1
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
2
|
Huang Z, Zhou Z, Ma Y, Hu YM. Mito-Tempo alleviates ox-LDL-provoked foam cell formation by regulating Nrf2/NLRP3 signaling. Biosci Biotechnol Biochem 2024; 88:759-767. [PMID: 38719485 DOI: 10.1093/bbb/zbae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/25/2024] [Indexed: 06/22/2024]
Abstract
Our previous studies have demonstrated that Mito-Tempol (also known as 4-hydroxy-Tempo), a mitochondrial reactive oxygen species scavenger, alleviates oxidized low-density lipoprotein (ox-LDL)-triggered foam cell formation. Given the effect of oxidative stress on activating the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome, which promotes foam cell formation, we aimed to explore whether Mito-Tempo inhibits ox-LDL-triggered foam cell formation by regulating NLRP3 inflammasome. The results revealed that Mito-Tempo re-activated Nrf2 and alleviated macrophage foam cell formation induced by ox-LDL, whereas the effects were reversed by ML385 (a specific Nrf2 inhibitor). Mito-Tempo restored the expression and nuclear translocation of Nrf2 by decreasing ox-LDL-induced ubiquitination. Furthermore, Mito-Tempo suppressed ox-LDL-triggered NLRP3 inflammasome activation and subsequent pyroptosis, whereas the changes were blocked by ML385. Mito-Tempo decreased lipoprotein uptake by inhibiting CD36 expression and suppressed foam cell formation by regulating the NLRP3 inflammasome. Taken together, Mito-Tempo exhibits potent anti-atherosclerotic effects by regulating Nrf2/NLRP3 signaling.
Collapse
Affiliation(s)
- Zhenyu Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Ying Ma
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Min Hu
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Prabhakaran HS, Hu D, He W, Luo G, Liou YC. Mitochondrial dysfunction and mitophagy: crucial players in burn trauma and wound healing. BURNS & TRAUMA 2023; 11:tkad029. [PMID: 37465279 PMCID: PMC10350398 DOI: 10.1093/burnst/tkad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 07/20/2023]
Abstract
Burn injuries are a significant cause of death worldwide, leading to systemic inflammation, multiple organ failure and sepsis. The progression of burn injury is explicitly correlated with mitochondrial homeostasis, which is disrupted by the hyperinflammation induced by burn injury, leading to mitochondrial dysfunction and cell death. Mitophagy plays a crucial role in maintaining cellular homeostasis by selectively removing damaged mitochondria. A growing body of evidence from various disease models suggest that pharmacological interventions targeting mitophagy could be a promising therapeutic strategy. Recent studies have shown that mitophagy plays a crucial role in wound healing and burn injury. Furthermore, chemicals targeting mitophagy have also been shown to improve wound recovery, highlighting the potential for novel therapeutic strategies based on an in-depth exploration of the molecular mechanisms regulating mitophagy and its association with skin wound healing.
Collapse
Affiliation(s)
- Harshini Sheeja Prabhakaran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science drive 4, 117543 Singapore, Singapore
| | - Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science drive 4, 117543 Singapore, Singapore
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Gao Tan Yan Zheng Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
- Chongqing Key Laboratory for Disease Proteomics, Gao Tan Yan Zheng Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Gao Tan Yan Zheng Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
- Chongqing Key Laboratory for Disease Proteomics, Gao Tan Yan Zheng Street, Sha Ping Ba District, Chongqing, 400038, People's Republic of China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science drive 4, 117543 Singapore, Singapore
| |
Collapse
|
4
|
Müller M, Donhauser E, Maske T, Bischof C, Dumitrescu D, Rudolph V, Klinke A. Mitochondrial Integrity Is Critical in Right Heart Failure Development. Int J Mol Sci 2023; 24:11108. [PMID: 37446287 PMCID: PMC10342493 DOI: 10.3390/ijms241311108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular processes underlying right ventricular (RV) dysfunction (RVD) and right heart failure (RHF) need to be understood to develop tailored therapies for the abatement of mortality of a growing patient population. Today, the armament to combat RHF is poor, despite the advancing identification of pathomechanistic processes. Mitochondrial dysfunction implying diminished energy yield, the enhanced release of reactive oxygen species, and inefficient substrate metabolism emerges as a potentially significant cardiomyocyte subcellular protagonist in RHF development. Dependent on the course of the disease, mitochondrial biogenesis, substrate utilization, redox balance, and oxidative phosphorylation are affected. The objective of this review is to comprehensively analyze the current knowledge on mitochondrial dysregulation in preclinical and clinical RVD and RHF and to decipher the relationship between mitochondrial processes and the functional aspects of the right ventricle (RV).
