1
|
Xiao M, Liu W, Shi X, Wu J, Shen G, Feng J. Integration of metabolomics and network pharmacology for enhancing mechanism understanding and medication combination recommendation for diabetes mellitus and diabetic nephropathy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3173-3187. [PMID: 37338009 DOI: 10.1039/d3ay00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
With the increasing prevalence of diabetes mellitus (DM) and diabetic nephropathy (DN), effective treatment is particularly important for the recovery of patients. However, the currently approved drugs are usually tailored to clinical symptoms and no mechanism-targeted drugs are available. In this study, the combination of metabolomics and network pharmacology was applied to provide reasonable medication combination regimens to meet the different clinical needs for the targeted treatment of DM and DN. An NMR-based metabolomic strategy was applied to identify the potential urinary biomarkers of DM or/and DN, while network pharmacology was used to identify the therapy targets of DM and DN by intersecting the targets of diseases and currently approved drugs. According to the enriched signaling pathways using the potential biomarkers and the therapy targets, the specific medication combinations were recommended for the specific clinical demands in terms of hypoglycemic, hypertensive, and/or lipid-lowering. For DM, 17 potential urinary biomarkers and 12 disease-related signaling pathways were identified, and 34 combined medication regimens related to hypoglycemia, hypoglycemia, and hypertension, and hypoglycemia, hypertension, and lipid-lowering were administered. For DN, 22 potential urinary biomarkers and 12 disease-related signaling pathways were identified, and 21 combined medication regimens related to hypoglycemia, hypoglycemia, and hypertension were proposed. Molecular docking was used to verify the binding ability, docking sites, and structure of the drug molecules to target proteins. Moreover, an integrated biological information network of the drug-target-metabolite-signaling pathways was constructed to provide insights into the underlined mechanism of DM and DN as well as clinical combination therapy.
Collapse
Affiliation(s)
- Mengxiang Xiao
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| | - Wuping Liu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| | - Xiulin Shi
- The Xiamen Diabetes Institute and Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, China.
| |
Collapse
|
2
|
Rosa roxburghii-edible fungi fermentation broth attenuates hyperglycemia, hyperlipidemia and affects gut microbiota in mice with type 2 diabetes. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
3
|
Zhang L, Yang F. Tanshinone IIA improves diabetes-induced renal fibrosis by regulating the miR-34-5p/Notch1 axis. Food Sci Nutr 2022; 10:4019-4040. [PMID: 36348805 PMCID: PMC9632221 DOI: 10.1002/fsn3.2998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to evaluate the improvement of tanshinone in renal fibrosis in vitro and in vivo study. It used streptozotocin to model diabetic nephropathy (DN) mice, and treated with different Tanshinone IIA concentrations. The pathology of kidney tissues was evaluated by hematoxylin and eosin (H&E) and Masson's staining; the ultrastructure and apoptosis cell number of kidney tissues were evaluated by transmission electron microscopy (TEM) and TUNEL assay. Relative gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunohistochemical (IHC) analysis, or western blot (WB) assay. In vitro study, using high-glucose stimulated HK-2 cell to model DN cell model, measuring cell proliferation, apoptosis rate, relative gene and protein expression, and LC 3B and P62 proteins expression by Cell Counting Kit-8 (CCK-8), flow cytometry, RT-qPCR, WB, and cell immunofluorescence. Analysis correlation between Notch1 and miRNA-34a-5p was carried out by dual-luciferase reporter. Fibrosis area and apoptosis cell rate were significantly up-regulated (p < .001), with Tanshinone IIA supplement. The fibrosis area and apoptosis cell rate were also significantly improved in a dose-dependent manner (p < .05). With si-miRNA-34a-5p transfection, the Tanshinone IIA's treatment effects were significantly depressed. By dual-luciferase reporter, miRNA-34a-5p could target Notch1 in the HK-2 cell line. Tanshinone IIA improved DN-induced renal fibrosis by regulating miRNA-34a-5p in vitro and in vivo study.
Collapse
Affiliation(s)
- Lizhi Zhang
- Department of NephrologyThe Second People's Hospital of Hefei, Medical University of Anhui (Hefei Hospital Affiliated to Medical University of Anhui)HefeiP.R. China
| | - Fan Yang
- Department of NephrologyThe First Affiliated Hospital of Dalian Medical UniversityDalianP.R. China
| |
Collapse
|
4
|
Deng J, Zheng C, Hua Z, Ci H, Wang G, Chen L. Diosmin mitigates high glucose-induced endoplasmic reticulum stress through PI3K/AKT pathway in HK-2 cells. BMC Complement Med Ther 2022; 22:116. [PMID: 35477428 PMCID: PMC9044681 DOI: 10.1186/s12906-022-03597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diosmin has been reported to treat diabetes, but its role in diabetic nephropathy (DN) remains unclear. This research investigated the mechanism by which diosmin alleviated high glucose (HG)-induced HK-2 cell injury. METHODS First, we used CCK-8 to detect the effect of 0.1, 1, or 10 μg/mL diosmin on the viability of HK-2 cells treated with normal glucose or HG. Next, we used flow cytometry, automatic biochemical analyzer, ELISA, immunofluorescence, and colorimetric assay kit to examine the apoptosis, oxidative stress, inflammatory factors, and Caspase-3 expression in HK-2 cells. Thereafter, we used the western blot and qRT-PCR to examine the expression of the endoplasmic reticulum stress-, oxidative stress-, inflammation-, apoptosis-, and autophagy, and PI3K/AKT pathway-related factors. RESULTS Diosmin was non-cytotoxic to normal HK-2 cells and enhanced the HK-2 cell viability suppressed by HG. Meanwhile, diosmin restrained apoptosis, the contents of MDA, pro-inflammatory factors, and Caspase-3 but intensified the contents of SOD and CAT induced by HG. We further confirmed that diosmin blunted oxidative stress-, inflammation-, apoptosis-, and autophagy-related factors expression induced by HG via restraining the CHOP and GRP78 expressions. Further, we also discovered that PTEN level was restrained and the ratios of p-PI3K/PI3K and p-AKT/AKT were enhanced in HK-2 cells induced by HG, which was reversed by co-treatment of HG and diosmin. CONCLUSIONS Our study manifested that diosmin alleviated the HG-mediated endoplasmic reticulum stress injury in HK-2 cells via restraining the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jiuhong Deng
- Wenzhou Medical University, Chashan Higher Education Park, Wenzhou City, 325035, Zhejiang Province, China.,Department of Endocrinology, Second People's Hospital of Pingyang County, Wenzhou City, 325405, Zhejiang Province, China
| | - Chao Zheng
- Wenzhou Medical University, Chashan Higher Education Park, Wenzhou City, 325035, Zhejiang Province, China. .,The Second Affiliated Hospital Zhejiang University, School of Medicine, Jiefang Road 88, Shangcheng District, Hangzhou City, 310009, Zhejiang Province, China.
