1
|
Liu B, Li X, Wang S, Jia H, Zhang X, Dong Q, Li J. Wnt5a promotes VM formation by modulating the stemness and EMT progression of prostate cancer cell. Transl Oncol 2025; 51:102155. [PMID: 39488007 PMCID: PMC11565535 DOI: 10.1016/j.tranon.2024.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024] Open
Abstract
The incidence of prostate cancer (PCa) is increasing annually, making it the leading cause of tumor-related mortality in males. The available treatment options for metastatic PCa are limited. Vasculogenic mimicry (VM), an emerging phenomenon involving aggressive tumor cells, has a significant impact on patient survival. Misregulation of Wnt5a expression is commonly observed during cancer progression. However, there is a lack of comprehensive studies investigating the effects of Wnt5a on tumor VM formation. In this study, we demonstrate that alterations in wnt5a expression, either through gain or loss, have a significant influence on the formation of VM in tumor cells mediated by cell stemness and EMT progression. Further research has demonstrated that Wnt5a regulates the formation of VM through the PI3K/JNK signaling pathway. These experimental findings offer a novel avenue for the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Bide Liu
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Xun Li
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Shuheng Wang
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Hongliang Jia
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Xiaoan Zhang
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Qiang Dong
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Jiuzhi Li
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Laboratory of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China.
| |
Collapse
|
2
|
Perrot-Applanat M, Pimpie C, Vacher S, Pocard M, Baud V. High Expression of AhR and Environmental Pollution as AhR-Linked Ligands Impact on Oncogenic Signaling Pathways in Western Patients with Gastric Cancer-A Pilot Study. Biomedicines 2024; 12:1905. [PMID: 39200369 PMCID: PMC11351739 DOI: 10.3390/biomedicines12081905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The vast majority of gastric cancer (GC) cases are adenocarcinomas including intestinal and diffuse GC. The incidence of diffuse GC, often associated with poor overall survival, has constantly increased in Western countries. Epidemiological studies have reported increased mortality from GC after occupational exposure to pro-carcinogens that are metabolically activated by cytochrome P450 enzymes through aryl hydrocarbon receptor (AhR). However, little is known about the role of AhR and environmental AhR ligands in diffuse GC as compared to intestinal GC in Western patients. In a cohort of 29, we demonstrated a significant increase in AhR protein and mRNA expression levels in GCs independently of their subtypes and clinical parameters. AhR and RHOA mRNA expression were correlated in diffuse GC. Further, our study aimed to characterize in GC how AhR and the AhR-related genes cytochrome P450 1A1 (CYP1A1) and P450 1B1 (CYP1B1) affect the mRNA expression of a panel of genes involved in cancer development and progression. In diffuse GC, CYP1A1 expression correlated with genes involved in IGF signaling, epithelial-mesenchymal transition (Vimentin), and migration (MMP2). Using the poorly differentiated KATO III epithelial cell line, two well-known AhR pollutant ligands, namely 2-3-7-8 tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene (BaP), strongly increased the expression of CYP1A1 and Interleukin1β (IL1B), and to a lesser extend UGT1, NQO1, and AhR Repressor (AhRR). Moreover, the increased expression of CYP1B1 was seen in diffuse GC, and IHC staining indicated that CYP1B1 is mainly expressed in stromal cells. TCDD treatment increased CYP1B1 expression in KATO III cells, although at lower levels as compared to CYP1A1. In intestinal GC, CYP1B1 expression is inversely correlated with several cancer-related genes such as IDO1, a gene involved in the early steps of tryptophan metabolism that contributes to the endogenous AhR ligand kynurenine expression. Altogether, our data provide evidence for a major role of AhR in GC, as an environmental xenobiotic receptor, through different mechanisms and pathways in diffuse and intestinal GC. Our results support the continued efforts to clarify the identity of exogenous AhR ligands in diffuse GC in order to define new therapeutic strategies.
Collapse
Affiliation(s)
- Martine Perrot-Applanat
- INSERM U1275, Peritoneal Carcimomatosis Paris-Technologies, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France; (C.P.); (M.P.)
| | - Cynthia Pimpie
- INSERM U1275, Peritoneal Carcimomatosis Paris-Technologies, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France; (C.P.); (M.P.)
| | - Sophie Vacher
- Department of Genetics, Curie Institute, PSL Research University, 75005 Paris, France;
| | - Marc Pocard
- INSERM U1275, Peritoneal Carcimomatosis Paris-Technologies, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France; (C.P.); (M.P.)
- Department of Digestive and Oncology Surgery, Hôpital Lariboisiere, Université Paris Cité, 75010 Paris, France
| | - Véronique Baud
- NF-kappaB, Differentiation and Cancer, Faculty of Pharmacy, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
3
|
Veland N, Gleneadie HJ, Brown KE, Sardini A, Pombo J, Dimond A, Burns V, Sarkisyan K, Schiering C, Webster Z, Merkenschlager M, Fisher AG. Bioluminescence imaging of Cyp1a1-luciferase reporter mice demonstrates prolonged activation of the aryl hydrocarbon receptor in the lung. Commun Biol 2024; 7:442. [PMID: 38600349 PMCID: PMC11006662 DOI: 10.1038/s42003-024-06089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.
Collapse
Affiliation(s)
- Nicolas Veland
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Hannah J Gleneadie
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen E Brown
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC Laboratory of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Joaquim Pombo
- Senescence Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Vanessa Burns
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen Sarkisyan
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Chris Schiering
- Inflammation and Obesity Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Zoe Webster
- Transgenics & Embryonic Stem Cell Facility, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
4
|
Sanchez Y, Vasquez Callejas MA, Miret NV, Rolandelli G, Costas C, Randi AS, Español A. Hexachlorobenzene as a differential modulator of the conventional and metronomic chemotherapy response in triple negative breast cancer cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:278-295. [PMID: 38745771 PMCID: PMC11090688 DOI: 10.37349/etat.2024.00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 05/16/2024] Open
Abstract
Aim Triple negative breast cancer (TNBC) is usually treated with high doses of paclitaxel, whose effectiveness may be modulated by the action of environmental contaminants such as hexachlorobenzene. High doses of paclitaxel cause adverse effects such as low cellular selectivity and the generation of resistance to treatment due to an increase in the expression of multidrug resistance proteins (MRPs). These effects can be reduced using a metronomic administration scheme with low doses. This study aimed to investigate whether hexachlorobenzene modulates the response of cells to conventional chemotherapy with paclitaxel or metronomic chemotherapy with paclitaxel plus carbachol, as well as to study the participation of the MRP ATP-binding cassette transporter G2 (ABCG2) in human TNBC MDA-MB231 cells. Methods Cells were treated with hexachlorobenzene alone or in combination with conventional or metronomic chemotherapies. The effects of treatments on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the nuclear factor kappa B pathway participation was evaluated using a selective inhibitor. ABCG2 expression and its modulation were determined by western blot. Results Results confirmed that paclitaxel reduces MDA-MB231 cell viability in a concentration-dependent manner. Results also showed that both conventional and metronomic chemotherapies reduced cell viability with similar efficacy. Although hexachlorobenzene did not modify cell viability per se, it did reverse the effect induced by the conventional chemotherapy, without affecting the efficacy of the metronomic chemotherapy. Additionally, a differential modulation of ABCG2 expression was determined, mediated by the nuclear factor kappa B pathway, which was directly related to the modulation of cell sensitivity to another cycle of paclitaxel treatment. Conclusions The findings indicate that, in human TNBC MDA-MB231 cells, in the presence of hexachlorobenzene, the metronomic combination of paclitaxel plus carbachol is more effective in affecting the tumor biology than the conventional therapeutic administration scheme of paclitaxel.