Collapse
Affiliation(s)
- Marion Müller
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Elfi Donhauser
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Tibor Maske
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Cornelius Bischof
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Daniel Dumitrescu
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Volker Rudolph
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Anna Klinke
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (M.M.)
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
5
|
Shi L, Shi J, Feng J, Zhang P, Ren Y. Proteomic analysis reveals the potential positive effects of Mito-TEMPO on ram sperm motility and fertility during cryopreservation. Theriogenology 2023; 205:27-39. [PMID: 37084501 DOI: 10.1016/j.theriogenology.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The aim of this study was to investigate the effects of mitochondria-targeted antioxidant Mito-TEMPO on the protein profile of ram sperm during cryopreservation and evaluate the cryoprotective roles of Mito-TEMPO on ram sperm quality and fertilization capacity. Semen collected from 8 Dorper rams was cryopreserved in TCG-egg yolk extender supplemented with various concentrations of Mito-TEMPO (0, 20, 40 and 60 μM). After thawing, sperm characteristics, antioxidant status and the abundance of hexose transporters (GLUT 3 and 8) were analyzed. The cervical artificial insemination (AI) was performed to evaluate the fertilization ability of cryopreserved ram sperm. The alterations of sperm proteomic profile between the control and MT40 groups were determined using iTRAQ-coupled LC-MS. Supplementation with 40 μM of Mito-TEMPO resulted in the highest post-thaw sperm motility and kinematics. Sperm quality, antioxidant capacity and glucose transporter abundance of frozen-thawed ram sperm were elevated in the MT40 group. The inclusion of 40 μM Mito-TEMPO in freezing extender also resulted in the higher pregnancy rate of ewes. A total of 457 proteins including 179 upregulated proteins and 278 downregulated proteins were defied as differentially expressed proteins (DEPs) using fold change (FC) > 1.2 with P < 0.05. Sixty-one DEPs with (FC > 1.5) were dramatically regulated by Mito-TEMPO. These DEPs are mainly involved in sperm motility, energy metabolism and capacitation. Our data suggest that the beneficial effects of Mito-TEMPO on sperm motility and fertility potential of cryopreserved ram semen are achieved by regulating sperm antioxidant capacity and sperm proteins related to energy metabolism and fertility.
Collapse
Affiliation(s)
- Lei Shi
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Lab of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Juanjuan Shi
- Lab of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Jingjuan Feng
- Lab of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Pengcheng Zhang
- Lab of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Lab of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China.
| |
Collapse
|
6
|
Wen JJ, Dejesus JE, Radhakrishnan GL, Radhakrishnan RS. PARP1 Inhibition and Effect on Burn Injury-Induced Inflammatory Response and Cardiac Function. J Am Coll Surg 2023; 236:783-802. [PMID: 36728307 DOI: 10.1097/xcs.0000000000000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Burn injury induces multiple signaling pathways leading to a significant inflammatory storm that adversely affects multiple organs, including the heart. Poly (ADP-ribose) polymerase inhibitor 1 (PARP1) inhibition, with specific agents such as N-(5,6-Dihydro-6-oxo-2-phenanthridinyl)-2-acetamide (PJ34), is effective in reducing oxidative stress and cytokine expression in the heart. We hypothesized that PARP1 inhibition would reduce inflammatory signaling and protect against burn injury-induced cardiac dysfunction. STUDY DESIGN Male Sprague-Dawley rats (8 weeks old, 300 to 350 g) were randomly assigned to sham injury (Sham), 60% total body surface area burn (24 hours post burn), or 60% total body surface area burn with intraperitoneal administration of PJ34 (20 mg/kg, 24 hours post burn + PJ34) and sacrificed 24 hours after injury. Cardiac function was determined using Vevo 2100 echocardiography. Genetic expression of 84 specific toll-like receptor-mediated signal transduction and innate immunity genes were examined using microarray to evaluate cardiac tissue. Qiagen GeneGlobe Data Analysis Center was used to analyze expression, and genetic clustering was performed using TreeView V2.0.8 software. Real-time quantitative polymerase chain reaction was used to validate identified differentially expressed genes. RESULTS Burn injury significantly altered multiple genes in the toll-like receptor signaling, interleukin-17 signaling, tumor necrosis factor signaling, and nuclear factor-κB signaling pathways and led to significant cardiac dysfunction. PARP1 inhibition with PJ34 normalized these signaling pathways to sham levels as well as improved cardiac function to sham levels. CONCLUSIONS PARP1 inhibition normalizes multiple inflammatory pathways that are altered after burn injury and improves cardiac dysfunction. PARP1 pathway inhibition may provide a novel methodology to normalize multiple burn injury-induced inflammatory pathways in the heart.