| | - Zhou Hua
- Department of Nephrology, The Poeple' s Hospital of Suichang County, Lishui City, 323300, Zhejiang Province, China
| | - Haideng Ci
- Department of Endocrinology and Nephrology, Jiande Hospital of Traditional Chinese Medicine, Hangzhou City, 311600, Zhejiang Province, China
| | - Guiying Wang
- Shangyu People's Hospital of Shaoxing, Shaoxing City, 312300, Zhejiang Province, China
| | - Lijing Chen
- Department of Nephrology, Huzhou Central Hospital; Affiliated Central Hospital of Huzhou University; Affiliated Huzhou Hospital; Zhejiang University School of Medicine, Huzhou City, 313000, Zhejiang Province, China
| |
Collapse
|
5
|
Carmona MD, Paco-Meza LM, Ortega R, Cañadillas S, Caballero-Villarraso J, Blanco A, Herrera C. Hypoxia preconditioning increases the ability of healthy but not diabetic rat-derived adipose stromal/stem cells (ASC) to improve histological lesions of streptozotocin-induced diabetic nephropathy. Pathol Res Pract 2022; 230:153756. [PMID: 35032832 DOI: 10.1016/j.prp.2021.153756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have demonstrated ability to improve diabetic nephropathy (DN) in experimental models, as well as by improving kidney endogenous progenitor cells proliferation and differentiation. Many studies have demonstrated the effect of hypoxia on MSC improving their functionality but the potential enhancement of the nephroprotective properties of MSC cultured under low oxygen concentration has been explored in few studies, none of them in the context of DN. On the other hand, diabetes is associated with abnormalities in MSCs functionality. These findings related to the hypoxia preconditioning ability to enhance adipose-tissue derived-MSC (ASC) performance have led us to wonder if hypoxia could increase the known beneficial effect of normal ASC in DN and if it could correct the expected inability of diabetic rat-derived ASC to exert this effect in vivo. To answer these questions, in the present study we have used ASC from healthy and diabetic-induced rats, cultured under standard conditions or hypoxia preconditioned, in a DN rat model induced by streptozotocin (STZ). METHODS Diabetes was induced in Wistar-rats by 60 mg/kg streptozotocin (STZ) intraperitoneal injection. Fifteen days thereafter, five diabetic-induced rats and five healthy, previously injected with saline, were sacrificed and used as ASC donors . Both healthy and diabetic rat-derived ASC (cASC and dASC, respectively) were cultured under standard conditions (21%O2)(N) or were subjected to a 48 h conditioning period in hypoxia (3%O2)(H). Thus, four types of cells were generated depending on their origin (healthy or diabetic-induced rats) and the culture conditions(N or H):cASC-N, cASC-H, dASC-N and dASC-H. DN experimental study were carried out fifteen days after STZ induction of diabetes in fifty-two healthy rats. DN-induced-animals were randomly assigned to be injected with 200 µL saline as placebo or with 3 × 106 cASC-N, cASC-H, dASC-N or dASC-H, according to the study group. Serum glucose, urea and creatinine, and urine albumin levels were measured at 2-weeks intervals until day+ 45 after ND-induction.Animals were sacrificed and kidneys extracted for histopathological and transmission electron microcopy analysis RESULTS: None of the four study groups that received cell treatment showed significant changes in serum glucose, urea and creatinine levels, urine albumin concentration and body weight compared to placebo ND-induced group. Interestingly, only the group that received cASC-H showed a reduction in glucose and creatinine levels although it did not reach statistical significance.All DN-induced groups treated with ASC reduced significantly renal lesions such as mesangial expansion, mesangiolysis, microaneurysms and acute tubular necrosis compared to ND-induced placebo group (p ≤ 0.05). Renal injuries such as clear tubular cell changes, thickening of tubular basement membrane, tubular cysts and interstitial fibrosis significantly showed reduction in ND-induced rats treated with cASC-H regarding to their received cASCN (p ≤ 0.05). Non statistical differences were observed in the improvement capacity of cASC and dASC culture under standard condition.However, hypoxia preconditioning reduces the presence of tubular cysts (p ≤ 0.01). CONCLUSIONS Hypoxia preconditioning enhances the ability of healthy rat-derived ASC to improve kidney injury in a rat model of DN. Moreover, diabetic-derived ASC exhibits a similar ability to healthy ASC which is clearly more than expected, but it is not significantly modified by hypoxia preconditioning.
Collapse
Affiliation(s)
- MDolores Carmona
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain; Cellular Therapy Unit and Hematology Department, Reina Sofia University Hospital, Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain; University of Cordoba, Spain.
| | - Luis-Miguel Paco-Meza
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain.
| | - Rosa Ortega
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain; Anatomy Pathology Department, Reina Sofia University Hospital, Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain.
| | - Sagrario Cañadillas
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain.
| | - Javier Caballero-Villarraso
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain; Clinical Analysis Department, Reina Sofia University Hospital, Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain; University of Cordoba, Spain.
| | - Alfonso Blanco
- Anatomy and Comparative Pathological Anatomy Department, University of Cordoba, Carretera Nacional IV Km. 396, CP 14014 Cordoba, Spain.
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain; Cellular Therapy Unit and Hematology Department, Reina Sofia University Hospital, Avenida Menéndez Pidal s/n, CP 14004 Cordoba, Spain; University of Cordoba, Spain.
| |
Collapse
|
6
|
Singh B, Kumar A, Singh H, Kaur S, Arora S, Singh B. Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and upregulation of NF-κB, TNF-α and COX-2 proteins in rats. Phytother Res 2022; 36:1338-1352. [PMID: 35088468 DOI: 10.1002/ptr.7392] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Diabetes is the most prevalent disorder in the world characterized by uncontrolled high blood glucose levels and nephropathy is one of the chief complications allied with hyperglycemia. Vanillic acid; the main bioactive compound derived from natural sources such as vegetables, fruits and plants possesses various pharmacological activities such as antioxidant, anti-inflammatory and anti-proliferative. The current study was designed to investigate the antidiabetic and renoprotective effects of vanillic acid by its various pharmacological activities. Streptozotocin (50 mg/kg)/nicotinamide (110 mg/kg) was used to induce diabetes in rats. Oral administration of vanillic acid once daily for 6 weeks (25, 50 and 100 mg/kg) significantly reduced the hyperglycemia, increased liver enzymes and normalized lipid profile that was altered in diabetic rats. Moreover, vanillic acid attenuated the impaired renal function as evidenced by a reduction in serum creatinine, urea, uric acid and urinary microproteinuria levels with a concomitant increase in urinary creatinine clearance in the nephropathic rats. Diabetic rats showed a marked increase in thiobarbituric acid reactive substances (TBARS) and superoxide anion generation (SAG) along with decreased reduced glutathione (GSH) in the renal tissue which was ameliorated in the vanillic acid-treated rats. Histopathologically, vanillic acid treatment was associated with reduced damage with normalized structural changes in renal tissue. Furthermore, treatment groups showed the suppression of upregulation of nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, cyclo-oxygenase (COX)-2 and up-regulation of Nuclear factor-erythroid 2-related factor 2 (Nrf-2) in the renal tissue. In conclusion, vanillic acid's ameliorative impact on diabetic nephropathic rats may be attributed to its powerful free radical scavenging property, down-regulation of NF-κB, TNF-α, COX-2 and up-regulation of Nrf-2 proteins in renal tissue.
