1
|
Sultan A, Murtaza S, Naz S, Islam Z, Alrefaei AF, Khan RU, H. Abdelrahman S, Chandrasekaran A. Live performance, nutrient digestibility, immune response and fecal microbial load modulation in Japanese quails fed a Bacillus-based probiotic alone or combination with xylanase. Vet Q 2024; 44:1-9. [PMID: 38903017 PMCID: PMC11195456 DOI: 10.1080/01652176.2024.2364641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024] Open
Abstract
Animal industry seeks cost-effective solutions to enhance performance and health of domestic animals. This study investigated the effects of supplementing Bacillus spp. probiotics and xylanase on 2000 one-day-old Japanese quails, randomly assigned to four treatment groups (10 replicates). The control group received no supplementation, while the others were supplemented with a Bacillus-based probiotic at 7.5 × 107 cfu/kg of feed, xylanase enzyme (2,000 U/kg) alone or in combination. Quails receiving both probiotic and enzyme exhibited significantly (p < 0.01) higher weekly and overall weight gain, and lower feed conversion ratios compared to the control group. Dressing percentage was higher (p < 0.01), and mortality lower in birds supplemented with a combination of enzyme and probiotic. Antibody titres against infectious bronchitis and infectious bursal disease were significantly (p < 0.01) higher in quails receiving combined probiotic and enzyme supplementation, while titres against Newcastle disease virus were higher (p < 0.01) in groups supplemented with probiotic and enzyme individually or in combination. Additionally, digestibility was significantly (p < 0.01) higher in groups receiving combined enzyme and probiotic supplementation, with higher apparent metabolizable energy compared to the control. The populations of beneficial Lactobacillus increased, while harmful E. coli and Salmonella decreased significantly in quails supplemented with both probiotic and enzyme. In conclusion, supplementing xylanase enzyme and probiotic together in Japanese quails positively influenced growth, nutrient digestibility, immune response, and cecal microbiota.
Collapse
Affiliation(s)
- Asad Sultan
- Department of Poultry Science, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Syed Murtaza
- Department of Poultry Science, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Shabana Naz
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Ziaul Islam
- Department of Animal Science, Shaheed Benazir Bhutto University Sheringal Dir Upper, Sheringal, Pakistan
| | | | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | | | - A. Chandrasekaran
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, India
| |
Collapse
|
2
|
Sitohang LYR, Untari ZA, Zuprizal Z, Anas MA. Inclusion of sorghum (Sorghum bicolor (L). Moench) with protease and NSP-ase increases jejunal histomorphology and barrier function gene expression in broiler chickens. Poult Sci 2024; 103:104298. [PMID: 39321546 PMCID: PMC11462345 DOI: 10.1016/j.psj.2024.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
The objective of this study was to investigate the effect of sorghum with or without protease and NSP-ase on performance, jejunal histomorphology, caecal short-chain fatty acids (SCFA), and gene expression of barrier function in the broiler chickens. A total of 240 males New Lohmann strain MB 202 broiler chicks (1-day-old) were randomly placed into 12 treatments with 4 replications, 5 birds per replicate for 35 d. The diets were a factorial combination of 3 levels of sorghum (0, 10, and 20%), 2 concentrations of protease (with and without protease), and 2 concentrations of NSP-ase (with and without NSP-ase). Results showed that villus height (VH) was improved (P < 0.05) and villus to crypt ratio (VH:CD) tended (P = 0.05) to increase with inclusion of sorghum. Inclusion of sorghum upregulated (P < 0.05) expression of the gene anti-inflammatory IL-13, and downregulated (P < 0.05) gene of toll receptor (TLR) (TLR-3 and TLR-4), pro-inflammatory (IL-18, IL-6, tumor necrosis factor-alpha (TNF-α) and tight junction zona occluding-1 (ZO-1). The result further indicated a decrease (P < 0.05) in the concentration of SCFA. The birds fed diets with protease had lower (P < 0.05) expression of gene TLR-4 and TLR-3, pro-inflammatory (IL-6 and TNF-α), and anti-inflammatory IL-10. Inclusion of sorghum markedly (P < 0.05) interacted with protease, increasing the total of SCFA, acetate, and VH in the broiler. The bird offered diets with NSP-ase had higher (P < 0.05) expression genes of pro-inflammatory IL-18 and TNF-α. Inclusion of sorghum and NSP-ase significantly (P < 0.05) interacted, upregulating gene of tight junction ZO-1 and anti-inflammatory IL-13 but downregulating gene TLR-3, and pro-inflammatory IL-6, while the SCFA production was decreased. Inclusion of sorghum in the diet with or without enzymes did not affect broiler performance (P > 0.05). In conclusion, a diet with sorghum improved jejunal histomorphology without negatively affecting growth performance. Additionally, supplementation with enzymes enhanced intestinal immune responses by up-regulating anti-inflammatory, and downregulating pro-inflammatory gene expression.
