1
|
Goo D, Lee J, Paneru D, Sharma MK, Rafieian-Naeini HR, Mahdavi FS, Gyawali I, Gudidoddi SR, Han G, Kim WK. Effects of branched-chain amino acid imbalance and dietary valine and isoleucine supplementation in modified corn-soybean meal diets with corn distillers dried grains with solubles on growth performance, carcass quality, intestinal health, and cecal microbiome in Cobb 500. Poult Sci 2024; 103:104483. [PMID: 39510006 PMCID: PMC11577229 DOI: 10.1016/j.psj.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
One important feature of corn distillers dried grains with solubles (DDGS) is its high leucine:lysine ratio, which can inhibit chicken growth by causing branched-chain amino acid (BCAA) antagonism. The current study was conducted to investigate the effects of BCAA imbalance of inclusion of DDGS and whether additional dietary valine and isoleucine could alleviate the negative effects in broilers. A total of 640 0-d-old male Cobb 500 broilers were allocated into 4 treatments with 8 replicates and reared until d 42. The four different dietary groups were as follows: 1) control (CON) group (corn-soybean meal-based diet); 2) 30% DDGS (30D) group (replacing soybean meal with 30% DDGS); 3) 30D + additional valine and isoleucine (30DB) group; and 4) the group of 30DB + additional valine and isoleucine to provide the same leucine:valine and leucine:isoleucine ratios as the CON group (30DBB). The analyzed leucine:lysine ratios of the CON group were 1.36/1.41/1.46 (starter/grower/finisher phase), whereas the average leucine:lysine ratios of the 30% DDGS groups were 1.61/1.70/1.78 (starter/grower/finisher phase). The 30% DDGS groups (30D, 30DB, and 30DBB) negatively affected body weight (BW) from d 7 to 42 and BW gain (BWG), feed intake, carcass weight, breast muscle weight, and jejunal and ileal villus height:crypt depth during the overall period (d 0 to 42) (P < 0.05). Furthermore, the 30% DDGS groups significantly altered expression levels of jejunal tight junction proteins, breast muscle mechanistic target of rapamycin (mTOR) pathway-related genes, BCAA catabolism genes, and AA transporters compared to the CON (P < 0.01). The 30% DDGS groups showed differences in beta-diversity indices compared to the CON group (P < 0.05). The 30DBB group showing the lowest d 21 and 42 BW and overall BWG had the largest differences compared to the CON group in most measurements. In conclusion, excessive replacement of soybean meal with DDGS can significantly increase leucine levels, which may negatively affect chicken growth. Additionally, inappropriate ratios of valine and isoleucine can further decrease growth performance.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Fatemeh S Mahdavi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Ishwari Gyawali
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Gippeum Han
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.
| |
Collapse
|
2
|
Kerr BJ, Pearce SC, Risley CR, Wilson BA, Koltes DA. Energy digestibility in broilers and poult performance when fed palm or soybean oil with or without glyceryl monolaurate. Poult Sci 2024; 103:104442. [PMID: 39486141 PMCID: PMC11564019 DOI: 10.1016/j.psj.2024.104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Two trials were conducted to determine interactive effects between lipid source (palm oil, PO versus soybean oil, SO) and emulsifier addition (none versus glycerol monolaurate-GML) on apparent total tract digestibility (ATTD) of gross energy (GE) in broilers and growth performance in poults. In trial 1, 0.05 % GML addition had no impact on the ATTD of GE of SO but improved the ATTD of PO from 77.11 % to 88.21 % (interaction, P=0.03). Without GML addition, PO had a lower ATTD of GE (77.11 %) compared to SO (96.48 %) resulting in an AME of 7,259 versus 9,092 kcal/kg for PO and SO, respectively. In trial 2, the addition of 0.10 % GML reduced ADFI in poults fed diets containing 5 % PO compared to poults fed 0 or 0.05 % GML, while the addition of either 0.05 or 0.10 % GML reduced ADFI in poults fed diets containing 5 % SO compared to poults fed no GML (P=0.01). There was a similar response with ADG (P=0.01) where the addition of either 0.05 or 0.10 % GML reduced ADG in poults fed diets containing SO compared to poults fed no GML, while the addition of GML was largely without effect in poults fed diets containing PO. There was no interaction between lipid source and emulsifier addition on feed efficiency (P>0.10). Poults fed diets containing PO had a poorer feed efficiency compared to birds fed diets containing SO (P=0.01). The main effect of emulsifier was inconsistent in that poults fed the diets containing 0.10 % GML had the greatest feed efficiency compared to poults fed the diets containing 0.05 % GML, with poults fed diets containing no emulsifier being intermediate (P=0.10). In conclusion, addition of GML improved the ATTD of GE for PO but had no effect on the ATTD of GE for SO. This improvement in energy digestibility, did not however, translate to an improvement in poult performance. Broilers and poults fed diets containing SO had a greater feed efficiency compared to birds fed diets containing PO.