Collapse
Affiliation(s)
- Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
7
|
Cao X, Chen P. The effects of alprostadil combined with α-lipoic acid in the treatment of senile diabetic nephropathy. Am J Transl Res 2021; 13:10823-10829. [PMID: 34650761 PMCID: PMC8507045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study aimed to investigate the clinical efficacy of alprostadil combined with α-Lipoic acid (α-LA) in the treatment of senile diabetic nephropathy (SDN) and the combination's effect on the serum chemerin and neutrophil gelatinase-associated lipocalin (NGAL) expressions. METHODS Seventy-six patients with diabetic nephropathy (DN) admitted to our hospital from March 2018 to October 2019 were recruited as the research cohort. Among them, 36 patients who were administered alprostadil monotherapy were placed in the control group (CG), and the remaining 40 patients administered α-LA in addition to the alprostadil were placed in the research group (RG). The treatment effectiveness rate, the incidence of adverse reactions, and the changes in the renal function indexes (BUN, SCr, UAER) and the blood glucose indexes (FPG, 2hPG) were compared between the two groups. RESULTS The total effective rate in the RG was significantly higher than the total effective rate in the CG (P < 0.05). The renal function and blood glucose indexes dropped significantly after the treatment (P < 0.001). The chemerin and NGAL levels were significantly reduced in both groups after the treatment (P < 0.05), and the chemerin and NGAL expressions in the RG were significantly lower than they were in the CG (P < 0.05). CONCLUSION Alprostadil combined with α-LA is better than alprostadil monotherapy in the treatment of DN because it can improve the effectiveness rate, reduce the blood glucose, and improve the renal function while effectively reducing patients' serum chemerin and NGAL levels.
Collapse
Affiliation(s)
- Xiaohong Cao
- Department of Geriatric Endocrinology, Sichuan Provincial People's Hospital Chengdu, Sichuan, China
| | - Ping Chen
- Department of Geriatric Endocrinology, Sichuan Provincial People's Hospital Chengdu, Sichuan, China
| |
Collapse
|
8
|
Li F, Song L, Chen J, Chen Y, Li Y, Huang M, Zhao W. Effect of genipin-1-β-d-gentiobioside on diabetic nephropathy in mice by activating AMP-activated protein kinase/silencing information regulator-related enzyme 1/ nuclear factor-κB pathway. J Pharm Pharmacol 2021; 73:1201-1211. [PMID: 33792721 DOI: 10.1093/jpp/rgab041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/16/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Genipin-1-β-d-gentiobioside (GG) is a kind of compound extracted from Gardenia jasminoides Ellis. The chemical structure of GG is similar to that of geniposide and has antidiabetic effects. We aimed to investigate the efficacy of GG on diabetic nephropathy (DN) in vivo and in vitro experiments and explore its potential mechanism. METHODS For high-fat diet/streptozotocin-induced DN mice used in our study, the general features of mice were analysed after GG treatment. Oxidative stress parameters and inflammatory factors were also measured by commercial kits. Kidney damage was assessed using hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) and Masson staining, respectively. In vitro, podocyte injury was assessed by TUNEL and flow cytometric analyses. AMP-activated protein kinase/silencing information regulator related enzyme 1 (AMPK/SIRT1)/nuclear factor-κB (NF-κB) pathway-related proteins were detected by AMPK-siRNA intervention and western blotting. KEY FINDINGS Treatment of GG could increase cell survival and attenuated kidney damage. Despite the presence of inflammatory and oxidative stress, when GG retained the expression of AMPK/SIRT1, it could be observed that the downstream NLRP3 inflammatory-related proteins were inhibited. CONCLUSIONS Results showed that the protective efficacy of GG on DN works together with hypoglycemia and suppressing oxidative stress and inflammation, which at least partly involved in APMK/SIRT1/NF-κB-dependent pathway.
Collapse
Affiliation(s)
- Fengtao Li
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, PR China
| | - Lijun Song
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, PR China
| | - Jing Chen
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yu Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, PR China
| | - Yongjun Li
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, PR China
| | - Meizi Huang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, PR China
| | - Wenchang Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, PR China
| |
Collapse
|
9
|
Reed J, Bain S, Kanamarlapudi V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab Syndr Obes 2021; 14:3567-3602. [PMID: 34413662 PMCID: PMC8369920 DOI: 10.2147/dmso.s319895] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D), which has currently become a global pandemic, is a metabolic disease largely characterised by impaired insulin secretion and action. Significant progress has been made in understanding T2D aetiology and pathogenesis, which is discussed in this review. Extrapancreatic pathology is also summarised, which demonstrates the highly multifactorial nature of T2D. Glucagon-like peptide (GLP)-1 is an incretin hormone responsible for augmenting insulin secretion from pancreatic beta-cells during the postprandial period. Given that native GLP-1 has a very short half-life, GLP-1 mimetics with a much longer half-life have been developed, which are currently an effective treatment option for T2D by enhancing insulin secretion in patients. Interestingly, there is continual emerging evidence that these therapies alleviate some of the post-diagnosis complications of T2D. Additionally, these therapies have been shown to induce weight loss in patients, suggesting they could be an alternative to bariatric surgery, a procedure associated with numerous complications. Current GLP-1-based therapies all act as orthosteric agonists for the GLP-1 receptor (GLP-1R). Interestingly, it has emerged that GLP-1R also has allosteric binding sites and agonists have been developed for these sites to test their therapeutic potential. Recent studies have also demonstrated the potential of bi- and tri-agonists, which target multiple hormonal receptors including GLP-1R, to more effectively treat T2D. Improved understanding of T2D aetiology/pathogenesis, coupled with the further elucidation of both GLP-1 activity/targets and GLP-1R mechanisms of activation via different agonists, will likely provide better insight into the therapeutic potential of GLP-1-based therapies to treat T2D.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen Bain
- Institute of Life Science 1, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
10
|
Deshmukh A, Manjalkar P. Synergistic effect of micronutrients and metformin in alleviating diabetic nephropathy and cardiovascular Dysfunctioning in diabetic rat. J Diabetes Metab Disord 2021; 20:533-541. [PMID: 34178853 DOI: 10.1007/s40200-021-00776-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/18/2021] [Indexed: 01/26/2023]
Abstract
Purpose Diabetic nephropathy (DN) and Cardiovascular Dysfunctioning (CVD) are interlinked with each other and one of the leading causes of irreversible renal damage and cardiovascular disease. Micronutrients play an effective role in type-2 diabetes (T2D) and its related complications. Our work aimed to elucidate the effect of micronutrients alone and in combination with standard anti-diabetic drug metformin on DN and CVD using streptozotocin induced diabetes in rats. Methods T2D was induced with a single intraperitoneal (i.p.) injection of freshly prepared streptozotocin (55 mg/kg), 15 min after intraperitoneal injection of nicotinamide (230 mg/kg). Commercially available kits were used to measure kidney parameters and cardiac marker level. Creatinine clearance was calculated by using formula and heart rate was recorded using powerlab software. Results Significant decrease in blood glucose levels were observed 14 days after initial administration in metformin treated, micronutrients treated and metformin with micronutrients treated groups compared with diabetic group. After 6 weeks of metformin and micronutrients treatment, serum creatinine, blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) levels were significantly decreased as compared to diabetic group. Moreover, urine creatinine level, creatinine clearance and heart rate (HR) was increased significantly in metformin and micronutrients treated group compared with a diabetic group. Micronutrients therapy also normalised the general symptoms of diabetes. Conclusion The results obtained from this study indicate the synergistic effect of metformin and micronutrients against diabetic heart and kidney. Therefore, micronutrients may be used as an effective add-on therapy for DN and CVD.