Collapse
Affiliation(s)
- Lanti Yulianti Rebecca Sitohang
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta, 55281, Indonesia
| | - Ziyan A'fif Untari
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta, 55281, Indonesia
| | - Zuprizal Zuprizal
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta, 55281, Indonesia
| | - Muhsin Al Anas
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta, 55281, Indonesia.
| |
Collapse
|
3
|
Patel DK, Rawat R, Sharma S, Shah K, Borsadiya N, Dave G. Linker-assisted engineering of chimeric xylanase-phytase for improved thermal tolerance of feed enzymes. J Biomol Struct Dyn 2024; 42:8114-8124. [PMID: 37545145 DOI: 10.1080/07391102.2023.2243338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Biological enzymes are multifunctional macromolecules that can perform hundreds of reactions simultaneously. An enzyme must possess specific characteristics to meet industrial needs, such as stability over a wide pH and temperature range and high specific activity. A phytase and xylanase mixture is generally added to poultry feed to improve the bird's health and productivity. Despite this, animal farmers have noticed no difference in productivity, and a leading cause is the high temperature at which feed is pulverized, which inactivates enzymes. A thermo-stable enzyme system can overcome these hitches. Commonly, coatings and immobilization reduce losses caused by physical-chemical factors in feed processing and digestion. To this end, we engineered the multifunctional xylanase-phytase domains on a single polypeptide fused by a helical linker. First, the ideal linker sequence was chosen by computing each selected linker's root mean square deviation (RMSD). The selected helical linker provides sufficient structural flexibility for substrate binding and product release evaluated by molecular docking and molecular dynamic simulation studies. Furthermore, a domain-domain interaction has stabilized the bridging partners, attaining the thermal optima for xylanase and phytase at 90 °C. Even at the above-optimal temperature (100 °C), the recombinant PLX was relatively stable and retained 64.2% and 59.2% activity for xylanase and phytase, respectively, when surveyed for ten hours. So far, to this date, this is the highest degree of thermostability achieved by any recombinant phytase or xylanase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharti K Patel
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| | - Ravi Rawat
- School of Health Sciences & Technology, UPES University, Dehradun, India
| | - Shilpa Sharma
- Department of Biotechnology, Bennett University, Greater Nioda, India
| | - Kruti Shah
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| | - Nayan Borsadiya
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| | - Gayatri Dave
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| |
Collapse
|
4
|
Wealleans AL, Ashour RA, Abu Ishmais MA, Al-Amaireh S, Gonzalez-Sanchez D. Comparative effects of proteases on performance, carcass traits and gut structure of broilers fed diets reduced in protein and amino acids. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:457-470. [PMID: 38975585 PMCID: PMC11222113 DOI: 10.5187/jast.2023.e20] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 02/19/2023] [Indexed: 07/09/2024]
Abstract
This study aimed to evaluate the effect of supplementing different protease enzymes on growth performance, intestinal morphology, and selected carcass traits in broilers fed diets reduced 3.5% in crude protein (CP) and amino acids (AA). One thousand one-day-old Ross 308 broilers (41 g) were assigned to five dietary treatments with ten replicates of 20 birds each: a positive control (PC) diet formulated to meet Ross 308 AA requirements, a negative control (NC) diet reformulated to provide 3.5% lower CP and AA compared to PC, NC supplemented with a multi-protease (PR1) solution, containing 3 different coated proteases produced from Aspergillus niger, Bacillus subtilis and Bacillus licheniformis, NC supplemented with a serine protease (PR2) produced from Bacillus licheniformis, and NC supplemented with an alkaline protease (PR3) produced from Bacillus licheniformis. At slaughter, 40 birds per treatment were used to assess the effect of the different treatments on carcass traits. At 32 days, samples of the duodenum, jejunum, and ileum of 10 birds per treatment were collected for intestinal morphology evaluation. Birds fed PC and NC supplemented with multi-protease exhibited better (p < 0.05) feed efficiency compared to NC and NC supplemented with all the other protease enzymes. Multi-protease supplementation was linked to the highest (p < 0.05) carcass weight and yield. There were significant differences (p < 0.05) between treatments in all gut segments, with PC, PR1, PR2, and PR3 exhibiting longer villi height (VH) compared to NC. This study demonstrates that 3.5% reduction of CP and AA negatively affected for the overall period feed efficiency, carcass yield, and intestinal morphology. The supplementation of the multi-protease restored feed efficiency and improved carcass yield.