Collapse
Affiliation(s)
- Yamila Sanchez
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Mariana Abigail Vasquez Callejas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Noelia Victoria Miret
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Gabino Rolandelli
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Catalina Costas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Andrea Silvana Randi
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Alejandro Español
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
5
|
Rypens C, Van Berckelaer C, Berditchevski F, van Dam P, Van Laere S. Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:77-112. [PMID: 38637101 DOI: 10.1016/bs.ircmb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.
Collapse
Affiliation(s)
- Charlotte Rypens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; CellCarta N V, Wilrijk, Belgium
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Multidisciplinary Oncological Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
6
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
7
|
Griffith BD, Frankel TL. The Aryl Hydrocarbon Receptor: Impact on the Tumor Immune Microenvironment and Modulation as a Potential Therapy. Cancers (Basel) 2024; 16:472. [PMID: 38339226 PMCID: PMC10854841 DOI: 10.3390/cancers16030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitous nuclear receptor with a broad range of functions, both in tumor cells and immune cells within the tumor microenvironment (TME). Activation of AhR has been shown to have a carcinogenic effect in a variety of organs, through induction of cellular proliferation and migration, promotion of epithelial-to-mesenchymal transition, and inhibition of apoptosis, among other functions. However, the impact on immune cell function is more complicated, with both pro- and anti-tumorigenic roles identified. Although targeting AhR in cancer has shown significant promise in pre-clinical studies, there has been limited efficacy in phase III clinical trials to date. With the contrasting roles of AhR activation on immune cell polarization, understanding the impact of AhR activation on the tumor immune microenvironment is necessary to guide therapies targeting the AhR. This review article summarizes the state of knowledge of AhR activation on the TME, limitations of current findings, and the potential for modulation of the AhR as a cancer therapy.
Collapse
Affiliation(s)
- Brian D. Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Jin L, Huang J, Guo L, Zhang B, Li Q, Li H, Yu M, Xie P, Yu Q, Chen Z, Liu S, Xu Y, Xiao Y, Lu M, Ye Q. CYP1B1 promotes colorectal cancer liver metastasis by enhancing the growth of metastatic cancer cells via a fatty acids-dependent manner. J Gastrointest Oncol 2023; 14:2448-2465. [PMID: 38196537 PMCID: PMC10772677 DOI: 10.21037/jgo-23-895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Background Liver metastasis (LM) accounts for most colorectal cancer (CRC)-related deaths. However, how metastatic CRC cells gain the ability to survive and grow in liver remains largely unknown. Methods First, we screened differentially expressed genes (DEGs) between LM and paired primary tumors (PTs) in Gene Expression Omnibus (GEO) database, and identified cytochrome P450 1B1 (CYP1B1) as the only common differential gene. Then, we verified messenger RNA (mRNA) and protein expression level in clinical specimens. After constructing stable up-regulated CYP1B1 versions of HCT116 and RKO CRC cells and stable down-regulated CYP1B1 versions of SW480 and HT29 CRC cells, cell proliferation assays, subcutaneous tumor formation, and mouse LM models were used to comprehend its function. Next, we used RNA-seq to uncover specific mechanisms of growth; cell cycle, polymerase chain reaction (PCR), western blot (WB) and GEO series (GSE) datasets were used to verify its mechanism. Last, gas chromatography tandem mass spectrometry (GC-MS/MS) was adopted to examine which fatty acids were changed. Results A significantly higher level of CYP1B1 was found in LM than in PT in paired clinical CRC LM samples (P<0.05). After CYP1B1 overexpression in HCT116 and RKO cells, cell proliferation abilities in vitro and in vivo were enhanced; LM of NOD.Cg-PrkdcscidIl2rgem1Smoc (NSG) mice were enhanced. And knockdown of CYP1B1 in SW480 and HT29 cells, cell proliferation abilities in vitro and in vivo were reduced; LM of NSG mice were declined (P<0.05). RNA-seq showed 59 common genes from upregulated genes of RKO overexpression group and downregulated genes of SW480 knockdown group were enriched in cell cycle and DNA replication. Further investigation revealed CYP1B1 regulated alternation of MCM5, PCNA, and FEN1 genes, and G1/S transition in CRC cells. GC-MS/MS revealed long chain fatty acids (LCFAs) made a difference in SW480 knockdown group (P<0.05). Through adding LCFAs into SW480 and HT29 knockdown groups, cell proliferation abilities in vitro and in vivo were enhanced, and expressions of MCM5, PCNA, FEN1 were upregulated (P<0.05). Conclusions CYP1B1 exerts a significant influence on LM of CRC by modulating tumor cell proliferation via "CYP1B1-LCFAs-G1/S transition". This finding suggests CYP1B1 could be a promising target for CRC LM.
Collapse
Affiliation(s)
- Lei Jin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ju Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Bo Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China
| | - Mincheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qiang Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zheng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Shuang Liu
- Neurosurgery Department of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongfeng Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yongsheng Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ming Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qinghai Ye
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
9
|
Chen D, Li R, Shao Q, Wu Z, Cui J, Meng Q, Li S. Design and Synthesis of Novel Near-Infrared Fluorescence Probes Based on an Open Conformation of a Cytochrome P450 1B1 Complex for Molecular Imaging of Colorectal Tumors. J Med Chem 2023; 66:16032-16050. [PMID: 38031326 DOI: 10.1021/acs.jmedchem.3c01474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Cytochrome P450 1B1 (CYP1B1) is induced during the early stage of cancer and is universally overexpressed in tumors. Thus, it was considered as a potential biomarker for the monitoring of cancer. In this study, we designed and synthesized CYP1B1-targeted near-infrared (NIR) fluorescence molecular probes based on the latest reported open conformation of the CYP1B1-α-naphthoflavone (ANF) complex. According to the architecture of the open channel, we introduced linkers and a Cy5.5 fragment at the 5' position of ANF derivatives with strong CYP1B1 inhibitory activity to obtain probes 19-21. Then, in vitro cell-based studies showed that the probes could be enriched in tumor cells by binding to CYP1B1. During in vivo and ex vivo imaging in a xenograft mouse model, probe 19 with the best binding affinity was proven to be able to identify tumor sites in both fluorescence imaging and photoacoustic imaging modes.
Collapse
Affiliation(s)
- Dongmei Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruining Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Shao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhihao Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
10
|
Chatterjee P, Banerjee S. Unveiling the mechanistic role of the Aryl hydrocarbon receptor in environmentally induced Breast cancer. Biochem Pharmacol 2023; 218:115866. [PMID: 37863327 DOI: 10.1016/j.bcp.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a crucial cytosolic evolutionary conserved ligand-activated transcription factor and a pleiotropic signal transducer. The biosensor activity of the AhR is attributed to the promiscuity of its ligand-binding domain. Evidence suggests exposure to environmental toxins such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and halogenated aromatic hydrocarbons activates the AhR signaling pathway. The constitutive activation of the receptor signaling system leads to multiple health adversities and enhances the risk of several cancers, including breast cancer (BC). This review evaluates several mechanisms that integrate the tumor-inducing property of such environmental contaminants with the AhR pathway assisting in BC tumorigenesis, progress and metastasis. Intriguingly, immune evasion is identified as a prominent hallmark in BC. Several emerging pieces of evidence have identified AhR as a potent immunosuppressive effector in several cancers. Through AhR signaling pathways, some tumors can avoid immune detection. Thus the relevance of AhR in the immunomodulation of breast tumors and its putative mode of action in the breast tumor microenvironment are discussed in this review. Additionally, the work also explores BC stemness and its associated inflammation in response to several environmental cues. The review elucidates the context-dependent ambiguous behavior of AhR either as an oncogene or a tumor suppressor with respect to its ligand. Conclusively, this holistic piece of literature attempts to potentiate AhR as a promising pharmacological target in BC and updates on the therapeutic manipulation of its various exogenous and endogenous ligands.