Collapse
Affiliation(s)
- Aaishwarya Deshmukh
- Department of Pharmacology, Smt. Kashibai Navale college of Pharmacy, Pune, Maharashtra 411048 India
| | - Prajakta Manjalkar
- Department of Pharmacology, Smt. Kashibai Navale college of Pharmacy, Pune, Maharashtra 411048 India
| |
Collapse
|
11
|
Rayapu L, Chakraborty K, Valluru L. Marine Algae as a Potential Source for Anti-diabetic Compounds - A Brief Review. Curr Pharm Des 2021; 27:789-801. [PMID: 32912118 DOI: 10.2174/1381612826666200909124526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes Mellitus (DM) is a major chronic metabolic disorder characterized by hyperglycemia that leads to several complications such as retinopathy, atherosclerosis, nephropathy, etc. In 2019, it was estimated that about 463 million people had diabetes, and it may increase up to 700 million in 2045. Marine macroalgae are the rich source of bioactive compounds for the treatment of diabetes mellitus. OBJECTIVE This review summarizes the recent epidemiology and possible use of marine macroalgae-derived bioactive compounds for the protection against chronic metabolic disease, diabetes mellitus and marine macroalgae as a nutraceutical supplement. CONCLUSION The present therapies available for diabetes treatment are oral medicines and insulin injections. But continuous use of synthetic medicines provides low therapeutic with many side effects. In continuing search of anti-diabetic drugs, marine macroalgae remain as a promising source with potent bioactivity. Among existing marine algae, red and brown algae are reported to show anti-diabetic activity. Hence, the present review focuses on the epidemiology, diabetes biomarkers and different secondary bioactive compounds present in marine macroalgae to treat diabetes mellitus.
Collapse
Affiliation(s)
- Lavanya Rayapu
- Department of Biotechnology, Dravidian University, Kuppam-517426, A.P, India
| | - Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute (CMFRI), Ernakulum, Cochin-682001, Kerala, India
| | - Lokanatha Valluru
- Department of Biotechnology, Dravidian University, Kuppam-517426, A.P, India
| |
Collapse
|
12
|
Jiang YY, Shui JC, Zhang BX, Chin JW, Yue RS. The Potential Roles of Artemisinin and Its Derivatives in the Treatment of Type 2 Diabetes Mellitus. Front Pharmacol 2020; 11:585487. [PMID: 33381036 PMCID: PMC7768903 DOI: 10.3389/fphar.2020.585487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.
Collapse
Affiliation(s)
- Ya-Yi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Cheng Shui
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo-Xun Zhang
- Department of Endocrinology, Guang'anmen Hospital of China, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Wei Chin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Song Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Recomendaciones para el manejo del riesgo cardiorrenal en el paciente con diabetes mellitus tipo 2. REVISTA COLOMBIANA DE CARDIOLOGÍA 2020. [DOI: 10.1016/j.rccar.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Rezaei Seresht H, Mansouri E, Daei Milani M, Vahidiyanfar B, Ramezanpour Shahi A, Namazi MJ, Moallaei H, Latifnia M, Fattahi Abdizadeh M. Protective effects of Vitex pseudo-negundo leaves on diabetic-induced nephropathy in rats. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2019-0308/jbcpp-2019-0308.xml. [PMID: 32776901 DOI: 10.1515/jbcpp-2019-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/08/2020] [Indexed: 11/15/2022]
Abstract
Objectives The belief of therapeutic effects of herbal remedies in diseases such as diabetes is rooted in medical history. The present study evaluated protective efficacy of the hydroalcoholic extract of Vitex pseudo-negundo leaves (VLHE) on the renal disorders in streptozotocin-induced diabetic rats. Methods Fifty Wistar male rats were recruited and divided into five groups of 10, including healthy controls and diabetic controls: three diabetic groups of which first group was treated with glibenclamide, and two groups treated with 250 and 500 mg/kg of VLHE, respectively, for six weeks. Renal biochemical tests and tissue histopathological evaluation were performed and the antioxidant status was examined. Results There were significant decreases in superoxide dismutase and glutathione peroxidase activities and increases in malondialdehyde levels in renal tissue of diabetic groups compared with healthy controls. In the VLHE-treated rats, fasting blood sugar, blood urea nitrogen and creatinine were declined, serum albumin elevated, kidney weight lowered, lipid peroxidation and reinforcement of the activities of antioxidant enzymes decreased compared with healthy groups. Histological assessments revealed that the vacuolar degeneration of tubules and shrinkage of glomeruli in VLHE-treated rats was decreased compared with diabetic rats. Conclusions The study suggested that administrating of VLHE in nephropathic rats ameliorated the disease by reduction of oxidative stress and increase in renal antioxidant enzyme activities.