Collapse
Affiliation(s)
| | | | - Majdi A. Abu Ishmais
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sadiq Al-Amaireh
- Suliman Al-Amaireh & Partners Co., Tabarbor 11731, Amman, Jordan
| | | |
Collapse
|
5
|
Kwak MJ, Ha DJ, Park MY, Eor JY, Whang KY, Kim Y. Comparison study between single enzyme and multienzyme complex in distiller's dred grains with soluble supplemented diet in broiler chicken. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:398-411. [PMID: 38628689 PMCID: PMC11016744 DOI: 10.5187/jast.2023.e90] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 04/19/2024]
Abstract
Upregulation of the nutritional value of feed is the major target of various studies in the livestock industry, and dietary enzyme supplementation could aid in digesting the nondegrading nutrients of grains in feed ingredients. Dried distillers' grains with solubles (DDGS) is a byproduct of the fermentation process in the beverage industry and can be used as a large supply source of fiber in feed. Therefore, we conducted an experiment with male broiler chickens to investigate the effect of various types of enzymes on DDGS and compare the efficacy of single enzyme and multienzyme complexes on growth performance and gut environments in broiler chickens. We used 420 1-day-old broiler chickens (Ross 308), and they were allotted into 4 dietary treatments with seven replications (CON, corn-soybean meal [SBM] diet; NC, DDGS supplemented diet; SE, 0.05 % of mannanase supplemented DDGS-based diet; MC, 0.10% of multienzyme complex (mannanase and xylanase, glucanase) supplemented DDGS-based diet. The dietary exogenous enzyme in the DDGS-supplemented diet could improve growth performance as much as the growth of the control group, and digestibility of dry matter, crude protein, and gross energy were significantly increased by enzyme addition in groups of chicks fed DDGS-supplementation diet. Moreover, the populations of pathogenic bacteria, coliforms, and Bacteroidetes were significantly decreased by enzyme supplementation, which might lead to improved gut mucus-secreting cells and inflammatory cytokines in the jejunum. Collectively, dietary single enzyme and multienzyme complexes could improve gut environments, including intestinal immune responses and gut microbial population, and lead to improvement of growth performance in broiler chickens.
Collapse
Affiliation(s)
- Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Dong-Jin Ha
- Division of Biotechnology, College of Life
Science and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Min Young Park
- Department of Basic Science and
Craniofacial Biology, New York University College of
Dentistry, New York 10012, USA
| | - Ju Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, College of Life
Science and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
6
|
Saleh AA, Mousa A, Amber K, Badwi N, Shoukry M, Khairy M, Nusairat B, Odetallah N, Lin YMA, Selim S. Effect of endo-1,4-beta-xylanase supplementation to low-energy diets on performance, blood constituents, nutrient digestibility, and gene expressions related growth of broiler chickens. J Anim Physiol Anim Nutr (Berl) 2024; 108:99-110. [PMID: 37587735 DOI: 10.1111/jpn.13870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
The presence of soluble and insoluble non-starch polysaccharides (NSP) was reported to reduce nutrient utilisation, and adversely impact the broilers' growth performance; accordingly, NSP-degrading enzymes are essential supplements to cereal-based diets. Therefore, the current trial was conducted to characterise the impacts of supplemental xylanase (Xyl) to diets with low-ME levels on performance, carcass traits, blood parameters, nutrient digestibility and some genes expressions in broiler chickens. A total of 600 1-day-old Ross 308 male broiler chicks were randomly assigned to 6 treatments with 10 replications of 10 birds each per group in a completely randomised design. The 6 treatments were as follow: (1) basal diets with balanced ME content served as control (positive control, PC), (2) low-energy diet (negative control 1 [NC1]; ME content reduced by 70 kcal/kg compared with PC), (3) low-energy diet (negative control 2 [NC2]; ME content reduced by 140 kcal/kg compared with PC), (4) NC1 + 100 g/ton xylanase (NC1 + 100Xyl), (5) NC2 + 100 g/ton xylanase (NC2 + 100Xyl), and (6) NC1 + 50 g/ton xylanase (NC1 + 50Xyl). At the end of the experiment (35 days of age), the reduction of energy in the NC diets yielded lower live body weight (BW) and total body weight gain (BWG) (p ˂ 0.001); however, it significantly increased feed intake (p ˂ 0.05), leading to worst feed conversion ratio (FCR) and European production efficiency factor (EPEF) (p ˂ 0.01) than PC. There was non-significant variation in final BW, BWG, FCR, or EPEF between the PC group and the NC groups supplemented with Xyl. Carcass yield, gizzard, liver and, muscle relative weights were not influenced by dietary treatments; while broilers fed diet with low-energy diets with or without Xyl addition had lower abdominal fat (p ˂ 0.01) than PC. Furthermore, broilers fed on low-ME diets supplemented with Xyl showed a reduction in plasma total cholesterol (p ˂ 0.05) and low density lipoprotein (p ˂ 0.01) levels. Greater antibody titre against Newcastle disease (p ˂ 0.05) was recorded in the NC1 + 100Xyl and NC2 + 100Xyl groups. The addition of Xyl to low-energy diets significantly improved (p ˂ 0.05) fibre digestibility compared to the PC group. Moreover, enzyme supplementation increased muscle total lipids content and decreased muscle thiobarbituric acid retroactive substance content. In addition, enzyme supplementation increased gene expression related to growth and gene expression related to fatty acid synthesis. It was concluded that a low-ME diet might diminish broiler performance, whereas Xyl supplementation to low-ME diets beneficially affected growth performance, abdominal fat percentage, nutrient digestibility and immunity for broilers, and gene expressions related to growth and fatty acid synthesis in broiler chickens fed low-energy diets.
