC7902948 DOI: 10.3233/jad-200890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND With the more widespread use of 18F-radioligand-based amyloid-β (Aβ) PET-CT imaging, we evaluated Aβ binding and the utility of neocortical 18F-Flutemetamol standardized uptake value ratio (SUVR) as a biomarker. OBJECTIVE 18F-Flutemetamol SUVR was used to differentiate 1) mild cognitive impairment (MCI) from Alzheimer's disease (AD), and 2) MCI from other non-AD dementias (OD). METHODS 109 patients consecutively recruited from a University memory clinic underwent clinical evaluation, neuropsychological test, MRI and 18F-Flutemetamol PET-CT. The diagnosis was made by consensus of a panel consisting of 1 neuroradiologist and 2 geriatricians. The final cohort included 13 subjective cognitive decline (SCD), 22 AD, 39 MCI, and 35 OD. Quantitative analysis of 16 region-of-interests made by Cortex ID software (GE Healthcare). RESULTS The global mean 18F-Flutemetamol SUVR in SCD, MCI, AD, and OD were 0.50 (SD-0.08), 0.53 (SD-0.16), 0.76 (SD-0.10), and 0.56 (SD-0.16), respectively, with SUVR in SCD and MCI and OD being significantly lower than AD. Aβ binding in SCD, MCI, and OD was heterogeneous, being 23%, 38.5%, and 42.9% respectively, as compared to 100% amyloid positivity in AD. Using global SUVR, ROC analysis showed AUC of 0.868 and 0.588 in differentiating MCI from AD and MCI from OD respectively. CONCLUSION 18F-Flutemetamol SUVR differentiated MCI from AD with high efficacy (high negative predictive value), but much lower efficacy from OD. The major benefit of the test was to differentiate cognitively impaired patients (either SCD, MCI, or OD) without AD-related-amyloid-pathology from AD in the clinical setting, which was under-emphasized in the current guidelines proposed by Amyloid Imaging Task Force.
Collapse
Affiliation(s)
- Yi-Wen Bao
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anson C M Chau
- Department of Medical Imaging, The University of Hong Kong (Shenzhen) Teaching Hospital , The University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ka-Chun Chiu
- Division of Geriatrics, Department of Medicine, Queen Mary Hospital, Hong Kong SAR, China
| | - Yat Fung Shea
- Division of Geriatrics, Department of Medicine, Queen Mary Hospital, Hong Kong SAR, China
| | - Joseph S K Kwan
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Felix Hon Wai Chan
- Division of Geriatrics, Department of Medicine, Queen Mary Hospital, Hong Kong SAR, China
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Drzezga A, Bischof GN, Giehl K, van Eimeren T. PET and SPECT Imaging of Neurodegenerative Diseases. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Kolanko MA, Win Z, Loreto F, Patel N, Carswell C, Gontsarova A, Perry RJ, Malhotra PA. Amyloid PET imaging in clinical practice. Pract Neurol 2020; 20:451-462. [PMID: 32973035 DOI: 10.1136/practneurol-2019-002468] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
Amyloid positron emission tomography (PET) imaging enables in vivo detection of brain Aβ deposition, one of the neuropathological hallmarks of Alzheimer's disease. There is increasing evidence to support its clinical utility, with major studies showing that amyloid PET imaging improves diagnostic accuracy, increases diagnostic certainty and results in therapeutic changes. The Amyloid Imaging Taskforce has developed appropriate use criteria to guide clinicians by predefining certain scenarios where amyloid PET would be justified. This review provides a practical guide on how and when to use amyloid PET, based on the available research and our own experience. We discuss its three main appropriate indications and illustrate these with clinical cases. We stress the importance of a multidisciplinary approach when deciding who might benefit from amyloid PET imaging. Finally, we highlight some practical points and common pitfalls in its interpretation.