Collapse
Affiliation(s)
- Jake J Wen
- From the Departments of Surgery (Wen, Dejesus, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
| | - Jana E Dejesus
- From the Departments of Surgery (Wen, Dejesus, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
| | - Geetha L Radhakrishnan
- Pediatrics (GL Radhakrishnan, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
| | - Ravi S Radhakrishnan
- From the Departments of Surgery (Wen, Dejesus, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
- Pediatrics (GL Radhakrishnan, RS Radhakrishnan), University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
7
|
DeJesus JE, Wen JJ, Radhakrishnan R. Cytokine Pathways in Cardiac Dysfunction following Burn Injury and Changes in Genome Expression. J Pers Med 2022; 12:jpm12111876. [PMID: 36579591 PMCID: PMC9696755 DOI: 10.3390/jpm12111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
In 2016, an estimated 486,000 individuals sustained burn injuries requiring medical attention. Severe burn injuries lead to a persistent, hyperinflammatory response that may last up to 2 years. The persistent release of inflammatory mediators contributes to end-organ dysfunction and changes in genome expression. Burn-induced cardiac dysfunction may lead to heart failure and changes in cardiac remodeling. Cytokines promote the inflammatory cascade and promulgate mechanisms resulting in cardiac dysfunction. Here, we review the mechanisms by which TNFα, IL-1 beta, IL-6, and IL-10 cause cardiac dysfunction in post-burn injuries. We additionally review changes in the cytokine transcriptome caused by inflammation and burn injuries.
Collapse
|
8
|
Ji Y, Jin D, Qi J, Wang X, Zhang C, An P, Luo Y, Luo J. Fucoidan Protects against Doxorubicin-Induced Cardiotoxicity by Reducing Oxidative Stress and Preventing Mitochondrial Function Injury. Int J Mol Sci 2022; 23:ijms231810685. [PMID: 36142635 PMCID: PMC9504360 DOI: 10.3390/ijms231810685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (DOXO) is a potent chemotherapeutic drug widely used to treat various cancers. However, its clinical application is limited due to serious adverse effects on dose-dependent cardiotoxicity. Although the underlying mechanism has not been fully clarified, DOXO-induced cardiotoxicity has been mainly attributed to the accumulation of reactive oxygen species (ROS) in cardiomyocytes. Fucoidan, as a kind of sulphated polysaccharide existing in numerous brown seaweed, has potent anti-oxidant, immune-regulatory, anti-tumor, anti-coagulate and anti-viral activities. Here, we explore the potential protective role and mechanism of fucoidan in DOXO-induced cardiotoxicity in mice. Our results show that oral fucoidan supplement exerts potent protective effects against DOXO-induced cardiotoxicity by reducing oxidative stress and preventing mitochondrial function injury. The improved effect of fucoidan on DOXO-induced cardiotoxicity was evaluated by echocardiography, cardiac myocytes size and cardiac fibrosis analysis, and the expression of genes related to cardiac dysfunction and remodeling. Fucoidan reduced the ROS content and the MDA levels but enhanced the activity of antioxidant enzymes GSH-PX and SOD in the mouse serum in a DOXO-induced cardiotoxicity model. In addition, fucoidan also increased the ATP production capacity and restored the levels of a mitochondrial respiratory chain complex in heart tissue. Collectively, this study highlights fucoidan as a potential polysaccharide for protecting against DOXO-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Yuting Ji
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Dekui Jin
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jingyi Qi
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xuan Wang
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Chengying Zhang
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Peng An
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
- Correspondence: (Y.L.); (J.L.)
| | - Junjie Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
- Correspondence: (Y.L.); (J.L.)
| |
Collapse
|
9
|
Hepatoprotective Effect of Mitochondria-Targeted Antioxidant Mito-TEMPO against Lipopolysaccharide-Induced Liver Injury in Mouse. Mediators Inflamm 2022; 2022:6394199. [PMID: 35769207 PMCID: PMC9236847 DOI: 10.1155/2022/6394199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is vulnerable to sepsis, and sepsis-induced liver injury is closely associated with poor survival of sepsis patients. Studies have found that the overproduction of reactive oxygen species (ROS) is the major cause of oxidative stress, which is the main pathogenic factor for the progression of septic liver injury. The mitochondria are a major source of ROS. Mito-TEMPO is a mitochondria-specific superoxide scavenger. The aim of this study was to investigate the effect of Mito-TEMPO on lipopolysaccharide- (LPS-) induced sepsis mice. We found that Mito-TEMPO pretreatment inhibited inflammation, attenuated LPS-induced liver injury, and enhanced the antioxidative capability in septic mice, as evidenced by the decreased MDA content and the increased SOD activity. In addition, Mito-TEMPO restored mitochondrial size and improved mitochondrial function. Finally, we found that the levels of pyroptosis-related proteins in the liver of LPS-treated mice were lower after pretreatment with Mito-TEMPO. The mechanisms could be related to Mito-TEMPO enhanced antioxidative capability and improved mitochondrial function, which reflects the ability to neutralize ROS.