Collapse
Affiliation(s)
- Ahmed Ali Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Ahmed Mousa
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Khairy Amber
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Nemat Badwi
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mostafa Shoukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | | | - Basheer Nusairat
- Department of Animal Production, College of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Yun-Mei Amy Lin
- BioResource International, Inc., Durham, North Carolina, USA
| | - Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, University of Menoufia, Shibin El-Kom, Egypt
| |
Collapse
|
7
|
Mishra P, Das R, Chaudhary A, Mishra B, Jha R. Effects of microalgae, with or without xylanase supplementation, on growth performance, organs development, and gut health parameters of broiler chickens. Poult Sci 2023; 102:103056. [PMID: 37722276 PMCID: PMC10518709 DOI: 10.1016/j.psj.2023.103056] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
Microalgae are becoming potential sustainable feed ingredients, whereas terrestrial feedstuffs are becoming scarce and costly. They are rich in nutritional and functional values but have lower digestibility. This study evaluated the effects of microalgae with or without xylanase supplementation on growth performance and gut health of broiler chickens. A total of 162-day-old Cobb 500 chicks were raised for 35 d. Birds were fed with either 1 of the 3 dietary treatments: 1) corn-soybean meal-based diet (CON), 2) CON + 3% microalgae (MAG), and 3) MAG + xylanase (MAG+XYN) in 2 phases (starter: d 0-21 and finisher: d 22-35) in mash form. Each dietary treatment had 6 replicates, with 9 birds in each replicate. The level of significance was considered at the P value <0.05. The BW, ADG, and ADFI were significantly higher in MAG by 50%, 52.5%, and 42.4%, respectively, and MAG+XYN by 44.1%, 49.7%, and 38.6%, respectively, compared to the CON group. No significant difference was observed for FCR; however, FCR was reduced by 6.3% in both MAG and MAG+XYN groups compared to the CON group. The carcass and organ weight relative to the total body weight were not significantly different among the treatments. The expressions of Zonula occludens 1 (ZO1), Cluster of differentiation 56 (CD56), and Solute carrier family 7 member 7 (SLC7A7) were significantly modulated, for example, by 3.7, 3.9, and 3.3 folds, respectively, in the MAG group compared to CON and 0.8, 0.6, and 1.1 folds, respectively, in the MAG group compared to MAG+XYN groups on d 35. Villi surface area (VSA) of ileum tended to increase on d 3 (P = 0.0725) and d 35 (P = 0.0785) in the MAG and MAG+XYN groups, compared to the CON group. The results suggest that adding microalgae with or without xylanase to broiler's diet could promote growth performance and show a tendency to improve gut health parameters. The nutrient profile and its functional properties make microalgae a valuable resource to the poultry industry as a part substitution of corn and soybean meal and a functional feed supplement to modulate the gut health of broilers.