Collapse
Affiliation(s)
- Magdalena A Kolanko
- Department of Brain Sciences, Imperial College London, London, UK.,Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Zarni Win
- Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Flavia Loreto
- Department of Brain Sciences, Imperial College London, London, UK
| | - Neva Patel
- Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Christopher Carswell
- Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, London, UK.,Department of Neurology, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | | | - Richard J Perry
- Department of Brain Sciences, Imperial College London, London, UK.,Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London, UK .,Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, London, UK.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, UK
| |
Collapse
|
15
|
Rostamzadeh A, Jessen F. [Early detection of Alzheimer's disease and dementia prediction in patients with mild cognitive impairment : Summary of current recommendations]. DER NERVENARZT 2020; 91:832-842. [PMID: 32300816 DOI: 10.1007/s00115-020-00907-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mild cognitive impairment (MCI) is characterized by cognitive deficits but essentially preserved competence in activities of daily living. It is a risk factor for the development of dementia and can reflect a prodromal predementia state of Alzheimer's disease (AD). The pathology of AD is defined by cerebral deposition of amyloid-beta-1-42 protein and aggregation of phosphorylated tau protein, which can be identified in vivo by biomarkers for these alterations. As a result of advances in the field of biomarker-based early detection of AD, it is possible to differentiate between MCI patients with and without a pathological AD condition and therefore, between patients with a low and those with a high risk for the development of dementia. At present there are no specific guideline recommendations in Germany for the diagnostic use of biomarkers in predementia detection of AD and for dementia risk assessment in patients with MCI. This article summarizes the current recommendations of a European expert consensus publication and a multidisciplinary working group of the Alzheimer's Association on the clinical application of cerebrospinal fluid (CSF) biomarkers for the diagnostics of AD in patients with MCI. If the clinical diagnostic criteria for MCI are fulfilled according to the medical history and neuropsychological testing, it is recommended to carry out further diagnostics (blood test, brain imaging) in order to more precisely define the differential diagnostic classification. Counseling on the potential benefits, limits and risks of biomarker testing for early AD detection and dementia risk prediction should always precede assessment of CSF biomarkers. Information about the individual risk of developing dementia has potential consequences for the psychological well-being and life planning; therefore, clinical follow-up visits are recommended.
Collapse
Affiliation(s)
- Ayda Rostamzadeh
- Klinik für Psychiatrie und Psychotherapie, Uniklinik Köln, Medizinische Fakultät, Köln, Deutschland.
| | - Frank Jessen
- Klinik für Psychiatrie und Psychotherapie, Uniklinik Köln, Medizinische Fakultät, Köln, Deutschland.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Deutschland
| |
Collapse
|
16
|
Hattori N, Sherwin P, Farrar G. Initial Physician Experience with [ 18F]Flutemetamol Amyloid PET Imaging Following Availability for Routine Clinical Use in Japan. J Alzheimers Dis Rep 2020; 4:165-174. [PMID: 32715277 PMCID: PMC7369136 DOI: 10.3233/adr-190150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Brain amyloid is a neuropathological hallmark of Alzheimer’s disease (AD). By visualizing brain amyloid, positron emission tomography (PET) may influence the diagnostic assessment and management of patients with cognitive impairment. Objective: As part of a Japanese post-approval study to measure the safety of [18F]flutemetamol PET, the association of amyloid PET results with changes in diagnosis and diagnostic confidence was assessed. Methods: Fifty-seven subjects were imaged for amyloid PET using [18F]flutemetamol at a single Japanese memory clinic. The cognitive diagnosis and referring physician’s confidence in the diagnosis were recorded before and after availability of PET results. Imaging started approximately 90 minutes after [18F]flutemetamol administration with approximately 185 MBq injected. PET images were acquired for 30 minutes. Results: Amyloid PET imaging led to change in diagnosis in 15/44 clinical subjects (34%). Mean diagnostic confidence increased by approximately 20%, from 73% pre-scan to 93% post-scan, and this rise was fairly consistent across the main patient subgroups (mild cognitive impairment, AD, and non-AD) irrespective of the pre-scan diagnosis and scan result. Conclusion: The study examined the utility of amyloid PET imaging in a Japanese clinical cohort and highlighted the use of an etiological diagnosis in the presence of the amyloid scan. [18F]Flutemetamol PET led to a change in diagnosis in over 30% of cases and to an increase in diagnostic confidence by approximately 20% consistent with other reports.