Collapse
Affiliation(s)
- Prarthana Chatterjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms of breast cancer progression induced by environment-polluting aryl hydrocarbon receptor agonists. Biochem Pharmacol 2023; 216:115773. [PMID: 37659737 DOI: 10.1016/j.bcp.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Breast cancer is the most common invasive malignancy among women worldwide and constitutes a complex and heterogeneous disease. Interest has recently grown in the role of the aryl hydrocarbon receptor (AhR) in breast cancer and the contribution of environment-polluting AhR agonists. Here, we present a literature review addressing AhR ligands, including pesticides hexachlorobenzene and chlorpyrifos, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, parabens, and phthalates. The objectives of this review are a) to summarize recent original experimental, preclinical, and clinical studies on the biological mechanisms of AhR agonists which interfere with the regulation of breast endocrine functions, and b) to examine the biological effects of AhR ligands and their impact on breast cancer development and progression. We discuss biological mechanisms of action in cell viability, cell cycle, proliferation, epigenetic changes, epithelial to mesenchymal transition, and cell migration and invasion. In addition, we examine the effects of AhR ligands on angiogenic processes, metastasis, chemoresistance, and stem cell renewal. We conclude that exposure to AhR agonists stimulates pathways that promote breast cancer development and may contribute to tumor progression. Given the massive use of industrial and agricultural chemicals, ongoing evaluation of their effects in laboratory assays and preclinical studies in breast cancer at environmentally relevant doses is deemed essential. Likewise, awareness should be raised in the population regarding the most harmful toxicants to eradicate or minimize their use.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Hanieh H, Bani Ismail M, Alfwuaires MA, Ibrahim HIM, Farhan M. Aryl Hydrocarbon Receptor as an Anticancer Target: An Overview of Ten Years Odyssey. Molecules 2023; 28:molecules28103978. [PMID: 37241719 DOI: 10.3390/molecules28103978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor belonging to the basic helix-loop-helix (bHLH)/per-Arnt-sim (PAS) superfamily, is traditionally known to mediate xenobiotic metabolism. It is activated by structurally diverse agonistic ligands and regulates complicated transcriptional processes through its canonical and non-canonical pathways in normal and malignant cells. Different classes of AhR ligands have been evaluated as anticancer agents in different cancer cells and exhibit efficiency, which has thrust AhR into the limelight as a promising molecular target. There is strong evidence demonstrating the anticancer potential of exogenous AhR agonists including synthetic, pharmaceutical, and natural compounds. In contrast, several reports have indicated inhibition of AhR activity by antagonistic ligands as a potential therapeutic strategy. Interestingly, similar AhR ligands exert variable anticancer or cancer-promoting potential in a cell- and tissue-specific mode of action. Recently, ligand-mediated modulation of AhR signaling pathways and the associated tumor microenvironment is emerging as a potential approach for developing cancer immunotherapeutic drugs. This article reviews advances of AhR in cancer research covering publication from 2012 to early 2023. It summarizes the therapeutic potential of various AhR ligands with an emphasis on exogenous ligands. It also sheds light on recent immunotherapeutic strategies involving AhR.
Collapse
Affiliation(s)
- Hamza Hanieh
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan
- International Medical Research Center (iMReC), Aqaba 77110, Jordan
| | - Mohammad Bani Ismail
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan
| | - Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Hairul-Islam M Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Mahdi Farhan
- International Medical Research Center (iMReC), Aqaba 77110, Jordan
- Department of Drug Development, UniTechPharma, 1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Grishanova AY, Klyushova LS, Perepechaeva ML. AhR and Wnt/β-Catenin Signaling Pathways and Their Interplay. Curr Issues Mol Biol 2023; 45:3848-3876. [PMID: 37232717 DOI: 10.3390/cimb45050248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
As evolutionarily conserved signaling cascades, AhR and Wnt signaling pathways play a critical role in the control over numerous vital embryonic and somatic processes. AhR performs many endogenous functions by integrating its signaling pathway into organ homeostasis and into the maintenance of crucial cellular functions and biological processes. The Wnt signaling pathway regulates cell proliferation, differentiation, and many other phenomena, and this regulation is important for embryonic development and the dynamic balance of adult tissues. AhR and Wnt are the main signaling pathways participating in the control of cell fate and function. They occupy a central position in a variety of processes linked with development and various pathological conditions. Given the importance of these two signaling cascades, it would be interesting to elucidate the biological implications of their interaction. Functional connections between AhR and Wnt signals take place in cases of crosstalk or interplay, about which quite a lot of information has been accumulated in recent years. This review is focused on recent studies about the mutual interactions of key mediators of AhR and Wnt/β-catenin signaling pathways and on the assessment of the complexity of the crosstalk between the AhR signaling cascade and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Alevtina Y Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Maria L Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| |
Collapse
|
14
|
Cao S, Hu S, Jiang P, Zhang Z, Li L, Wu Q. Effects of sulforaphane on breast cancer based on metabolome and microbiome. Food Sci Nutr 2023; 11:2277-2287. [PMID: 37181316 PMCID: PMC10171519 DOI: 10.1002/fsn3.3168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 04/03/2023] Open
Abstract
Sulforaphane (SFN) is a promising phytochemical with a wide range of antitumor activities. A comprehensive understanding of the effects of SFN on breast cancer based on the metabolome and microbiome is limited. Thus, we treated MCF-7 cell-transplanted nude mice with 50 mg/kg SFN. SFN inhibits breast cancer cell proliferation. SFN increased the levels of sulfate-related metabolites and glutathione-related metabolites and decreased tryptophan metabolites and methyl-purine metabolites in urinary metabolic profile. SFN indirectly affected the activation of aryl hydrocarbon receptor by tryptophan metabolism. The ratio of SAM to methionine was decreased by SFN while the global DNA methylation was downregulated in tumor tissue. SFN decreased the sulfate-reducing bacterium Desulfovibrio, which is related to reduced methylation capacity, and increased the genus Lactobacillus related to tryptophan metabolites with antitumor activities. In conclusion, we provide a perspective on the metabolome and microbiome to elucidate the antitumor activities of SFN.
Collapse
Affiliation(s)
- Shuyuan Cao
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Shengjie Hu
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Ping Jiang
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Zhan Zhang
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Lei Li
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| | - Qian Wu
- Center for Global Health, School of Public Health and Department of Health Inspection and QuarantineSchool of Public Health, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
15
|
Kinnel B, Singh SK, Oprea-Ilies G, Singh R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers (Basel) 2023; 15:1320. [PMID: 36831661 PMCID: PMC9954028 DOI: 10.3390/cancers15041320] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most common cause of cancer-related death in women worldwide. Multidrug resistance (MDR) has been a large hurdle in reducing BC death rates. The drug resistance mechanisms include increased drug efflux, enhanced DNA repair, senescence escape, epigenetic alterations, tumor heterogeneity, tumor microenvironment (TME), and the epithelial-to-mesenchymal transition (EMT), which make it challenging to overcome. This review aims to explain the mechanisms of resistance in BC further, identify viable drug targets, and elucidate how those targets relate to the progression of BC and drug resistance.