Collapse
Affiliation(s)
- Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
8
|
Rahmawati OM, Sugiharto S, Yudiarti T, Widiastuti E, Wahyuni HI, Sartono TA, Agusetyaningsih I, Ayasan T. Effect of unripe banana flour as a functional feed ingredient on growth performance, internal organ relative weight and carcass traits of broilers. Vet Med Sci 2023; 9:851-859. [PMID: 36628584 PMCID: PMC10029872 DOI: 10.1002/vms3.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Following the prohibition of in-feed antibiotics, poultry nutritionists are increasingly interested in the use of functional feed. Unripe banana flour (UBF) contains significant amounts of oligosaccharides (which may act as prebiotics) and antioxidants, making it a potential functional feed for broilers. However, research on the use of UBF as a functional feed ingredient for broilers is limited. OBJECTIVES The study investigated the effect of UBF with or without probiotic and multienzyme on growth, internal organ weight and carcass characteristics of broilers. METHODS A total of 392 broiler chicks were distributed into 4 groups included CONT (chicks receiving control feed), UBF (chicks receiving 5% UBF in feed), UBFPRO (5% UBF plus 0.05% probiotics) and UBFZYM (5% UBF plus 0.05% multienzyme). Data on growth performance were weekly recorded, whereas data on internal organs and carcass were collected on day 38. RESULTS Feed conversion ratio (FCR) was lower (p < 0.05) in UBF, UBFPRO and UBFZYM than that in CONT chicks, with no significant difference in body weight, body weight gain and feed intake. There was a tendency that gizzard was higher (p = 0.08) in CONT than in UBF chicks. Also, pancreas tended (p = 0.09) to be lower in UBFZYM than in CONT birds. There was a notable effect (p < 0.05) of dietary treatments on the yellowness (b*) values of thigh meats, in which UBFPRO had lower b* values than that of CONT but did not differ from that of UBF and UBFZYM. There was no difference (p < 0.05) in carcass and commercial proportion of broilers. CONCLUSIONS Feeding of 5% UBF with or without probiotic and multienzyme improved FCR, without negatively affecting the carcass characteristics of broilers.
Collapse
Affiliation(s)
- Oktafia Munita Rahmawati
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Sugiharto Sugiharto
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Turrini Yudiarti
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Endang Widiastuti
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Hanny Indrat Wahyuni
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Tri Agus Sartono
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Ikania Agusetyaningsih
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Central Java, Indonesia
| | - Tugay Ayasan
- Kadirli Faculty of Applied Sciences, Department of Organic Farming Business Management, Osmaniye Korkut Ata University, Osmaniye, Turkey
| |
Collapse
|
9
|
Lioliopoulou S, Papadopoulos GA, Giannenas I, Vasilopoulou K, Squires C, Fortomaris P, Mantzouridou FT. Effects of Dietary Supplementation of Pomegranate Peel with Xylanase on Egg Quality and Antioxidant Parameters in Laying Hens. Antioxidants (Basel) 2023; 12:antiox12010208. [PMID: 36671069 PMCID: PMC9854943 DOI: 10.3390/antiox12010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Pomegranate contains bioactive compounds in all its parts. In this study, two levels of pomegranate peel byproduct (PPB) with or without the inclusion of xylanase enzyme were used to supplement laying hens' diet, in a 2 × 2 full factorial design. A total of 48 Isa brown laying hens were fed the following experimental diets for 8 weeks: T1 (2.5% PPB); T2 (2.5% PPB and xylanase); T3 (5% PPB); T4 (5% PPB and xylanase). Eggs collected were analyzed for egg quality parameters. Moreover, egg yolks were analyzed for Malondialdehyde content (MDA), fatty acid profile and total phenolic content. The T2 eggs showed enhanced yolk coloration and greater yolk total phenolic content. The T3 and T4 egg yolks showed lower MDA levels compared with T1, T2. Overall, results have shown that (a) xylanase inclusion affected egg yolk coloration and total phenolic content when combined with 2.5% PPB dietary supplementation; (b) dietary supplementation of 5% PPB resulted in eggs with reduced MDA levels.
Collapse
Affiliation(s)
- Styliani Lioliopoulou
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence: (S.L.); (G.A.P.)
| | - Georgios A. Papadopoulos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence: (S.L.); (G.A.P.)