Collapse
Affiliation(s)
- Hasan Rezaei Seresht
- Traditional Medicine Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Esrafil Mansouri
- Department of Anatomical Sciences, Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahsa Daei Milani
- Department of Lab sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Vahidiyanfar
- Department of Lab sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Arash Ramezanpour Shahi
- Department of Clinical Sciences, Faculty of Veterinary medicine, University of Shahrekord, Shahrekord, Iran
| | - Mohammad Javad Namazi
- Department of Microbiology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
- College of Medical, Veterinary and Life Sciences, The Institute of Infection, Immunity and Inflammation, Glasgow University, Glasgow, UK
| | - Hossein Moallaei
- Department of Internal Medicine, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maryam Latifnia
- Department of Internal Medicine, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mojtaba Fattahi Abdizadeh
- Department of Internal Medicine, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
15
|
Singla K, Singh R. Nephroprotective effect of Curculigo orchiodies in streptozotocin-nicotinamide induced diabetic nephropathy in wistar rats. J Ayurveda Integr Med 2020; 11:399-404. [PMID: 32782114 PMCID: PMC7772483 DOI: 10.1016/j.jaim.2020.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/25/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic hyperglycemia induced oxidative stress and dyslipidemia in diabetic nephropathy may lead to chronic renal damage. Thus, counteracting oxidative stress might represent an interesting approach in alleviating hyperglycemia-induced renal damage. OBJECTIVE The present experimental work was undertaken to explore nephroprotective efficacy of Curculigo orchiodies in streptozotocin-nicotinamide induced diabetic nephropathy in laboratory animals. MATERIALS AND METHODS Single intraperitoneal introduction of freshly prepared STZ (65 mg/kg) was used for induction of diabetic nephropathy in rats, 15 min after NAD administration (230 mg/kg; i.p.). The evaluation of nephropathy was done by assessment of serum glucose level, insulin level and renal function test (albumin, urea and creatinine). In addition to this, lipid profile as well as oxidative stress (TBARS, superoxide dismutase, catalase and reduced glutathione) was evaluated. Augmented levels of blood glucose, albumin, urea and creatinine confirmed the development of nephropathic symptoms in rats. After 30 days of STZ administration, different doses (150, 300 mg/kg and 600 mg/kg; p.o.) of hydroalcoholic and ethanolic extracts of C. orchiodies were administered to rats for 45 days. CONCLUSION Curculigo orchiodes significantly attenuated hyperglycemia induced increase in lipid profile, oxidative stress and normalized the renal functions (albumin, urea and creatinine); attributing to the efficacy of C. orchiodies in diabetic nephropathy. These findings suggest that hydroalcholic and ethanolic extract of Curculigo Orchiodes ameliorated the progression of diabetic nephropathy. The observed nephroprotective effect of C. orchiodes is attributed to its hypoglycemic, antioxidant and anti-hyperlipidemic activity.
Collapse
Affiliation(s)
- Krishan Singla
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markendeswar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Randhir Singh
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markendeswar (Deemed to be University), Mullana, Ambala, Haryana, India.
| |
Collapse
|
16
|
Yang Y, He X, Cheng R, Chen Q, Shan C, Chen L, Ma JX. Diabetes-induced upregulation of kallistatin levels exacerbates diabetic nephropathy via RAS activation. FASEB J 2020; 34:8428-8441. [PMID: 32352602 PMCID: PMC7302980 DOI: 10.1096/fj.201903149r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Kallistatin is an inhibitor of tissue kallikrein and also inhibits the Wnt pathway. Its role in diabetic nephropathy (DN) is uncertain. Here we reported that serum kallistatin levels were significantly increased in diabetic patients with DN compared to those in diabetic patients without DN and healthy controls, and positively correlated with urinary albumin excretion. In addition, renal kallistatin levels were significantly upregulated in mouse models of type 1 (Akita, OVE26) and type 2 diabetes (db/db). To unveil the effects of kallistatin on DN and its underlying mechanism, we crossed transgenic mice overexpressing kallistatin with OVE26 mice (KS‐tg/OVE). Kallistatin overexpression exacerbated albuminuria, renal fibrosis, inflammation, and oxidative stress in diabetes. Kallikrein activity was inhibited while the renin‐angiotensin system (RAS) upregulated in the kidney of KS‐tg/OVE mice compared to WT/OVE mice, suggesting a disturbed balance between the RAS and kallikrein‐kinin systems. As shown by immunostaining of endothelial makers, renal vascular densities were decreased accompanied by increased HIF‐1α and erythropoietin levels in the kidneys of KS‐tg/OVE mice. Taken together, high levels of kallistatin exacerbate DN at least partly by inducing RAS overactivation and hypoxia. The present study demonstrated a positive correlation between kallistatin levels and DN, suggesting a potential biomarker for prognosis of DN.
Collapse
Affiliation(s)
- Yanhui Yang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xuemin He
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Endocrinology and Metabolism Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Khawandanah J. Double or hybrid diabetes: A systematic review on disease prevalence, characteristics and risk factors. Nutr Diabetes 2019; 9:33. [PMID: 31685799 PMCID: PMC6828774 DOI: 10.1038/s41387-019-0101-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a worldwide epidemic affecting the health of millions of people. While type 1 diabetes (T1D) is caused by autoimmune destruction of the insulin-producing beta cells of the pancreas, type 2 diabetes (T2D) results from a combination of insulin resistance and beta cell insulin secretory defect. Clear definition and diagnosis of these two types of diabetes has been increasing more and more difficult, leading to the inclusion of a new category, namely double or hybrid diabetes (DD) that demonstrates symptoms of both T1D and T2D via the accelerator hypothesis. In this review, we discuss the worldwide prevalence of DD, its main physiological characteristics, including beta-cell autoimmunity, insulin resistance, and cardiovascular disease, the main risk factors of developing DD, mainly genetics, obesity and lifestyle choices, as well as potential treatments, such as insulin titration, metformin and behavioural modifications. Increasing awareness of DD among the general population and primary care practitioners is necessary for successfully treating this complex, hybrid disease in the future.