Collapse
Affiliation(s)
- Brian J Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA, 50011, United States.
| | - Sarah C Pearce
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA, 50011, United States
| | | | - Brooke A Wilson
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Dawn A Koltes
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
3
|
Yu Y, Ai C, Luo C, Yuan J. Effect of Dietary Crude Protein and Apparent Metabolizable Energy Levels on Growth Performance, Nitrogen Utilization, Serum Parameter, Protein Synthesis, and Amino Acid Metabolism of 1- to 10-Day-Old Male Broilers. Int J Mol Sci 2024; 25:7431. [PMID: 39000537 PMCID: PMC11242162 DOI: 10.3390/ijms25137431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
This research compared how different levels of dietary crude protein (CP) and apparent metabolizable energy (AME) affect the growth performance, nitrogen utilization, serum parameters, protein synthesis, and amino acid (AA) metabolism in broilers aged 1 to 10 days. In a 4 × 3 factorial experimental design, the broilers were fed four levels of dietary CP (20%, 21%, 22%, and 23%) and three levels of dietary AME (2800 kcal/kg, 2900 kcal/kg, and 3000 kcal/kg). A total of 936 one-day-old male Arbor Acres broilers were randomly allocated to 12 treatments with 6 replications each. Growth performance, nitrogen utilization, serum parameter, gene expression of protein synthesis, and AA metabolism were evaluated at 10 d. The results revealed no interaction between dietary CP and AME levels on growth performance (p > 0.05). However, 22% and 23% CP enhanced body weight gain (BWG), the feed conversion ratio (FCR), total CP intake, and body protein deposition but had a detrimental effect on the protein efficiency ratio (PER) compared to 20% or 21% CP (p < 0.05). Broilers fed diets with 2800 kcal/kg AME showed increased feed intake (FI) and inferior PER (p < 0.05). Broilers fed diets with 3000 kcal/kg AME showed decreased muscle mRNA expression of mammalian target of the rapamycin (mTOR) and Atrogin-1 compared to those fed diets with 2800 kcal/kg and 2900 kcal/kg AME (p < 0.05). Increasing dietary CP level from 20% to 23% decreased muscle mTOR and increased S6K1 mRNA expression, respectively (p < 0.05). The muscle mRNA expression of Atrogin-1 was highest for broilers fed 23% CP diets (p < 0.05). The mRNA expression of betaine homocysteine methyltransferase (BHMT) and Liver alanine aminotransferase of the 22% and 23% CP groups were higher than those of 20% CP (p < 0.05). Significant interactions between dietary CP and AME levels were observed for muscle AMPK and liver lysine-ketoglutarate reductase (LKR) and branched-chain alpha-keto acid dehydrogenase (BCKDH) mRNA expression (p < 0.05). Dietary AME level had no effect on muscle AMPK mRNA expression for broilers fed 21% and 22% CP diets (p > 0.05), whereas increasing dietary AME levels decreased AMPK mRNA expression for broilers fed 23% CP diets (p < 0.05). The mRNA expression of LKR and BCKDH was highest for broilers fed the diet with 2800 kcal/kg AME and 22% CP, while it was lowest for broilers fed the diet with 3000 kcal/kg AME and 20% CP. The findings suggest that inadequate energy density hindered AA utilization for protein synthesis, leading to increased AA catabolism for broilers aged 1 to 10 days, and a dietary CP level of 22% and an AME level of 2900 to 3000 kcal/kg may be recommended based on performance and dietary protein utilization.
Collapse
Affiliation(s)
| | | | | | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.Y.); (C.A.); (C.L.)