| | - Ilias Giannenas
- Laboratory of Animal Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Konstantina Vasilopoulou
- Laboratory of Animal Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Clare Squires
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Paschalis Fortomaris
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Fani Th. Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
10
|
Boontiam W, Phaenghairee P, Van Hoeck V, Vasanthakumari BL, Somers I, Wealleans A. Xylanase Impact beyond Performance: Effects on Gut Structure, Faecal Volatile Fatty Acid Content and Ammonia Emissions in Weaned Piglets Fed Diets Containing Fibrous Ingredients. Animals (Basel) 2022; 12:3043. [PMID: 36359167 PMCID: PMC9654035 DOI: 10.3390/ani12213043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
The addition of xylanase to piglet diets is known to improve performance and nutrient digestibility. The present study aimed to assess the impact of new xylanase on the growth performance, nutrient digestibility, and gut function of weaned piglets. A total of 144 pigs, weaned at 28 days (7.48 kg initial body weight, IBW), were assigned to 36 pens and 9 pens per treatment. Dietary treatments were a basal complex control diet, and the basal diet supplemented with 45,000, 90,000 and 135,000 U/kg xylanase. Performance was measured at days 0, 14 and 35. At day 35, samples were collected for assessment of intestinal histology, and volatile fatty acid and ammonia concentrations. After two weeks post-weaning, additional 12 piglets (11.34 kg IBW) were placed in metabolic crates for assessment of apparent total tract nutrient digestibility using a dietary marker. The addition of xylanase at 90,000 and 135,000 U/kg significantly improved average daily gain (333.6 g/day control, 364.86 g/day, 90,000 U/kg, 405.89 g/day, 135,000 U/kg, p < 0.05), G:F (0.557 control, 0.612 90,000 U/kg, 0.692 135,000 U/kg, p < 0.05), and reduced diarrhoea. This was driven improved nutrient digestibility and villus height in the jejunum (372.87 µm control, 432.53 µm 45,000 U/kg, 465.80 µm 90,000 U/kg, 491.28 µm 135,000 U/kg, p < 0.05). Xylanase supplementation also linearly increased faecal butyrate levels and had a quadratic relationship with propionate concentrations. 135,000 U/kg xylanase also reduced ammonia emissions. In conclusion, dietary supplementation with xylanase improved growth performance and feed efficiency in weaning piglets, likely driven by improvements to gut structure and function.
Collapse
Affiliation(s)
- Waewaree Boontiam
- Faculty of Agriculture, Division of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pheeraphong Phaenghairee
- Faculty of Agriculture, Division of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerle Van Hoeck
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| | | | - Ingrid Somers
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| | - Alexandra Wealleans
- Kemin Europa N.V., Animal Nutrition and Health EMENA, Toekomstlaan 42, 2200 Herentals, Belgium
| |
Collapse
|
11
|
Gorenz B, Iseri V, Rubach J, Dilger RN. Xylanase supplementation of pelleted wheat-based diets increases growth efficiency and apparent metabolizable energy and decreases viscosity of intestinal contents in broilers. Poult Sci 2022; 101:102220. [PMID: 36283142 PMCID: PMC9593177 DOI: 10.1016/j.psj.2022.102220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
This study was designed to test graded supplementation of a thermostable xylanase in pelleted, wheat-based diets fed to broiler chickens over a 28-d period. A total of 600 Ross 708 male broilers were allotted to 1 of 5 dietary treatments: positive control (PC), negative control (NC; 125 kcal of AME/kg diet reduction relative to PC), and NC supplemented with 10, 15, or 30 g/ton of xylanase. Wheat-soybean meal-based diets were pelleted and fed in 2 feeding phases (14-d each). Study outcomes included growth performance, AME, and ileal digesta viscosity with 20 battery cages of 6 birds per treatment. Data were analyzed by 1-way ANOVA along with estimation of Pearson correlation coefficients. Whereas no difference between NC and PC was observed for BW gain, NC birds exhibited increased (P < 0.05) feed intake during each feeding phase and overall, which caused improvements (P < 0.05) in feed conversion ratio (FCR) for PC vs. NC birds. The analyzed AME of PC birds was 112 kcal/kg of diet greater (P < 0.05) than for NC birds, though no differences in digesta viscosity were observed. Xylanase supplementation of the NC diet at 15 or 30 g/ton elicited overall improvements (P < 0.05) in BW gain beyond the PC, while the 30 g/ton level equalized feed intake with the PC. Regardless of level, xylanase supplementation improved (P < 0.05) the FCR relative to the NC, thereby equalizing the response with the PC. Similarly, supplementation with any xylanase level increased (P < 0.05) AME over the NC, making all treatments synonymous with the PC. Digesta viscosity of all xylanase-supplemented treatments was decreased relative to both the NC and PC treatments. Overall, this study provided clear evidence that addition of a thermostable xylanase to pelleted wheat-based diets elicited improvements in growth performance of broilers concomitant with a reduction in digesta viscosity and elevation of analyzed dietary AME content.