Collapse
Affiliation(s)
- Jomana Khawandanah
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
18
|
Miao YD, Gu WY, Liu ZQ, Ma YT, Deng S. Effectiveness comparisons of acupuncture for diabetic nephropathy proteinuria: A systematic review and meta-analysis: study protocol. Medicine (Baltimore) 2019; 98:e17819. [PMID: 31764774 PMCID: PMC6882614 DOI: 10.1097/md.0000000000017819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is one of the microvascular complications of diabetes (DM). Proteinuria is the most important clinical feature of DN and an independent risk factor for the progression of DN. Therefore, reducing urinary protein is the primary goal of DN treatment. Acupuncture has long been widely used in the treatment of DN. Therefore, this paper conducted a meta-analysis of the clinical efficacy of acupuncture in the treatment of DN proteinuria, in order to comprehensively analyze the role of acupuncture in the treatment of DN. METHODS AND ANALYSIS We will search for PubMed, Cochrane Library, AMED, EMbase, WorldSciNet; Nature, Science online and China Journal Full-text Database (CNKI), China Biomedical Literature CD-ROM Database (CBM), and related randomized controlled trials included in the China Resources Database. The time is limited from the construction of the library to September 2019.We will use the criteria provided by Cochrane 5.1.0 for quality assessment and risk assessment of the included studies, and use the Revman 5.3 and Stata13.0 software for meta-analysis of the effectiveness, recurrence rate, and symptom scores of DN proteinuria. ETHICS AND DISSEMINATION This systematic review will evaluate the efficacy and safety of acupuncture for DN proteinuria. Because all of the data used in this systematic review and meta-analysis has been published, this review does not require ethical approval. Furthermore, all data will be analyzed anonymously during the review process Trial. TRIAL REGISTRATION NUMBER PROSPERO CRD42019139705.
Collapse
Affiliation(s)
- Yao-Dong Miao
- Second Affiliated Hospital of Tianjin University of TCM
| | - Wen-Yuan Gu
- Second Affiliated Hospital of Tianjin University of TCM
| | - Zhi-Qiang Liu
- Second Affiliated Hospital of Tianjin University of TCM
| | - Yun-Tao Ma
- First Teaching Hospital of Tianjin University of TCM
| | - Sheng Deng
- Dongzhimen Hospital, Dongcheng District, Hai Yun Cang on the 5th ZIP, China
| |
Collapse
|
19
|
Abstract
BACKGROUND This study aims to assess the efficacy and safety of dialysis for the treatment of patients with diabetic nephropathy (DN). METHODS We will comprehensively retrieve the following databases of Cochrane Library, PUBMED, EMBASE, Global health, CINAHL, PsycINFO, Scopus, CBM, Wangfang, and CNKI for studies related to the topic. We will search all those electronic databases from their inceptions to the present without restrictions of language and publication status. Two authors will independently conduct all procedures of study selection, data collection, and risk of bias assessment. We will apply RevMan 5.3 software for statistical analysis. RESULTS We will systematically investigate the efficacy and safety of dialysis for DN through assessing primary and secondary outcomes. The primary outcomes include improvement in renal function, as assessed by the urinary albumin/creatinine ratio, estimated glomerular filtration rate, and serum creatinine levels. The secondary outcomes consist of levels of inflammatory markers, endothelial dysfunction markers, quality of life, and any expected and unexpected adverse events. CONCLUSION This study will present evidence on the efficacy and safety of dialysis for the treatment of patients with DN. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019149699.
Collapse
Affiliation(s)
- De-rong Shao
- Department of Nephrology
- Department of Endocrinology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yue Zhou
- Department of Nephrology
- Department of Endocrinology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
20
|
Wang L, Wang YH, Zhang XH, Yang XL, Wei HL, An ZC, Yu BR, Du DQ, Guo Y, Liu HF. Effectiveness comparisons of traditional Chinese medicine on treating diabetic nephropathy proteinuria: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e17495. [PMID: 31651852 PMCID: PMC6824702 DOI: 10.1097/md.0000000000017495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the microvascular complications of diabetes mellitus. Proteinuria is the most important clinical feature of DN and an independent risk factor for the progression of DN. Therefore, reducing urinary protein is the primary goal of DN treatment. Traditional Chinese medicine (TCM) has long been widely used in the treatment of DN. Therefore, this paper conducted a meta-analysis of the clinical efficacy of TCM in the treatment of DN proteinuria, to comprehensively analyze the role of TCM in the treatment of DN. METHODS We will search for PubMed, Cochrane Library, AMED, EMbase, WorldSciNet, Nature, Science online and China Journal Full-text Database, China Biomedical Literature CD-ROM Database, and related randomized controlled trials included in the China Resources Database. The time is limited from the construction of the library to September 2019. We will use the criteria provided by Cochrane 5.1.0 for quality assessment and risk assessment of the included studies, and use the Revman 5.3 and Stata13.0 software for meta-analysis of the effectiveness, recurrence rate, and symptom scores of DN proteinuria. TRIAL REGISTRATION NUMBER PROSPERO CRD42019139707.
Collapse
|
21
|
Amorim RG, Guedes GDS, Vasconcelos SMDL, Santos JCDF. Kidney Disease in Diabetes Mellitus: Cross-Linking between Hyperglycemia, Redox Imbalance and Inflammation. Arq Bras Cardiol 2019; 112:577-587. [PMID: 31188964 PMCID: PMC6555585 DOI: 10.5935/abc.20190077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hyperglycemia is the key point of macro- and microvascular complications associated with diabetes mellitus. Excess glucose is responsible for inducing redox imbalance and both systemic and intrarenal inflammation, playing a critical role in the pathogenesis of diabetic kidney disease, which is currently the leading cause of dialysis in the world. The pathogenesis of the disease is complex, multifactorial and not fully elucidated; many factors and mechanisms are involved in the development, progression and clinical outcomes of the disease. Despite the disparate mechanisms involved in renal damage related to diabetes mellitus, the metabolic mechanisms involving oxidative/inflammatory pathways are widely accepted. The is clear evidence that a chronic hyperglycemic state triggers oxidative stress and inflammation mediated by altered metabolic pathways in a self-perpetuating cycle, promoting progression of cell injury and of end-stage renal disease. The present study presents an update on metabolic pathways that involve redox imbalance and inflammation induced by chronic exposure to hyperglycemia in the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Rayne Gomes Amorim
- Universidade Federal de Alagoas - Faculdade de Nutrição, Maceió, AL - Brazil
| | | | | | | |
Collapse
|
22
|
Jeong KH, Kim JS, Woo JT, Rhee SY, Lee YH, Kim YG, Moon JY, Kim SK, Kang SW, Lee SH, Kim YH. Genome-wide association study identifies new susceptibility loci for diabetic nephropathy in Korean patients with type 2 diabetes mellitus. Clin Genet 2019; 96:35-42. [PMID: 30883692 DOI: 10.1111/cge.13538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Genetic factors are considered to be important in the pathogenesis of diabetic nephropathy (DN). Despite several genome-wide association studies (GWASs) demonstrating that specific polymorphisms of candidate genes were associated with DN, there were some limitations in previous studies. We conducted a GWAS using customized DNA chips to identify novel susceptibility loci for DN in Korean. We analyzed a total of 414 DN cases and 474 normoalbuminuric diabetic hyper-controls across two stages using customized DNA chips containing 98 667 single nucleotide polymorphisms (SNPs). We explored the associations between SNPs and DN in samples from 87 DN cases, mostly confirmed by renal biopsy, and 104 diabetic hyper-controls, and replicated these associations in independent cohort samples with 327 DN cases and 370 diabetic hyper-controls. The top significant SNPs from the discovery samples were selected for replication in the independent cohort. rs3765156 in PIK3C2B was significantly associated with DN in the replication cohort after multiple test. The SNPs identified in our study provide new insights into the pathogenesis of DN in the Korean population. Additional studies are needed to determine biological effects and clinical utility of our findings.