Collapse
|
17
|
Biessels GJ, Nobili F, Teunissen CE, Simó R, Scheltens P. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective. Lancet Neurol 2020; 19:699-710. [PMID: 32445622 DOI: 10.1016/s1474-4422(20)30139-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
People with type 2 diabetes are at an increased risk of cognitive impairment and dementia (including Alzheimer's disease), as well as subtle forms of cognitive dysfunction. Current diabetes guidelines recommend screening for cognitive impairment in groups at high risk and providing guidance for diabetes management in patients with diabetes and cognitive impairment. Yet, no disease-modifying treatment is available and important questions remain about the mechanisms underlying diabetes-associated cognitive dysfunction. These mechanisms are likely to be multifactorial and different for subtle and more severe forms of diabetes-associated cognitive dysfunction. Over the past years, research on dementia, brain ageing, diabetes, and vascular disease has identified novel biomarkers of specific dementia aetiologies, brain parenchymal injury, and cerebral blood flow and metabolism. These markers shed light on the processes underlying diabetes-associated cognitive dysfunction, have clear applications in current research and increasingly in clinical diagnosis, and might ultimately guide targeted treatment.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Flavio Nobili
- Department of Neuroscience, Ophthalmology, Genetics, and Child and Mother Health, University of Genoa, Genoa, Italy; Clinical Neurology Unit, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam, Netherlands
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
van Maurik IS, Bakker ED, van den Buuse S, Gillissen F, van de Beek M, Lemstra E, Mank A, van den Bosch KA, van Leeuwenstijn M, Bouwman FH, Scheltens P, van der Flier WM. Psychosocial Effects of Corona Measures on Patients With Dementia, Mild Cognitive Impairment and Subjective Cognitive Decline. Front Psychiatry 2020; 11:585686. [PMID: 33192733 PMCID: PMC7649118 DOI: 10.3389/fpsyt.2020.585686] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023] Open
Abstract
Background: The recent COVID-19 pandemic is not only a major healthcare problem in itself, but also poses enormous social challenges. Though nursing homes increasingly receive attention, the majority of people with cognitive decline and dementia live at home. We aimed to explore the psychosocial effects of corona measures in memory clinic (pre-)dementia patients and their caregivers. Methods: Between April 28th and July 13th 2020, n = 389 patients of Alzheimer center Amsterdam [n = 121 symptomatic (age = 69 ± 6, 33%F, MMSE = 23 ± 5), n = 268 cognitively normal (age = 66 ± 8, 40% F, MMSE = 29 ± 1)] completed a survey on psychosocial effects of the corona measures. Questions related to social isolation, worries for faster cognitive decline, behavioral problems and discontinuation of care. In addition, n = 147 caregivers of symptomatic patients completed a similar survey with additional questions on caregiver burden. Results: Social isolation was experienced by n = 42 (35%) symptomatic and n = 67 (25%) cognitively normal patients and two third of patients [n = 129 (66%); n = 58 (75%) symptomatic, n = 71 (61%) cognitively normal] reported that care was discontinued. Worries for faster cognitive decline were existed in symptomatic patients [n = 44 (44%)] and caregivers [n = 73 (53%)], but were also reported by a subgroup of cognitively normal patients [n = 27 (14%)]. Both patients [n = 56 (46%) symptomatic, n = 102 (38%) cognitively normal] and caregivers [n = 72 (48%)] reported an increase in psychological symptoms. More than three quarter of caregivers [n = 111(76%)] reported an increase in patients' behavioral problems. A higher caregiver burden was experienced by n = 69 (56%) of caregivers and n = 43 (29%) of them reported that a need for more support. Discontinuation of care (OR = 3.3 [1.3-7.9]), psychological (OR = 4.0 [1.6-9.9]) and behavioral problems (OR = 3.0 [1.0-9.0]) strongly related to experiencing a higher caregiver burden. Lastly, social isolation (OR = 3.2 [1.2-8.1]) and psychological symptoms (OR = 8.1 [2.8-23.7]) were red flags for worries for faster cognitive decline. Conclusion: Not only symptomatic patients, but also cognitively normal patients express worries for faster cognitive decline and psychological symptoms. Moreover, we identified patients who are at risk of adverse outcomes of the corona measures, i.e., discontinued care, social isolation, psychological and behavioral problems. This underlines the need for health care professionals to provide ways to warrant the continuation of care and support (informal) networks surrounding patients and caregivers to mitigate the higher risk of negative psychosocial effects.
Collapse
Affiliation(s)
- Ingrid S van Maurik
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Epidemiology and Data Science, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Els D Bakker
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Freek Gillissen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marleen van de Beek
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Evelien Lemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Arenda Mank
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Epidemiology and Data Science, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Karlijn A van den Bosch
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mardou van Leeuwenstijn
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Femke H Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Epidemiology and Data Science, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|