Collapse
Affiliation(s)
- Brad Gorenz
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Jon Rubach
- Kemin Industries, Inc., Des Moines, IA, USA
| | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA,Corresponding author:
| |
Collapse
|
12
|
A new monocomponent xylanase improves performance, ileal digestibility of energy and nutrients, intestinal morphology, and intestinal microbiota in young broilers. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Morgan N, Bhuiyan M, Wallace A, Hopcroft R. Comparing a single dose of xylanase to a double dose or cocktail of non-starch polysaccharide-degrading enzymes in broiler chicken diets. JOURNAL OF APPLIED ANIMAL NUTRITION 2022. [DOI: 10.3920/jaan2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study compared supplementation with a single dose of xylanase to a double dose of xylanase or a non-starch polysaccharide (NSP) degrading enzyme cocktail (NSP-ase cocktail) on productive performance, nutrient utilisation and the gastrointestinal environment in broilers fed commercial diets. Cobb 500 broilers (n=1,080) were fed 12 dietary treatments; four Australian commercial diets (based on wheat-barley, wheat-maize, wheat-sorghum or wheat only) with three different enzyme treatments (single dose of xylanase (16,000 BXU/kg), double dose of xylanase (32,000 BXU/kg) or NSP-ase cocktail (xylanase, β-glucanase, cellulase, pectinase, mannanase, galactanase, arabinofuranosidase). There were 108 pens, nine replicates per dietary treatment, with 10 birds per pen. Performance (total pen body weight, feed intake and feed conversion ratio corrected for mortality) was determined at d 0-35. On d 35, one male and one female were weighed individually and used to determine breast meat, thigh and drumstick weight, dry matter (DM) contents from the gizzard, jejunum and ileum, ileal protein, energy, starch and dry matter digestibility, ileal viscosity and xylo-oligosaccharide (XOS) concentration, caecal microbiota and short chain fatty acid (SCFA) composition. The double dose of xylanase and NSP-ase cocktail had no effect on bird performance, meat yield, ileal viscosity, ileal starch, energy or DM digestibility or digesta DM content. The double xylanase dose and NSP-ase cocktail increased protein digestibility in birds fed the wheat-sorghum based diet (P=0.041) and increased caecal concentration of butyric acid in birds fed the wheat-maize based diet (P=0.040), and propionic, valeric and lactic acid and Bifidobacteria and Enterobacteria spp. in birds fed the wheat-based diet (P<0.05). The double xylanase dose increased XOS production, particularly in birds fed the wheat-barley based diets (P<0.05). The lack of performance effects observed when feeding the double xylanase dose or NSP-ase cocktail suggested that the current recommended xylanase dose (16,000 BXU/kg) is sufficient.
Collapse
Affiliation(s)
- N. Morgan
- Curtin University, School of Molecular and Life Sciences, Bentley, Western Australia, 6102, Australia
- University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales, 2350, Australia
| | - M.M. Bhuiyan
- University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales, 2350, Australia
| | - A. Wallace
- University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales, 2350, Australia
| | - R. Hopcroft
- Inghams Enterprises Pty Ltd, North Ryde, New South Wales, 1670, Australia
| |
Collapse
|
14
|
Hao Z, Zhang W, Wang X, Wang Y, Qin X, Luo H, Huang H, Su X. Identification of WxL and S-Layer Proteins from Lactobacillus brevis with the Ability to Bind Cellulose and Xylan. Int J Mol Sci 2022; 23:ijms23084136. [PMID: 35456954 PMCID: PMC9026416 DOI: 10.3390/ijms23084136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
Xylanase releases xylo-oligosaccharides from dietary xylan, which stimulate the growth of the gut bacteria lactobacilli. Many lactobacilli adhere to dietary fibers, which may facilitate the assimilation of xylo-oligosaccharides and help them gain competence in the gut, but the underlying mechanisms remain elusive. Herein we report, from the highly abundant transcripts of Lactobacillus brevis cultured in wheat arabinoxylan supplemented with a xylanase, the identification of genes encoding four putative cell-surface WxL proteins (Lb630, Lb631, Lb632, and Lb635) and one S-layer protein (Lb1325) with either cellulose- or xylan-binding ability. The repetitively occurring WxL proteins were encoded by a gene cluster, among which Lb630 was chosen for further mutational studies. The analysis revealed three aromatic residues (F30, W61, and W156) that might be involved in the interaction of the protein with cellulose. A homology search in the genome of Enterococcus faecium identified three WxL proteins with conserved counterparts of these three aromatic residues, and they were also found to be able to bind cellulose and xylan. The findings suggested a role of the cell-surface WxL and S-layer proteins in assisting the cellular adhesion of L. brevis to plant cell wall polysaccharides.