Collapse
Affiliation(s)
- Kyung H Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jin S Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Taek Woo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sang Y Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yu H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yang G Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Su K Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sun W Kang
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | - Sang H Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yeong H Kim
- Division of Nephrology, School of Medicine, Inje University, Busan, Republic of Korea
| | | |
Collapse
|
23
|
Xiang M, Chen Z, He L, Xiong G, Lu J. Transcription profiling of artemisinin-treated diabetic nephropathy rats using high-throughput sequencing. Life Sci 2019; 219:353-363. [PMID: 30684545 DOI: 10.1016/j.lfs.2019.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/18/2023]
Abstract
Artemisinin (Art) plays a renoprotective role in diabetic nephropathy (DN) rats. However, the differential gene expression profile and underlying molecular mechanism of Art treatment in DN is not well understood. We constructed an animal model of DN by injection of streptozotocin (STZ) in rats. We then examined the profile of differentially expressed genes following administration of Art using RNA-sequencing (KANGCH&EN, Shanghai, China). Five genes identified by RNA-sequencing were randomly selected and validated by qRT-PCR. Bioinformatic analyses were performed to study these differentially expressed genes. We identified a total of 31 genes that were significantly up-regulated in DN samples compared to both normal and Art treatment samples, and 38 genes that were significantly down-regulated in DN samples compared to both normal and Art treatment samples. The identified genes were associated with a list of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and may be involved in the mechanism underlying Art treatment of DN. Thus, the results from the current study demonstrate that genes are aberrantly expressed after Art treatment and identify promising targets in the treatment of DN with artemisinin.
Collapse
Affiliation(s)
- Min Xiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Zhihong Chen
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Liangping He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, China.
| |
Collapse
|
24
|
Yahya MJ, Ismail PB, Nordin NB, Akim ABM, Yusuf WSBM, Adam NLB, Yusoff MJ. Association of CCL2, CCR5, ELMO1, and IL8 Polymorphism with Diabetic Nephropathy in Malaysian Type 2 Diabetic Patients. Int J Chronic Dis 2019; 2019:2053015. [PMID: 30713847 PMCID: PMC6333004 DOI: 10.1155/2019/2053015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/02/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
The unique variants or biomarkers of individuals help to understand the pathogenesis as well as the potential risk of individuals or patients to diabetic nephropathy (DN). The aim of this study was to investigate the association of a genetic polymorphism of monocyte chemoattractant protein-1 (CCL2-rs3917887), chemokine receptor 5 (CCR5-rs1799987), engulfment and cell mortality (ELMO1-rs74130), and interleukin-8 (IL8-rs4073) with the development of DN among Malaysian type 2 diabetes mellitus (T2DM) patients. More than one thousand diabetic patients were examined and a total of 652 T2DM patients were tested comprising 227 Malays (nonnephrotic=96 and nephrotic=131), 203 Chinese (nonnephrotic=95 and nephrotic=108), and 222 Indians (nonnephrotic=136 and nephrotic=86). DNA Sequenom mass ARRAY was employed to identify polymorphisms in CCL2, CCR5, ELMO1, and IL8 genes. DNA was extracted from the secondary blood samples taken from the T2DM patients. The alleles and genotypes were tested using four genetic models and the best mode of inheritance was chosen. CCR5 rs1799987 (G>A) showed strong association with the development of diabetic nephropathy only among the Chinese with OR=6.71 (2.55-17.68) 95% CI while IL8 rs4073 (T>A) showed association with nephropathy only among the Indians with OR=1.57 (0.66-3.71) 95% CI. The additive model was the best model for the mode of inheritance of all the genes. The contribution of genetic variants differs across ethnic groups or background. Further studies which involve environmental risk factors should be taken into consideration.
Collapse
Affiliation(s)
- Mohd Jokha Yahya
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Patimah binti Ismail
- Department of Human Development and Growth, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Norshariza binti Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Abdah binti Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | | | - Noor Lita binti Adam
- Department of Medicine (Endocrinology & Nephrology), Hospital Tuanku Ja'afar, Malaysia
| | - Maryam Jamielah Yusoff
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
25
|
A Meta-Analysis of the Clinical Efficacy of TCM Decoctions Made from Formulas in the Liuwei Dihuang Wan Categorized Formulas in Treating Diabetic Nephropathy Proteinuria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2427301. [PMID: 30356440 PMCID: PMC6178512 DOI: 10.1155/2018/2427301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Objective Diabetic nephropathy (DN) is one of the microvascular complications of diabetes mellitus. Proteinuria is the most important clinical characteristics of DN and an independent risk factor for disease progression of DN; reducing urine protein is the primary target of treatment strategies for DN. Liuwei Dihuang Wan Categorized Formulas (LDWCFs), a group of classic traditional Chinese medicine (TCM) formulas aiming at “kidney -tonifying”, have been widely used in the treatment of DN. This study aimed to obtain a comprehensive understanding of the TCM method “kidney-tonifying” in the treatment of DN by conducting a meta-analysis to analyze the clinical efficacy of decoctions made from the LDWCFs in the treatment of DN proteinuria. Methods CNKI, Wanfang, Weipu, CBM, PubMed, Embase, and the Cochrane Library were searched; 14 studies were included in the meta-analysis. Results The results showed that the overall efficacy of the LDWCFs in treating DN was significantly better than that of the comparators (OR 2.87, 95% CI 1.98–4.15, P<0.00001). These formulas showed better efficacy than the comparators in reducing 24-hour urinary protein level (MD 0.12, 95% CI 0.06–0.17, P<0.0001) and in reducing urine microalbumin excretion rate (SMD 0.87, 95% CI 0.41–1.32, P<0.0002). No serious adverse reactions were reported. Conclusions TCM formulas included in the LDWCFs are safe and effective in the treatment of DN proteinuria. These findings suggested that the TCM therapeutic principle of “kidney-tonifying” is a valuable addition to the treatment strategies for DN.