Collapse
Affiliation(s)
- Briana Kinnel
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
16
|
Sweeney C, Lazennec G, Vogel CFA. Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Front Pharmacol 2022; 13:1095289. [PMID: 36588678 PMCID: PMC9797527 DOI: 10.3389/fphar.2022.1095289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to chemicals including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDDs) can lead to severe adverse health effects and increase the risk of breast cancer. This review considers several mechanisms which link the tumor promoting effects of environmental pollutants with the AhR signaling pathway, contributing to the development and progression of breast cancer. We explore AhR's function in shaping the tumor microenvironment, modifying immune tolerance, and regulating cancer stemness, driving breast cancer chemoresistance and metastasis. The complexity of AhR, with evidence for both oncogenic and tumor suppressor roles is discussed. We propose that AhR functions as a "molecular bridge", linking disproportionate toxin exposure and policies which underlie environmental injustice with tumor cell behaviors which drive poor patient outcomes.
Collapse
Affiliation(s)
- Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Gwendal Lazennec
- Centre National de la Recherche Scientifique, SYS2DIAG-ALCEN, Cap Delta, Montpellier, France
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| |
Collapse
|
17
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
18
|
Yuan B, Liu G, Dai Z, Wang L, Lin B, Zhang J. CYP1B1: A Novel Molecular Biomarker Predicts Molecular Subtype, Tumor Microenvironment, and Immune Response in 33 Cancers. Cancers (Basel) 2022; 14:cancers14225641. [PMID: 36428734 PMCID: PMC9688555 DOI: 10.3390/cancers14225641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cytochrome P450 Family 1 Subfamily B Member 1 (CYP1B1) is a critical metabolic enzyme of melatonin. Although melatonin has been identified to exhibit tumor suppressing activity, the role and mechanism of the clinical and immunological characteristics of CYP1B1 in cancer remain unclear. METHODS In this study, RNA expression and clinical data were obtained from The Cancer Genome Atlas (TCGA) across 33 solid tumors. The expression, survival, immune subtype, molecular subtype, tumor mutation burden (TMB), microsatellite instability (MSI), biological pathways, and function in vitro and vivo were evaluated. The predictive value of CYP1B1 in immune cohorts was further explored. RESULTS We found the dysregulated expression of CYP1B1 was associated with the clinical stage and tumor grade. Immunological correlation analysis showed CYP1B1 was positively correlated with the infiltration of lymphocyte, immunomodulator, chemokine, receptor, and cancer-associated fibroblasts (CAFs) in most cancer. Meanwhile, CYP1B1 was involved in immune subtype and molecular subtype, and was connected with TMB, MSI, neoantigen, the activation of multiple melatonergic and immune-related pathways, and therapeutic resistance. CONCLUSIONS Together, this study comprehensively revealed the role and mechanism of CYP1B1 and explored the significant association between CYP1B1 expression and immune activity. These findings provide a promising predictor and molecular target for clinical immune treatment.
Collapse
Affiliation(s)
- Benchao Yuan
- Department of Oncology and Hematology, The Sixth People’s Hospital of Huizhou City, Huiyang Hospital Affiliated to Southern Medical University, Huizhou 516003, China
| | - Guihong Liu
- Department of Radiation Oncology, Dongguan Tungwah Hospital, Dongguan 523120, China
| | - Zili Dai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou 510095, China
| | - Li Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou 510095, China
| | - Baisheng Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou 510095, China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou 510095, China
- Guangzhou Medical University, Guangzhou 511495, China
- Correspondence: ; Tel./Fax: +86-020-66673666
| |
Collapse
|
19
|
Perez-Castro L, Venkateswaran N, Garcia R, Hao YH, Lafita-Navarro MC, Kim J, Segal D, Saponzik E, Chang BJ, Fiolka R, Danuser G, Xu L, Brabletz T, Conacci-Sorrell M. The AHR target gene scinderin activates the WNT pathway by facilitating the nuclear translocation of β-catenin. J Cell Sci 2022; 135:jcs260028. [PMID: 36148682 PMCID: PMC10658791 DOI: 10.1242/jcs.260028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023] Open
Abstract
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated β-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of β-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of β-catenin. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Roy Garcia
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M. C. Lafita-Navarro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dagan Segal
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Saponzik
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas Brabletz
- Nikolaus-Fiebiger Center for Molecular Medicine, University Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Singh RD, Avadhesh A, Sharma G, Dholariya S, Shah RB, Goyal B, Gupta SC. Potential of cytochrome P450, a family of xenobiotic metabolizing enzymes, in cancer therapy. Antioxid Redox Signal 2022; 38:853-876. [PMID: 36242099 DOI: 10.1089/ars.2022.0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Targeted cancer therapy with minimal off-target consequences has shown promise for some cancer types. Although cytochrome P450 (CYP) consists of 18 families, CYP1-4 families play key role in metabolizing xenobiotics and cancer drugs. This eventually affects the process of carcinogenesis, treatment outcome, and cancer drug resistance. Differential overexpression of CYPs in transformed cells, together with phenotypic alterations in tumors, presents a potential for therapeutic intervention. RECENT ADVANCES Recent advances in molecular tools and information technology have helped utilize CYPs as cancer targets. The precise expression in various tumors, X-ray crystal structures, improved understanding of the structure-activity relationship, and new approaches in the development of prodrugs have supported the ongoing efforts to develop CYPs-based drugs with a better therapeutic index. CRITICAL ISSUES Narrow therapeutic index, off-target effects, drug resistance, and tumor heterogeneity limit the benefits of CYP-based conventional cancer therapies. In this review, we address the CYP1-4 families as druggable targets in cancer. An emphasis is given to the CYP expression, function, and the possible mechanisms that drive expression and activity in normal and transformed tissues. The strategies that inhibit or activate CYPs for therapeutic benefits are also discussed. FUTURE DIRECTIONS Efforts are needed to develop more selective tools that will help comprehend molecular and metabolic alterations in tumor tissues with biological end-points in relation to CYPs. This will eventually translate to developing more specific CYP inhibitors/inducers.