Collapse
|
10
|
Wen JJ, Mobli K, Radhakrishnan GL, Radhakrishnan RS. Regulation of Key Immune-Related Genes in the Heart Following Burn Injury. J Pers Med 2022; 12:jpm12061007. [PMID: 35743792 PMCID: PMC9224557 DOI: 10.3390/jpm12061007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Immune cascade is one of major factors leading to cardiac dysfunction after burn injury. TLRs are a class of pattern-recognition receptors (PRRs) that initiate the innate immune response by sensing conserved molecular patterns for early immune recognition of a pathogen. The Rat Toll-Like Receptor (TLR) Signaling Pathway RT² Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity, and is a validated tool for identifying differentially expressed genes (DEGs). We employed the PCR array to identify burn-induced cardiac TLR-signaling-related DEGs. A total of 38 up-regulated DEGs and 19 down-regulated DEGs were identified. Network analysis determined that all DEGS had 10 clusters, while up-regulated DEGs had 6 clusters and down-regulated DEGs had 5 clusters. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were involved in TLR signaling, the RIG-I-Like receptor signaling pathway, the IL-17 signaling pathway, and the NFkB signaling pathway. Function analysis indicated that DEGs were associated with Toll-like receptor 2 binding, Lipopeptide binding, Toll-like receptor binding, and NAD(P)+ nucleosidase activity. The validation of 18 up-regulated DEGs (≥10-fold change) and 6 down-regulated DEGs (≤5-fold change) demonstrated that the PCR array is a trusted method for identifying DEGs. The analysis of validated DEG-derived protein–protein interaction networks will guide our future investigations. In summary, this study not only identified the TLR-signaling-pathway-related DEGs after burn injury, but also confirmed that the burn-induced cardiac cytokine cascade plays an important role in burn-induced heart dysfunction. The results will provide the novel therapeutic targets to protect the heart after burn injury.
Collapse
Affiliation(s)
- Jake J. Wen
- Department of Surgery University of Texas Medical Branch, Galveston, TX 77550, USA;
- Correspondence: (J.J.W.); (R.S.R.); Tel.: +1-832-722-0348
| | - Keyan Mobli
- Department of Surgery University of Texas Medical Branch, Galveston, TX 77550, USA;
| | | | - Ravi S. Radhakrishnan
- Department of Surgery University of Texas Medical Branch, Galveston, TX 77550, USA;
- Correspondence: (J.J.W.); (R.S.R.); Tel.: +1-832-722-0348
| |
Collapse
|
11
|
Wen JJ, Mobli K, Rontoyanni VG, Cummins CB, Radhakrishnan GL, Murton A, Radhakrishnan RS. Nuclear Factor Erythroid 2-Related Factor 2 Activation and Burn-Induced Cardiac Dysfunction. J Am Coll Surg 2022; 234:660-671. [PMID: 35290286 PMCID: PMC9634710 DOI: 10.1097/xcs.0000000000000119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our previous studies have found that burn injury induces cardiac dysfunction through interruption of the antioxidant-response element (ARE) pathway in cardiac mitochondria. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator that activates many antioxidant enzymes. Oltipraz (Olti) is a Nrf2 activator and a well-known inducer of NQO1 along with other enzymes that comprise the Nrf2-associated antioxidants. We propose that Nrf2 activation will induce the ARE pathway, leading to abrogation of burn-induced cardiac dysfunction. STUDY DESIGN In this study, we investigated the effect of Nrf2-deficiency in mice on burn-induced cardiac dysfunction. Wild-type (WT) and Nrf2-deficient mice received 30% total body surface area burn injury and were treated with or without Olti and then harvested at 3 hours and 24 hours post burn (3 hpb and 24 hpb). RESULTS As expected, Nrf2-deficient mice exhibited exacerbated cardiac dysfunction after burn injury, as measured by Vevo 2100 echocardiography. Electron microscopy showed that Nrf2 depletion worsened burn injury-induced cardiac mitochondrial damage. In addition, Nrf2 depletion increased cardiac mitochondrial dysfunction and myocardial fibrosis after burn injury. Treatment with Olti ameliorated the heart dysfunction in burned Nrf2-/+ mice, improved cardiac mitochondrial structure and oxidative phosphorylation, as well as decreased cardiac fibrosis. These results suggest that Nrf2 and its downstream targets modulate cardiac function after burn injury. CONCLUSIONS In summary, Nrf2 depletion worsens cardiac dysfunction after burn injury. Nrf2 activation, with a drug such as Olti, offers a promising therapeutic strategy for abrogating burn-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jake J Wen