Collapse
|
26
|
QiDiTangShen Granules Reduced Diabetic Kidney Injury by Regulating the Phosphorylation Balance of the Tyrosine and Serine Residues of Insulin Receptor Substrate 1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2503849. [PMID: 30050584 PMCID: PMC6046148 DOI: 10.1155/2018/2503849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022]
Abstract
Background Diabetic nephropathy (DN) is a microvascular complication induced by diabetes mellitus (DM), which can affect life quality and long-term prognosis of patients with DM. Angiotensin-converting-enzyme inhibitors (ACEI)/angiotensin receptor blockers (ARB) are currently recommended for treating DN proteinuria, but patients receiving ACEI/ARB are at risk of elevated serum creatinine or potassium levels. Based on the “yin-yang” theory of traditional Chinese medicine, the present study explored the effect of QiDiTangShen (QDTS) granules on DN and the phosphorylation balance of tyrosine and serine residues of IRS-1. Methods In this experiment, db/db mice were used as an animal model for type 2 diabetic nephropathy. The intervention (QDTS granules and valsartan) started when the mice were 12 weeks old. C57BL/6 mice were used as normal control. The urine albumin excretion ratio (UAER) was measured by enzyme-linked immunosorbent assay (ELISA) before and after the intervention. The IRS-1, PI3K, Akt, and MAPK proteins expression and the phosphorylation levels were detected by western blot. Results QDTS granules reduced the 24-h urinary albumin excretion rate (UAE) in db/db mice with type 2 DM and attenuated the pathological changes of the kidney. QDTS granules also increased the activation level of the PI3K/Akt signaling pathway and reduced insulin resistance. In addition, QDTS granules inhibited the activation of ERK and p38MAPK and decreased the phosphorylation ratio of Ser307/Tyr896 of IRS-1 in renal tissue. Conclusions QDTS granules reduced DM-induced renal injury by improving insulin sensitivity via suppressing MAPK signaling and restoring the phosphorylation balance of tyrosine/serine of IRS-1.
Collapse
|
27
|
Sun J, Lv J, Zhang W, Li L, Lv J, Geng Y, Yin A. Combination with miR-124a improves the protective action of BMSCs in rescuing injured rat podocytes from abnormal apoptosis and autophagy. J Cell Biochem 2018; 119:7166-7176. [PMID: 29904949 DOI: 10.1002/jcb.26771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
This in vitro study was performed to identify the role of miR-124a in bone marrow stromal stem cells (BMSCs) therapy for H2 O2 -induced rat podocyte injury, and determine whether combination treatment with miR-124a could improve the protective effect of BMSCs. Cell viability of podocytes was detected by CCK-8 assay. Detection of ROS level, apoptotic rate, and autophagy rate was carried out using flow cytometry assays. Oxidative stress parameters were analyzed using the ELISA assays. MiR-124a and mRNA levels were determined using real-time PCR. Protein expression was detected using Western blotting. Our study revealed a pivotal role of miR-124a in the protective action of BMSCs on podocyte injury driven by oxidative stress. BMSCs could rescue injured podocytes from aberrant apoptosis and autophagy by regulating cleaved caspase-3, Bax, Bcl-2, LC3-II/I, and p62. Suppression of the PI3 K/Akt/mTOR signaling pathway is likely one of the main mechanisms underlying the protective action of BMSCs transfected with miR-124a. Our study revealed that miR-124a further improves the protective effect of BMSCs in injured podocytes. Thus, the combination of BMSCs and microRNAs could be a beneficial treatment for renal diseases in the near future.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Lv
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjing Zhang
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lili Li
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jia Lv
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingzhou Geng
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aiping Yin
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
28
|
Cazorla-Vázquez S, Engel FB. Adhesion GPCRs in Kidney Development and Disease. Front Cell Dev Biol 2018; 6:9. [PMID: 29468160 PMCID: PMC5808184 DOI: 10.3389/fcell.2018.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/23/2018] [Indexed: 12/25/2022] Open
Abstract
Chronic kidney disease (CKD) represents the fastest growing pathology worldwide with a prevalence of >10% in many countries. In addition, kidney cancer represents 5% of all new diagnosed cancers. As currently no effective therapies exist to restore kidney function after CKD- as well as cancer-induced renal damage, it is important to elucidate new regulators of kidney development and disease as new therapeutic targets. G protein-coupled receptors (GPCRs) represent the most successful class of pharmaceutical targets. In recent years adhesion GPCRs (aGPCRs), the second largest GPCR family, gained significant attention as they are present on almost all mammalian cells, are associated to a plethora of diseases and regulate important cellular processes. aGPCRs regulate for example cell polarity, mitotic spindle orientation, cell migration, and cell aggregation; all processes that play important roles in kidney development and/or disease. Moreover, polycystin-1, a major regulator of kidney development and disease, contains a GAIN domain, which is otherwise only found in aGPCRs. In this review, we assess the potential of aGPCRs as therapeutic targets for kidney disease. For this purpose we have summarized the available literature and analyzed data from the databases The Human Protein Atlas, EURExpress, Nephroseq, FireBrowse, cBioPortal for Cancer Genomics and the National Cancer Institute Genomic Data Commons data portal (NCIGDC). Our data indicate that most aGPCRs are expressed in different spatio-temporal patterns during kidney development and that altered aGPCR expression is associated with a variety of kidney diseases including CKD, diabetic nephropathy, lupus nephritis as well as renal cell carcinoma. We conclude that aGPCRs present a promising new class of therapeutic targets and/or might be useful as diagnostic markers in kidney disease.
Collapse
Affiliation(s)
- Salvador Cazorla-Vázquez
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Felix B Engel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Miao C, Zhang G, Xie Z, Chang J. MicroRNAs in the pathogenesis of type 2 diabetes: new research progress and future direction. Can J Physiol Pharmacol 2017; 96:103-112. [PMID: 28898588 DOI: 10.1139/cjpp-2017-0452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
miRNA is a short non-coding RNA that can influence mRNA processing at the post-transcriptional level. A large number of miRNAs have been found in virtually all species so far, and these small molecules play an important role in many different physiological processes and various pathologic conditions, such as cell metabolism, cancer, autoimmune disease, and diabetes mellitus. T2D arises from a dysregulated response to the elevated glucose level in the circulation. The prevalence of T2D has increased dramatically in all age groups, and T2D in older adults is associated with more T2D complications and higher mortality. Despite the existing findings describing the pathological mechanism, T2D pathology is more complex and the pathophysiology of the disease is still not fully elucidated. In this review, we summarize the current understanding of miRNA-mediated modulation of gene expression in T2D pathogenesis, as well as related signaling pathways, and insight into the important role of miRNA in various T2D complications. Furthermore, the potential therapeutic value of miRNA for T2D patients is also discussed in detail.
Collapse
Affiliation(s)
- Chenggui Miao
- a Department of Pharmacy, School of Food and Drug, Anhui Science and Technology University, Fengyang 233100, China
| | - Guoxue Zhang
- b School of Science and Technology of Tea and Food, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- b School of Science and Technology of Tea and Food, Anhui Agricultural University, Hefei 230036, China
| | - Jun Chang
- c Fourth Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| |
Collapse
|