Collapse
Affiliation(s)
- Ragini D Singh
- AIIMS Rajkot, 618032, Biochemistry, Rajkot, Gujarat, India;
| | - Avadhesh Avadhesh
- Institute of Science, Banaras Hindu University, Biochemistry, Varanasi, Uttar Pradesh, India;
| | - Gaurav Sharma
- AIIMS Rajkot, 618032, Physiology, Rajkot, Gujarat, India;
| | | | - Rima B Shah
- AIIMS Rajkot, 618032, Pharmacology, Rajkot, Gujarat, India;
| | - Bela Goyal
- AIIMS Rishikesh, 442339, Biochemistry, Rishikesh, Uttarakhand, India;
| | - Subash Chandra Gupta
- Institute of Science, Banaras Hindu University, Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India, 221005;
| |
Collapse
|
21
|
ZNF276 promotes the malignant phenotype of breast carcinoma by activating the CYP1B1-mediated Wnt/β-catenin pathway. Cell Death Dis 2022; 13:781. [PMID: 36085146 PMCID: PMC9463175 DOI: 10.1038/s41419-022-05223-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/21/2023]
Abstract
Zinc finger proteins (ZNFs) have been demonstrated to participate extensively in breast cancer progression by functioning as transcription factors, but there are still a variety of ZNFs whose biological mechanisms remain unknown. Here, we show that zinc finger protein 276 (ZNF276) is highly expressed in breast cancer tissues and cell lines. Higher level of ZNF276 correlated with poor prognosis. Gain-of and loss-of function suggested that ZNF276 is essential for the proliferation, migration and invasion of breast cancer cells in vitro and metastasis in vivo. RNA-sequencing and CUT&Tag assay revealed that ZNF276 controlled a variety of growth and metastasis-related genes expression. ZNF276 transcriptionally promoted the expression of CYP1B1 by directly binds to the promoter region of the CYP1B1 through its C2H2 domain. ZNF276 facilitated the translocation of β-catenin from cytoplasm to nucleus through CYP1B1, leading to the upregulation of cyclin D1 and c-Myc, and the activation of the Wnt/β-catenin pathway. Knockdown of CYP1B1 significantly blocked the ZNF276-mediated effects on cell proliferation, migration and invasion. Lastly, ZNF276 interacted with MAGEB2 which enhanced the binding of ZNF276 at the CYP1B1 promoter, promoted CYP1B1 expression and Wnt signaling activation. Collectively, these findings highlight the oncogenic role of ZNF276 on breast cancer cell proliferation and metastasis. Targeting ZNF276/MAGEB2 axis may serve as a potential therapeutic strategy for breast cancer patients.
Collapse
|
22
|
Hollis PR, Mobley RJ, Bhuju J, Abell AN, Sutter CH, Sutter TR. CYP1B1 Augments the Mesenchymal, Claudin-Low, and Chemoresistant Phenotypes of Triple-Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:9670. [PMID: 36077068 PMCID: PMC9456208 DOI: 10.3390/ijms23179670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P4501B1 (CYP1B1) is elevated in breast cancer. Studies indicate a relationship between CYP1B1 and aggressive cancer phenotypes. Here, we report on in vitro studies in triple-negative breast cancer cell lines, where knockdown (KD) of CYP1B1 was used to determine the influence of its expression on invasive cell phenotypes. CYP1B1 KD in MDA-MB-231 cells resulted in the loss of mesenchymal morphology, altered expression of epithelial-mesenchymal genes, and increased claudin (CLDN) RNA and protein. CYP1B1 KD cells had increased cell-to-cell contact and paracellular barrier function, a reduced rate of cell proliferation, abrogation of migratory and invasive activity, and diminished spheroid formation. Analysis of clinical breast cancer tumor samples revealed an association between tumors exhibiting higher CYP1B1 RNA levels and diminished overall and disease-free survival. Tumor expression of CYP1B1 was inversely associated with CLDN7 expression, and CYP1B1HI/CLDN7LOW identified patients with lower median survival. Cells with CYP1B1 KD had an enhanced chemosensitivity to paclitaxel, 5-fluorouracil, and cisplatin. Our findings that CYP1B1 KD can increase chemosensitivity points to therapeutic targeting of this enzyme. CYP1B1 inhibitors in combination with chemotherapeutic drugs may provide a novel targeted and effective approach to adjuvant or neoadjuvant therapy against certain forms of highly metastatic breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas R. Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
23
|
Morin SM, Majhi PD, Crisi GM, Gregory KJ, Franca R, Schalet B, Mason H, Casaubon JT, Cao QJ, Haddad S, Makari-Judson G, Jerry DJ, Schneider SS. Interindividual variation contributes to differential PCB 126 induced gene expression in primary breast epithelial cells and tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113722. [PMID: 35724515 DOI: 10.1016/j.ecoenv.2022.113722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
PCB 126 is a pervasive, dioxin-like chemical pollutant which can activate the aryl hydrocarbon receptor (AhR). Despite being banned from the market, PCB 126 can be detected in breast milk to this day. The extent to which interindividual variation impacts the adverse responses to this chemical in the breast tissue remains unclear. This study aimed to investigate the impact of 3 nM PCB 126 on gene expression in a panel of genetically diverse benign human breast epithelial cell (HBEC) cultures and patient derived breast tissues. Six patient derived HBEC cultures were treated with 3 nM PCB 126. RNAseq was used to interrogate the impact of exposure on differential gene expression. Gene expression changes from the top critical pathways were confirmed via qRT-PCR in a larger panel of benign patient derived HBEC cultures, as well as in patient-derived breast tissue explant cultures. RNAseq analysis of HBEC cultures revealed a signature of 144 genes significantly altered by 3 nM PCB 126 treatment. Confirmation of 8 targets using a panel of 12 HBEC cultures and commercially available breast cell lines demonstrated that while the induction of canonical downstream target gene, CYP1A1, was consistent across our primary HBECs, other genes including AREG, S100A8, IL1A, IL1B, MMP7, and CCL28 exhibited significant variability across individuals. The dependence on the activity of the aryl hydrocarbon receptor was confirmed using inhibitors. PCB 126 can induce significant and consistent changes in gene expression associated with xenobiotic metabolism in benign breast epithelial cells. Although the induction of most genes was reliant on the AhR, significant variability was noted between genes and individuals. These data suggest that there is a bifurcation of the pathway following AhR activation that contributes to the variation in interindividual responses.
Collapse
Affiliation(s)
- Stephanie M Morin
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States; Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Prabin Dhangada Majhi
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Giovanna M Crisi
- University of Massachusetts Chan Medical School-Baystate, Department of Pathology, Springfield, MA 01199, United States
| | - Kelly J Gregory
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States
| | - Renata Franca
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States
| | - Benjamin Schalet
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA 01199, United States
| | - Holly Mason
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA 01199, United States
| | - Jesse Thomas Casaubon
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA 01199, United States
| | - Qing Jackie Cao
- University of Massachusetts Chan Medical School-Baystate, Department of Pathology, Springfield, MA 01199, United States
| | - Sandra Haddad
- Dept of Science, Bay Path University, Longmeadow, MA 01106, United States
| | - Grace Makari-Judson
- University of Massachusetts Chan Medical School-Baystate, Division of Hematology-Oncology, Springfield, MA, United States
| | - D Joseph Jerry
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States; Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Sallie S Schneider
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, United States; Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States; University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA 01199, United States.
| |
Collapse
|
24
|
Tarek A, El-Sayed SK, Woodward WA, El-Shinawi M, Hirshon JM, Mohamed MM. Inflammatory Breast Cancer: The Cytokinome of Post-Mastectomy Wound Fluid Augments Proliferation, Invasion, and Stem Cell Markers. Curr Issues Mol Biol 2022; 44:2730-2744. [PMID: 35735628 PMCID: PMC9222108 DOI: 10.3390/cimb44060187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive phenotype with a high recurrence and low survival rate. Approximately 90% of local breast cancer recurrences occur adjacent to the same quadrant as the initial cancer, implying that tumor recurrence may be caused by residual cancer cells and/or quiescent cancer stem cells (CSCs) in the tumor. We hypothesized that wound fluid (WF) collected after modified radical mastectomy (MRM) may activate cancer cells and CSCs, promoting epithelial mesenchymal transition (EMT) and invasion. Therefore, we characterized the cytokinome of WF drained from post-MRM cavities of non-IBC and IBC patients. The WF of IBC patients showed a significantly higher expression of various cytokines than in non-IBC patients. In vitro cell culture models of non-IBC and IBC cell lines were grown in media conditioned with and/without WF for 48 h. Afterwards, we assessed cell viability, the expression of CSCs and EMT-specific genes, and tumor invasion. Genes associated with CSCs properties and EMT markers were regulated in cells seeded in media conditioned by WF. IBC-WF exhibited a greater potential for inducing IBC cell invasion than non-IBC cells. The present study demonstrates the role of the post-surgical tumor cavity in IBC recurrence and metastasis.