| |
Collapse
|
4
|
Oketch EO, Wickramasuriya SS, Oh S, Choi JS, Heo JM. Physiology of lipid digestion and absorption in poultry: An updated review on the supplementation of exogenous emulsifiers in broiler diets. J Anim Physiol Anim Nutr (Berl) 2023; 107:1429-1443. [PMID: 37435748 DOI: 10.1111/jpn.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Lipids are a concentrated source of energy with at least twice as much energy as the same amount of carbohydrates and protein. Dietary lipids provide a practical alternative toward increasing the dietary energy density of feeds for high-performing modern broilers. However, the digestion and absorption of dietary lipids are much more complex than that of the other macronutrients. In addition, young birds are physiologically limited in their capacity to utilise dietary fats and oils effectively. The use of dietary emulsifiers as one of the strategies aimed at improving fat utilisation has been reported to elicit several physiological responses including improved fat digestibility and growth performance. In practical terms, this allows for the incorporation of lipids into lower-energy diets without compromising broiler performance. Such an approach may potentially lower feed costs and raise revenue gains. The current review revisits lipids and the different roles that they perform in diets and whole-body metabolism. Additional information on the process of dietary lipid digestion and absorption in poultry; and the physiological limitation brought about by age on lipid utilisation in the avian gastrointestinal tract have been discussed. Subsequently, the physiological responses resulting from the dietary supplementation of exogenous emulsifiers as a strategy for improved lipid utilisation in broiler nutrition are appraised. Suggestions of nascent areas for a better understanding of exogenous emulsifiers have been highlighted.
Collapse
Affiliation(s)
- Elijah O Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Samiru S Wickramasuriya
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sungtaek Oh
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, John Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jun Seung Choi
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
5
|
Effects of metabolizable energy and emulsifier supplementation on growth performance, nutrient digestibility, body composition, and carcass yield in broilers. Poult Sci 2023; 102:102509. [PMID: 36745956 PMCID: PMC9932563 DOI: 10.1016/j.psj.2023.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to investigate the effect of metabolizable energy (ME) levels and exogenous emulsifier supplementation on growth performance, apparent ileal digestibility (AID), body composition, and carcass yield in broilers. The experiment was designed as a 2 × 2 factorial arrangement with ME levels (control ME vs. reduced 100 kcal/kg ME) and exogenous emulsifier supplementation (0 vs. 0.05 %). A total of 1,000 one-day-old male Cobb 500 broilers were randomly allocated into 4 treatments with 10 replicates and 25 birds per floor pen for 42 d (starter, d 0-14; grower, d 14-28; and finisher, d 28-42). Growth performance was measured biweekly, and AID was evaluated using the indigestible indicator method during d 21 to 28. Body composition was measured at d 35 using Dual-Energy X-Ray Absorptiometry (DXA), and carcass yield was evaluated at d 42. Data were analyzed using the GLM procedure for 2-way ANOVA. Results indicated reduced ME decreased body weight gain and feed intake (P < 0.05). Exogenous emulsifier supplementation improved FCR during the finisher and overall periods (P < 0.05). Reduced ME decreased AID of dry matter (DM), fat, and gross energy (P < 0.05) but increased AID of Val (P = 0.013). Exogenous emulsifier supplementation increased AID of DM, crude protein, His, Ile, Lys, Thr, Val, Pro, Ala, and Tyr (P < 0.05). Reduced ME decreased dressing rate and the relative weight of abdominal fat (P < 0.05). DXA results indicated that reduced ME decreased bone mineral density and fat (P < 0.001) but increased bone mineral contents and muscle (P < 0.05). Therefore, a reduction of 100 kcal/kg ME in the diet had adverse effects on the growth performance and carcass characteristics, but the use of exogenous emulsifier supplementation improved growth performance and nutrient digestibility.
Collapse
|
6
|
Choi J, Liu G, Goo D, Wang J, Bowker B, Zhuang H, Kim WK. Effects of tannic acid supplementation on growth performance, gut health, and meat production and quality of broiler chickens raised in floor pens for 42 days. Front Physiol 2022; 13:1082009. [PMID: 36589444 PMCID: PMC9800873 DOI: 10.3389/fphys.2022.1082009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