Collapse
|
15
|
Effects of prebiotic supplementation on the concentration of short-chain fatty acids in the ceca of broiler chickens: a meta-analysis of controlled trials. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
16
|
Live Performance and Microbial Load Modulation of Broilers Fed a Direct-Fed Microbials (DFM) and Xylanase Combination. Vet Sci 2022; 9:vetsci9030142. [PMID: 35324870 PMCID: PMC8955989 DOI: 10.3390/vetsci9030142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
The animal industry, which focuses on producing protein for human consumption, is continuously seeking solutions that can enhance both animal performance and health at a low cost. Several feed additives are currently being used to improve the nutritive value of feed as well as replacing the subtherapeutic levels of antibiotic growth promoters (AGP). This study was designed to investigate the effect of a feed additive that is a blend of multi-strain Bacillus spp. probiotics and a xylanase in a 2 × 2 factorial dietary treatments design, testing two levels of the feed additive blend (0 and 100 g/MT) and two cereal grain types (corn and wheat) on live performance, gut lesions, environmental Clostridium perfringens load, and pathogen load in the digesta of broiler chickens (E. tenella, total aerobic count cells (APC), E. coli, and C. perfringens). Day-old chicks were randomly placed in 10 replicate pens per treatment with 52 birds per replicate and grown to 42 d of age. Data were analyzed by two-way ANOVA. At 42 d, birds fed EnzaPro were heavier (p < 0.0004) than unsupplemented birds. An improvement in FCR (p = 0.03) was observed from 1 to 42 d by approximately two points in both corn- and wheat-based diets supplemented with EnzaPro. In wheat-based diets, supplementing EnzaPro reduced (p < 0.0001) a 21 d lesion score of intestines with a further reduction (p < 0.02) at 42 d. EnzaPro reduced (p < 0.03) litter moisture by approximately 1% compared to non-supplemented EnzaPro in both corn- and wheat-based diets. Pathogen load in digesta (C. perfringens, E. tenella, APC, and E. coli) was reduced (p < 0.0002) when EnzaPro was supplemented in diets. It can be concluded that EnzaPro (a blend of DFM Bacillus spp (1 × 105 CFU/g feed) and xylanase (10 XU/g feed)) may be used in both corn- and wheat-based diets to improve the performance and gut health of broilers.
Collapse
|
17
|
Hernandez-Patlan D, Solis-Cruz B, Latorre JD, Merino-Guzman R, Morales Rodríguez M, Ausland C, Hernandez-Velasco X, Ortiz Holguin O, Delgado R, Hargis BM, Singh P, Tellez-Isaias G. Whole-Genome Sequence and Interaction Analysis in the Production of Six Enzymes From the Three Bacillus Strains Present in a Commercial Direct-Fed Microbial (Norum™) Using a Bliss Independence Test. Front Vet Sci 2022; 9:784387. [PMID: 35274019 PMCID: PMC8902298 DOI: 10.3389/fvets.2022.784387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
The three Bacillus strains present in Norum™ were initially selected by their excellent to good relative enzyme activity (REA) production score for amylase, protease, lipase, phytase, cellulase, β-glucanase, and xylanase. Further studies confirmed that the three isolates also showed an antibacterial activity, Gram-positive and Gram-negative poultry pathogens. Norum™ (Eco-Bio/Euxxis Bioscience LLC) is a Bacillus spore direct-fed microbial (DFM). The Bacillus isolates were screened and selected based on in vitro enzyme production profiles. Moreover, in chickens fed high non-starch polysaccharides, this DFM demonstrated to reduce digesta viscosity, bacterial translocation, increase performance, bone mineralization, and balance the intestinal microbiota. In the present study, we present the whole-genome sequence of each of the three isolates in Norum™, as well as the synergistic, additive, or antagonistic effects on the enzyme production behavior of the three Bacillus strains and their combinations when grown together vs. when grown individually. The whole-genome sequence identified isolate AM1002 as Bacillus subtilis (isolate 1), isolate AM0938 as Bacillus amyloliquefaciens (isolate 2), and isolate JD17 as Bacillus licheniformis (isolate 3). The three Bacillus isolates used in the present study produce different enzymes (xylanase, cellulase, phytase, lipase, protease, and β-glucanase). However, this production was modified when two or more Bacillus strains were combined, suggesting possible synergistic, antagonistic, or additive interactions. The Bliss analysis suggested (p < 0.05) that the combination of Bacillus strains 1–2 and 1–2–3 had intermediate effects and predicted that the combination of Bacillus strains 2–3 could have better effects than the combination of all the three Bacillus strains. In summary, the current study demonstrated the need of selecting Bacillus strains based on quantitative enzyme determination and data analysis to assess the impacts of combinations to avoid antagonistic interactions that could limit treatment efficacy. These results suggest that using Bacillus strains 2–3 together could lead to a new generation of DFMs with effects superior to those already examined in Bacillus strains 1–2–3 and, therefore, a potential alternative to growth-promoting antibiotics. More research utilizing poultry models is being considered to confirm and expand the existing findings.
Collapse
Affiliation(s)
- Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlán Izcalli, Mexico
- Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de Mexico, Tultitlán, Mexico
| | - Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlán Izcalli, Mexico
- Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de Mexico, Tultitlán, Mexico
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Miguel Morales Rodríguez
- Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de Mexico, Tultitlán, Mexico
| | - Catie Ausland
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | | | | | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Guillermo Tellez-Isaias
| |
Collapse
|