Collapse
Affiliation(s)
- Alshaimaa Tarek
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Shrouk Khalaf El-Sayed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Maadi Military Hospital, Maadi, Cairo 11711, Egypt
| | - Wendy A. Woodward
- MD Anderson Cancer Center, Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Radiation Oncology, The University of Texas, Houston, TX 77030, USA;
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Sector of International Cooperation, Galala University, Suez 43511, Egypt
| | - Jon Mark Hirshon
- School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Mona Mostafa Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Sector of International Cooperation, Galala University, Suez 43511, Egypt
| |
Collapse
|
25
|
Miret NV, Zárate LV, Díaz FE, Agustina Leguizamón M, Pontillo CA, Chiappini FA, Ceballos L, Geffner J, Randi AS. Extracellular acidosis stimulates breast cancer cell motility through aryl hydrocarbon receptor and c-Src kinase activation. J Cell Biochem 2022; 123:1197-1206. [PMID: 35538691 DOI: 10.1002/jcb.30275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
Abstract
A reduction in extracellular pH (pHe) is a characteristic of most malignant tumors. The aryl hydrocarbon receptor (AhR) is a transcription factor localized in a cytosolic complex with c-Src, which allows it to trigger non-genomic effects through c-Src. Considering that the slightly acidic tumor microenvironment promotes breast cancer progression in a similar way to the AhR/c-Src axis, our aim was to evaluate whether this pathway could be activated by low pHe. We examined the effect of pHe 6.5 on AhR/c-Src axis using two breast cancer cell lines (MDA-MB-231 and LM3) and mammary epithelial cells (NMuMG) and found that acidosis increased c-Src phosphorylation only in tumor cells. Moreover, the presence of AhR inhibitors prevented c-Src activation. Low pHe reduced intracellular pH (pHi), while amiloride treatment, which is known to reduce pHi, induced c-Src phosphorylation through AhR. Analyses were conducted on cell migration and metalloproteases (MMP)-2 and -9 activities, with results showing an acidosis-induced increase in MDA-MB-231 and LM3 cell migration and MMP-9 activity, but no changes in NMuMG cells. Moreover, all these effects were blocked by AhR and c-Src inhibitors. In conclusion, acidosis stimulates the AhR/c-Src axis only in breast cancer cells, increasing cell migration and MMP-9 activity. Although the AhR activation mechanism still remains elusive, a reduction in pHi may be thought to be involved. These findings suggest a critical role for the AhR/c-Src axis in breast tumor progression stimulated by an acidic microenvironment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Fernando Erra Díaz
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (CONICET), Paraguay 2155, 11° piso, (CP 1121), Buenos Aires, Argentina
| | - M Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Leandro Ceballos
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| | - Jorge Geffner
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (CONICET), Paraguay 2155, 11° piso, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5° piso, (CP 1121), Buenos Aires, Argentina
| |
Collapse
|
26
|
Indole-3-Carbinol, a Phytochemical Aryl Hydrocarbon Receptor-Ligand, Induces the mRNA Overexpression of UBE2L3 and Cell Proliferation Arrest. Curr Issues Mol Biol 2022; 44:2054-2068. [PMID: 35678668 PMCID: PMC9164055 DOI: 10.3390/cimb44050139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer (CC) is one of the most common cancers in women, and is linked to human papillomavirus (HPV) infection. The virus oncoprotein E6 binds to p53, resulting in its degradation and allowing uncontrolled cell proliferation. Meanwhile, the HPV E7 protein maintains host cell differentiation by targeting retinoblastoma tumor suppressor. The host cell can ubiquitinate E6 and E7 through UBE2L3, whose expression depends on the interaction between the aryl hydrocarbon receptor (AhR) with Xenobiotic Responsive Elements (XREs) located in the UBE2L3 gene promoter. In this study, we used cell culture to determine the effect of indole-3-carbinol (I3C) over cellular viability, apoptosis, cell proliferation, and mRNA levels of UBE2L3 and CYP1A1. In addition, patients’ samples were used to determine the mRNA levels of UBE2L3 and CYP1A1 genes. We found that I3C promotes the activation of AhR and decreases cell proliferation, possibly through UBE2L3 mRNA induction, which would result in the ubiquitination of HPV E7. Since there is a strong requirement for selective and cost-effective cancer treatments, natural AhR ligands such as I3C could represent a novel strategy for cancer treatment.
Collapse
|
27
|
Lin Q, Cao J, Du X, Yang K, Yang X, Liang Z, Shi J, Zhang J. CYP1B1-catalyzed 4-OHE2 promotes the castration resistance of prostate cancer stem cells by estrogen receptor α-mediated IL6 activation. Cell Commun Signal 2022; 20:31. [PMID: 35292057 PMCID: PMC8922936 DOI: 10.1186/s12964-021-00807-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Resistance to androgen deprivation therapy remains a major challenge for the clinical treatment of patients with castration-resistant prostate cancer (CRPC). CYP1B1, a critical enzyme that catalyzes the conversion of estradiol to 4-Hydroxy-17β-estradiol (4-OHE2), has been reported to promote the development and progression of hormone-related cancer, but its role in CRPC is unclear. Methods To explore the underlying mechanism which CYP1B1 promotes the prostate cancer stem cells (PCSCs) characteristics, bioinformatics analyses of human clinical prostate cancer (PCa) datasets were performed. CYP1B1, IL6, and estrogen receptor-α (ERα) expression levels were evaluated in PCa and CRPC tissues via immunohistochemistry. The high-performance liquid chromatography-mass spectrometry assay was carried out to examine intracellular 4-OHE2 levels. Serum-free suspension culture and flow cytometry assays were performed to evaluate PCSCs. Chromatin immunoprecipitation was used to validate that 4-OHE2 recruited ERα to the IL6 promoter. Results CYP1B1 expression was significantly increased in CRPC tissues and androgen-independent PCa cell lines. CYP1B1+ PCa cells were significantly enriched in bicalutamide-treated LNCaP cells, and CYP1B1 knockdown reduced the cell viability under bicalutamide treatment. In addition, CYP1B1 knockdown decreased the intracellular 4-OHE2 concentration, accompanied by reduced PCSC characteristics. In PCa cells, 4-OHE2 stimulated ERα transcriptional activity and upregulated the expression of IL6 and downstream genes of the IL6-STAT3 signaling. 4-OHE2 increased cell viability under bicalutamide treatment and promoted PCSC characteristics, while IL6 neutralizing antibody reversed these effects. Mechanistically, siERα and the ER antagonist ICI182780 significantly attenuated 4-OHE2-induced IL6 expression, and 4-OHE2 promoted the binding of ERα to the estrogen response element of the IL6 promoter. Conclusions Our findings indicate that CYP1B1-catalyzed 4-OHE2 enhanced PCSC characteristics and attenuated bicalutamide sensitivity by ERα-mediated the IL6-STAT3 pathway activation. Our study further emphasizes the role of CYP1B1 in castration resistance and illustrates a novel mechanism of CRPC development. Graphical Abstract ![]()
Video Abstract.
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00807-x.