A study was conducted to investigate the effects of tannic acid (TA) supplementation on growth performance, gut health, antioxidant capacity, gut microbiota, and meat yield and quality in broilers raised for 42 days. A total of 700 one-day-old male broiler chickens (Cobb500) were allocated into 5 treatments with 7 replicates of 20 birds per pen. There were five treatments: 1) tannic acid 0 (TA0: basal diet without TA); 2) tannic acid 0.25 (TA0.25: basal diet+0.25 g/kg TA); 3) tannic acid 0.5 (TA0.5: basal diet+0.5 g/kg TA); 4) tannic acid 1 (TA1: basal diet+1 g/kg TA); and 5) tannic acid 2 (TA2: basal diet+2 g/kg TA). The dietary phases included starter (D 0 to 18; crumble feed), grower (D 18 to 28; pellet feed), and finisher (D 28 to 42; pellet feed). On D 18, the supplementation of TA linearly reduced body weight (BW) and average daily feed intake (ADFI) (p < 0.05), and on D 28, the supplementation of TA linearly reduced BW, average daily gain (ADG), and feed conversion ratio (FCR) (p < 0.05). Relative mRNA expression of genes related to mucin production (MUC2), tight junction proteins (CLDN2 and JAM2), and nutrient transporters (B0AT1 and SGLT1) was linearly increased by the supplementation of TA (p < 0.05). The supplementation of TA tended to linearly increase the relative abundance of the family Enterobacteriaceae (p = 0.08) and quadratically increased the relative abundance of the families Lachnospiraceae and Ruminococcaceae in the cecal microbial communities (p < 0.05). On D 36, the ratio of the phyla Firmicutes and Bacteroidetes was quadratically reduced by the supplementation of TA (p < 0.05). On D 42, bone mineral density and the lean to fat ratio were linearly decreased by the supplementation of TA (p < 0.05). On D 43, total chilled carcass weight was linearly reduced (p < 0.05), and proportion of leg weight was increased by supplementation of TA (p < 0.05). The supplementation of TA linearly reduced pH of the breast meat (p < 0.05) and linearly increased redness (a*) (p < 0.05). Although the supplementation of TA positively influenced gut health and gut microbiota in the starter/grower phases, it negatively affected overall growth performance, bone health, and meat production in broilers on D 42.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Brain Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States,*Correspondence: Woo Kyun Kim,
| |
Collapse
|
7
|
Ahmadi-Sefat AA, Taherpour K, Ghasemi HA, Akbari Gharaei M, Shirzadi H, Rostami F. Effects of an emulsifier blend supplementation on growth performance, nutrient digestibility, intestinal morphology, and muscle fatty acid profile of broiler chickens fed with different levels of energy and protein. Poult Sci 2022; 101:102145. [PMID: 36155885 PMCID: PMC9519631 DOI: 10.1016/j.psj.2022.102145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
The effects of emulsifier blend (EB) supplementation of diets with various levels of metabolizable energy (ME) and crude protein (CP) on broiler performance, digestibility, gut morphology, and muscle fatty acid profile were investigated over a 42-d period. Diets were arranged factorially (2 × 2 × 3) and consisted of 2 levels of ME (normal [commercially recommended levels] and low [100 kcal/kg reduction in dietary ME]), 2 levels of CP and limiting amino acids (normal [commercially recommended levels] and low [95% of the normal CP level]), and 3 levels of EB supplementation (0, 1, and 2 g/kg of diet). A total of 1,200 one-day-old male broiler chickens (Ross 308) were randomly assigned to 12 treatment groups (5 pens/treatment with 20 birds/pen). Supplemental EB linearly improved (P < 0.05) final body weight, overall average daily gain, and feed conversion ratio, but the magnitude of the responses was greater in low-ME and low-CP treatments, resulting in significant ME × CP × EB interactions. Similarly, the inclusion of EB in the diet, particularly at 2 g/kg, increased the ileal digestibility of crude protein and crude fat, as well as the AMEn value (P < 0.05), but the response was greater at lower ME concentration, indicating significant ME × EB interactions. Additionally, there were CP × EB interactions (P < 0.05) for duodenal villus height and villus height/crypt depth ratio, indicating that the effect of EB on these responses was more marked at lower dietary CP levels. An increase in dietary EB levels was accompanied by a linear increase in the concentration of total saturated fatty acids and a linear decrease (P < 0.05) in the concentrations of total polyunsaturated fatty acids in both breast and thigh meat. In conclusion, the positive effects of EB supplementation, particularly at a dietary inclusion level of 2 g/kg, were clearly evident in broiler chickens fed with low nutrient diets (−100 Kcal/kg ME and/or −5% CP and limiting amino acids) in terms of growth performance, nutrient digestibility, and gut morphology.