- From the Departments of Surgery (Wen, Mobli, Rontoyanni, Cummins, Murton, RS Radhakrishnan), University of Texas Medical Branch at Galveston, Galveston, TX
| | - Keyan Mobli
- From the Departments of Surgery (Wen, Mobli, Rontoyanni, Cummins, Murton, RS Radhakrishnan), University of Texas Medical Branch at Galveston, Galveston, TX
| | - Victoria G Rontoyanni
- From the Departments of Surgery (Wen, Mobli, Rontoyanni, Cummins, Murton, RS Radhakrishnan), University of Texas Medical Branch at Galveston, Galveston, TX
| | - Claire B Cummins
- From the Departments of Surgery (Wen, Mobli, Rontoyanni, Cummins, Murton, RS Radhakrishnan), University of Texas Medical Branch at Galveston, Galveston, TX
| | - Geetha L Radhakrishnan
- Pediatrics (GL Radhakrishnan, RS Radhakrishnan), University of Texas Medical Branch at Galveston, Galveston, TX
| | - Andrew Murton
- From the Departments of Surgery (Wen, Mobli, Rontoyanni, Cummins, Murton, RS Radhakrishnan), University of Texas Medical Branch at Galveston, Galveston, TX
| | - Ravi S Radhakrishnan
- From the Departments of Surgery (Wen, Mobli, Rontoyanni, Cummins, Murton, RS Radhakrishnan), University of Texas Medical Branch at Galveston, Galveston, TX
- Pediatrics (GL Radhakrishnan, RS Radhakrishnan), University of Texas Medical Branch at Galveston, Galveston, TX
| |
Collapse
|
12
|
Abstract
ABSTRACT Management of the metabolic responses to severe burn injury is recognized as a fundamental part of burn care. Definition of burn hypermetabolism is being refined to subcellular and genomic levels, and treatment concepts are need to be refined into increasingly sophisticated strategies.
Collapse
Affiliation(s)
- David Herndon
- From the Joseph M. Still Research Foundation, Inc., Augusta, GA
| | | | | |
Collapse
|
13
|
Gaines BA. Invited Commentary. J Am Coll Surg 2021; 232:655. [PMID: 33771323 DOI: 10.1016/j.jamcollsurg.2020.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 10/21/2022]
|
14
|
Krbcová Moudrá V, Zajíček R, Bakalář B, Bednář F. Burn-Induced Cardiac Dysfunction: A Brief Review and Long-Term Consequences for Cardiologists in Clinical Practice. Heart Lung Circ 2021; 30:1829-1833. [PMID: 34275754 DOI: 10.1016/j.hlc.2021.06.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Severe burn injury is a specific type of trauma, which induces a unique complex of responses in the body and leads to an extreme increase in stress hormones and proinflammatory cytokines. These hypermetabolic and stress responses are desirable in the acute phase but can persist for several years and lead - due to several mechanisms - to many late complications, including myocardial dysfunction. METHODS The databases of PubMed, ScienceDirect, National Institutes of Health (NIH) of the United States, and Google Scholar were searched. Studies relevant to the topic of late cardiovascular dysfunction after burn injury were compiled using key words. RESULTS Burn-induced heart disease significantly increases morbidity and mortality and contributes to the reduction in the quality of life of patients after severe burn trauma. A variety of mechanisms causing myocardial dysfunction after burn trauma have been detailed but understanding all of the exact consequences is limited, especially regarding chronic cardiovascular changes. CONCLUSION A detailed understanding of the pathophysiology of chronic cardiac changes can contribute to a comprehensive and preventive treatment plan and improve long-term outcomes of burn patients.
Collapse
Affiliation(s)
- Veronika Krbcová Moudrá
- Third Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Cardiology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Robert Zajíček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic; The Burn Center Prague, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Bohumil Bakalář
- Third Faculty of Medicine, Charles University, Prague, Czech Republic; The Burn Center Prague, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - František Bednář
- Third Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Cardiology, University Hospital Kralovske Vinohrady, Prague, Czech Republic.
| |
Collapse
|