Collapse
Affiliation(s)
- Qimei Lin
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiasong Cao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.,Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, 300071, China
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Kuo Yang
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xu Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhixian Liang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of the Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
28
|
Han Z, Gong C, Li J, Guo H, Chen X, Jin Y, Gao S, Tai Z. Immunologically modified enzyme-responsive micelles regulate the tumor microenvironment for cancer immunotherapy. Mater Today Bio 2021; 13:100170. [PMID: 34938989 DOI: 10.1016/j.mtbio.2021.100170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/23/2023] Open
Abstract
Immune checkpoint blockade has been proven to have great therapeutic potential and has revolutionized the treatment of tumors. However, various limitations remain, including the low response rate of exhausted T cells and mutual regulation of multiple immunosuppressive cell types that compromise the effect of single-target therapy. Nano-delivery systems can be used to regulate the tumor immune microenvironment in favor of immunotherapy. In this study, we constructed a polypeptide-based micellar system that encapsulates an aryl hydrocarbon receptor (AhR) inhibitor (CH223191) conjugated to T cell activator anti-CD28. The inhibition of AhR activation downregulates the fraction of immunosuppressive cells and effectively inhibits tumor cell metastasis. In addition, the combination with co-stimulatory antibodies improves T-cell activation and synergistically enhances the antitumor effect of AhR inhibitors. The micellar system developed in this study represents a novel and effective tumor immunotherapy approach.
Collapse
Affiliation(s)
- Zhimin Han
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Juanjuan Li
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Huanhuan Guo
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xinlu Chen
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yangli Jin
- Ningbo Yinzhou No.2 Hospital, Ningbo, 315192, China
| | - Shen Gao
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
29
|
Chen CT, Wu PH, Hu CC, Nien HC, Wang JT, Sheu JC, Chow LP. Aberrant Upregulation of Indoleamine 2,3-Dioxygenase 1 Promotes Proliferation and Metastasis of Hepatocellular Carcinoma Cells via Coordinated Activation of AhR and β-Catenin Signaling. Int J Mol Sci 2021; 22:ijms222111661. [PMID: 34769098 PMCID: PMC8583706 DOI: 10.3390/ijms222111661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related death worldwide. Chronic liver inflammation due to hepatitis virus infection and other major effectors is a major risk factor of HCC. Indoleamine 2,3-dioxygenase 1 (IDO1), a heme enzyme highly expressed upon stimulation with proinflammatory cytokines such as interferon-γ (IFN-γ), is activated to modulate the tumor microenvironment and potentially crucial in the development of certain cancer types. Earlier studies have majorly reported an immunomodulatory function of IDO1. However, the specific role of IDO1 in cancer cells, particularly HCC, remains to be clarified. Analysis of The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA LIHC) dataset in the current study revealed a significant correlation between IDO1 expression and HCC. We further established inducible IDO1-expressing cell models by coupling lentivirus-mediated knockdown and IFN-γ induction of IDO1 in normal and HCC cells. In functional assays, proliferation and motility-related functions of HCC cells were compromised upon suppression of IDO1, which may partially be rescued by its enzymatic product, kynurenine (KYN), while normal hepatocytes were not affected. Aryl hydrocarbon receptor (AhR), a reported endogenous KYN receptor, is suggested to participate in tumorigenesis. In mechanistic studies, IDO1 activation promoted both AhR and β-catenin activity and nuclear translocation. Immunofluorescence staining and co-immunoprecipitation assays further disclosed interactions between AhR and β-catenin. In addition, we identified a Src-PTEN-PI3K/Akt-GSK-3β axis involved in β-catenin stabilization and activation following IDO1-mediated AhR activation. IDO1-induced AhR and β-catenin modulated the expression of proliferation- and EMT-related genes to facilitate growth and metastasis of HCC cells. Our collective findings provide a mechanistic basis for the design of more efficacious IDO1-targeted therapy for HCC.
Collapse
Affiliation(s)
- Chih-Ta Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Taipei 100, Taiwan; (C.-T.C.); (P.-H.W.); (C.-C.H.)
| | - Pei-Hua Wu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Taipei 100, Taiwan; (C.-T.C.); (P.-H.W.); (C.-C.H.)
| | - Chia-Chi Hu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Taipei 100, Taiwan; (C.-T.C.); (P.-H.W.); (C.-C.H.)
| | - Hsiao-Ching Nien
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100, Taiwan;
| | - Jin-Town Wang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Taipei 100, Taiwan; (C.-T.C.); (P.-H.W.); (C.-C.H.)
- Correspondence: ; Tel.: +886-223-123-456 (ext. 88214); Fax: +886-223-958-814
| |
Collapse
|
30
|
Alshammari FOFO, Al-Saraireh YM, Youssef AMM, Al-Sarayra YM, Alrawashdeh HM. Cytochrome P450 1B1 Overexpression in Cervical Cancers: Cross-sectional Study. Interact J Med Res 2021; 10:e31150. [PMID: 34636736 PMCID: PMC8548976 DOI: 10.2196/31150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
Background Current standard treatments for patients with recurrent cervical cancer are not very effective and are associated with severe toxicity. Recently, the rational approach for the discovery of new therapies for cervical cancer is based on the alterations in the molecular biology of cancer cells. One of the emerging molecular changes in cancer cells is the aberrant expression of cytochrome P450 1B1 (CYP1B1). This unique enzyme has been reported to be selectively overexpressed in several cancers. Objective The aim of this study was to examine CYP1B1 expression in cervical cancers and to assess the enzyme’s relationship with several clinicopathological features. Methods Immunohistochemistry was performed to examine CYP1B1 expression in 100 patient samples with cervical cancer and 10 patient samples with normal healthy cervical tissues. Results CYP1B1 was expressed in the majority of the cervical cancer samples (91/100, 91.0%) but not in normal healthy cervical samples. The difference in the expression of CYP1B1 between healthy and tumorous cervical tissues was significant (P=.01). Moreover, the frequency of CYP1B1 expression was found to be significantly higher in patients with advanced grades of the disease (P=.03) and in patients having metastasis to the lymph nodes (P=.01). Surprisingly, there was a significantly higher expression of CYP1B1 in patients with a high prevalence of human papilloma virus 16/18 (P=.04). Conclusions The differential profile of CYP1B1 expression between cervical cancer tissues and normal cervical tissues suggests that CYP1B1 may be used as a target for future therapeutic exploitations.
Collapse
Affiliation(s)
- Fatemah O F O Alshammari
- Department of Medical Laboratory Technology, Faculty of Health Sciences, The Public Authority for Applied Education and Training, Shuwaikh, Kuwait
| | - Yousef M Al-Saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Ahmed M M Youssef
- Department of Pharmacology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Yahya M Al-Sarayra
- Al-Karak Governmental Hospital, Jordan Ministry of Health, Al-Karak, Jordan
| | | |
Collapse
|
31
|
Zablon HA, Ko CI, Puga A. Converging Roles of the Aryl Hydrocarbon Receptor in Early Embryonic Development, Maintenance of Stemness, and Tissue Repair. Toxicol Sci 2021; 182:1-9. [PMID: 34009372 PMCID: PMC8285021 DOI: 10.1093/toxsci/kfab050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor well-known for its adaptive role as a sensor of environmental toxicants and mediator of the metabolic detoxification of xenobiotic ligands. In addition, a growing body of experimental data has provided indisputable evidence that the AHR regulates critical functions of cell physiology and embryonic development. Recent studies have shown that the naïve AHR-that is, unliganded to xenobiotics but activated endogenously-has a crucial role in maintenance of embryonic stem cell pluripotency, tissue repair, and regulation of cancer stem cell stemness. Depending on the cellular context, AHR silences the expression of pluripotency genes Oct4 and Nanog and potentiates differentiation, whereas curtailing cellular plasticity and stemness. In these processes, AHR-mediated contextual responses and outcomes are dictated by changes of interacting partners in signaling pathways, gene networks, and cell-type-specific genomic structures. In this review, we focus on AHR-mediated changes of genomic architecture as an emerging mechanism for the AHR to regulate gene expression at the transcriptional level. Collective evidence places this receptor as a physiological hub connecting multiple biological processes whose disruption impacts on embryonic development, tissue repair, and maintenance or loss of stemness.