Collapse
Affiliation(s)
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | | | - Hassan Shirzadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Farhad Rostami
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
8
|
Nemati M, Ghasemi HA, Hajkhodadadi I, Moradi MH. De-oiled soy lecithin positively influenced growth performance, nutrient digestibility, histological intestinal alteration, and antioxidant status in turkeys fed with low energy diets. Br Poult Sci 2021; 62:858-867. [PMID: 34142909 DOI: 10.1080/00071668.2021.1943312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The purpose of this research was to investigate the effects of supplementing an emulsifier (de-oiled soybean lecithin (DSL)) in a low metabolisable energy (ME) diet on growth performance, nutrient digestibility, carcase characteristics, intestinal morphology, blood metabolites, and antioxidant status in growing turkeys.2. A total of 480 one-day-old turkeys were assigned to one of four dietary treatments with of eight replicates of 15 birds each. Experimental treatments included a basal diet (BE) with commercially recommended levels of ME, a reduced energy diet (RE) with 0.42 MJ/kg reduction in dietary ME content, the RE diet + 1 g/kg DSL (DSL-1), and RE + 2 g/kg DSL (DSL-2).3. After 112 days, the body weight, average daily gain, and feed:gain in turkeys fed the supplemented for BE diets were better (P < 0.05) than in those fed RE, and those fed diet DSL-2 had the best performance. Although the RE diet decreased abdominal fat and relative liver weight (P < 0.05), compared to the BE diet, and supplementation with either level of DSL did not influence these variables.4. There were linear increases (P < 0.05) in fat digestibility, nitrogen-corrected apparent ME, and duodenal villus height, villus height/crypt depth ratio, and villus surface area in LE diet supplemented with DSL. From the jejunal morphology, crypt depth was decreased by DSL-supplemented diets (P < 0.05).5. Serum triglyceride, total cholesterol, and malondialdehyde concentrations were lower, whereas the serum superoxide dismutase activity was greater for the DSL-2 group compared to the BE and RE groups (P < 0.05).6. The findings suggested that, while low-ME diets impaired turkey growth performance, dietary supplementation of DSL could reverse such impacts of these diets. The DSL-supplemented diet at the inclusion level of 2 g/kg was advantageous over both BE and RE diets in terms of intestinal morphology, lipid profile, and antioxidant status in growing turkeys.
Collapse
Affiliation(s)
- M Nemati
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - H A Ghasemi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - I Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - M H Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| |
Collapse
|
9
|
Wang J, Su S, Pender C, Murugesan R, Syed B, Kim WK. Effect of a Phytogenic Feed Additive on Growth Performance, Nutrient Digestion, and Immune Response in Broiler-Fed Diets with Two Different Levels of Crude Protein. Animals (Basel) 2021; 11:ani11030775. [PMID: 33799557 PMCID: PMC7999929 DOI: 10.3390/ani11030775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The rising concerns on antibiotics resistance from using antibiotics in animal production has resulted in an increase in researches on antibiotic alternatives. A phytogenic feed additive from a blend of extracts of oregano, cinnamon, citrus peel, and fructooligosaccharides was evaluated in the present study. The objective of the present study is not only to evaluate the effect of phytogenic feed additive on broiler performance, but also to explore the potential mode of actions through immune response, digestive enzyme activities, nutrient transporter gene expressions and nutrient digestibility. Supplementation of phytogenic feed additives improved broiler FCR through stimulating ileum immunity. Abstract The aim of this experiment was to evaluate the effect of a phytogenic feed additive (PFA) on growth performance and nutrient digestibility of broilers fed corn and soybean meal-based diets containing two different levels of crude protein. A 2 × 2 completely randomized factorial arrangement (eight replicates/treatment, 30 birds/replicate) was conducted with a positive control (PC) and negative control (NC) containing crude protein at standard or reduced by 1.5% (equivalent to a reduction of 15 g/kg), respectively, and supplementation of PFA at 0 or 125 ppm of diet. There were no significant interactions found between PFA and CP levels in the current study. Main effect analysis showed that during 0–42 d of age NC diets decreased body weight gain (p < 0.05), but increased feed intake (p < 0.05) and feed conversion ratio (FCR, p < 0.01), whereas supplementation of PFA resulted in a lower FCR (p < 0.01). The ileal nutrient digestibility was reduced (p < 0.05) in the broilers fed a reduced protein diet at 21 d compared to the standard protein level group, but there were no effects for PFA levels. Similarly, supplementing PFAs showed no effects on digestive enzyme (Alkaline phosphatase, amylase, and lipase) activity in jejunal digesta and jejunal brush border enzyme (maltase, sucrase, and aminopeptidase) activity. Supplementation of PFA downregulated (p < 0.05) the mRNA expressions of cytochrome P450 1A and interleukin 6 in the ileum but had no effects on nutrient transporter genes in the jejunum. In conclusion, supplementation of PFA reduced broiler FCR during the whole grow-out period and positively regulated the immune responses in the ileum.
Collapse
Affiliation(s)
- Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.W.); (S.S.)
| | - Shengchen Su
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.W.); (S.S.)
| | - Chasity Pender
- BIOMIN America Inc., Overland Park, KS 66210, USA; (C.P.); (R.M.)
| | - Raj Murugesan
- BIOMIN America Inc., Overland Park, KS 66210, USA; (C.P.); (R.M.)
- BIOMIN Holding GmbH, 3130 Getzersdorf, Austria;
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.W.); (S.S.)
- Correspondence:
| |
Collapse
|