Collapse
Affiliation(s)
| | | | - Alvaro Puga
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| |
Collapse
|
32
|
Baker JR, Russell CC, Gilbert J, McCluskey A, Sakoff JA. Amino alcohol acrylonitriles as broad spectrum and tumour selective cytotoxic agents. RSC Med Chem 2021; 12:929-942. [PMID: 34263170 PMCID: PMC8223738 DOI: 10.1039/d1md00021g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
We have identified specific dichlorophenylacrylonitriles as lead compounds in the development of novel anticancer compounds, notably, (Z)-N-(4-(2-cyano-2-(3,4-dichlorophenyl)vinyl)phenyl)acetamide (1) and ANI-7 (2). Herein we specifically probe the SAR associated with the terminal aromatic ring and associated cytoxicity in a broad range of human cancer cell lines. Synthesis of three focused libraries revealed a poor tolerance for electron withdrawing and donating moieties (Library A). A clear preference for hydrophobic substituents on a terminal piperazine moiety (Library B) with good levels of broad spectrum cytotoxicity, e.g. 13a (GI50 2.5-6.0 μM), as did the introduction of a methylene spacer with 13i (4-CH3PhCH2; GI50 1.5-4.5 μM). Removal of the aromatic moiety and installation of simple hydrophobic groups (Library C), in particular an adamantyl moiety, afforded highly active broad spectrum cytotoxic agents with GI50 values ranging from 1.7 μM (14k; 1-adamantyl) to 5.6 μM (14i; pyrrolidine). Within these libraries we note lung cancer selectivity, relative to normal cells, of 13h (fluoro substituted acrylonitrile, GI50 1.6 μM, 9.3-fold selective); the colorectal selectivity of 14h (methylpiperidine analogue, GI50 0.36 μM, 6.9-fold selective) and the breast cancer selectivity of 13f (nitrile substituted acrylonitrile, GI50 2.3-6.0 μM, up to 20-fold selective). The latter was confirmed as a novel AhR ligand and a CYP1A1 activating compound, that likely induces cell death following bioactivation; a phenomenon previously described in breast cancer cell populations.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive Callaghan NSW 2308 Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive Callaghan NSW 2308 Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah NSW 2298 Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive Callaghan NSW 2308 Australia
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital Edith Street Waratah NSW 2298 Australia
| |
Collapse
|
33
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
34
|
Sneha S, Baker SC, Green A, Storr S, Aiyappa R, Martin S, Pors K. Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021; 9:biomedicines9030290. [PMID: 33809117 PMCID: PMC7998590 DOI: 10.3390/biomedicines9030290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for treatment outcomes. A clearer understanding of CYP expression is important in the pathogenesis of breast cancer as several isoforms play critical roles in metabolising steroid hormones and xenobiotics that contribute to the genesis of breast cancer. The purpose of this review is to provide an update on how the presence of CYPs impacts on standard of care (SoC) drugs used to treat breast cancer as well as discuss opportunities to exploit CYP expression for therapeutic intervention. Finally, we provide our thoughts on future work in CYP research with the aim of supporting ongoing efforts to develop drugs with improved therapeutic index for patient benefit.
Collapse
Affiliation(s)
- Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Simon C. Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK;
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Sarah Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Radhika Aiyappa
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Stewart Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
- Correspondence: ; Tel.: +44-(0)1274-236482 or +44-(0)1274-235866; Fax: +44-(0)1274-233234
| |
Collapse
|
35
|
Huang TT, Tseng LM, Chen JL, Chu PY, Lee CH, Huang CT, Wang WL, Lau KY, Tseng MF, Chang YY, Chiang TY, Ueng YF, Lee HC, Dai MS, Liu CY. Kynurenine 3-monooxygenase upregulates pluripotent genes through β-catenin and promotes triple-negative breast cancer progression. EBioMedicine 2021; 54:102717. [PMID: 32268268 PMCID: PMC7191260 DOI: 10.1016/j.ebiom.2020.102717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is aggressive and has a poor prognosis. Kynurenine 3-monooxygenase (KMO), a crucial kynurenine metabolic enzyme, is involved in inflammation, immune response and tumorigenesis. We aimed to study the role of KMO in TNBC. Methods KMO alteration and expression data from public databases were analyzed. KMO expression levels in TNBC samples were analyzed using immunohistochemistry. Knockdown of KMO in TNBC cells was achieved by RNAi and CRISPR/Cas9. KMO functions were examined by MTT, colony-forming, transwell migration/invasion, and mammosphere assays. The molecular events were analyzed by cDNA microarrays, Western blot, quantitative real-time PCR and luciferase reporter assays. Tumor growth and metastasis were detected by orthotopic xenograft and tail vein metastasis mouse models, respectively. Findings KMO was amplified and associated with worse survival in breast cancer patients. KMO expression levels were higher in TNBC tumors compared to adjacent normal mammary tissues. In vitro ectopic KMO expression increased cell growth, colony and mammosphere formation, migration, invasion as well as mesenchymal marker expression levels in TNBC cells. In addition, KMO increased pluripotent gene expression levels and promoter activities in vitro. Mechanistically, KMO was associated with β-catenin and prevented β-catenin degradation, thereby enhancing the transcription of pluripotent genes. KMO knockdown suppressed tumor growth and the expression levels of β-catenin, CD44 and Nanog. Furthermore, mutant KMO (known with suppressed enzymatic activity) could still promote TNBC cell migration/invasion. Importantly, mice bearing CRISPR KMO-knockdown TNBC tumors showed decreased lung metastasis and prolonged survival. Interpretation KMO regulates pluripotent genes via β-catenin and plays an oncogenic role in TNBC progression.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Han Lee
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Centre, Taipei, Taiwan
| | - Wan-Lun Wang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ka-Yi Lau
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mei-Fang Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Ya Chang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yi Chiang
- Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan
| | - Yune-Fang Ueng
- Institute of Biopharmaceutical Sciences, School of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan; Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei 112, Taiwan; Institute of Medical Sciences, Taipei Medical University, Taipei 101, Taiwan
| | - Hsin-Chen Lee
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Medical Oncology, Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
36
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
37
|
Dzobo K, Ganz C, Thomford NE, Senthebane DA. Cancer Stem Cell Markers in Relation to Patient Survival Outcomes: Lessons for Integrative Diagnostics and Next-Generation Anticancer Drug Development. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 25:81-92. [PMID: 33170084 DOI: 10.1089/omi.2020.0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solid tumors display a complex biology that requires a multipronged treatment strategy. Most anticancer interventions, including chemotherapy, are currently unable to prevent treatment resistance and relapse. In general, therapeutics target cancer cells and overlook the tumor microenvironment (TME) and the presence of cancer stem cells (CSCs) with self-renewal and tumorigenic abilities. CSCs have been postulated to play key roles in tumor initiation, progression, therapy resistance, and metastasis. Hence, CSC markers have been suggested as diagnostics to forecast cancer prognosis as well as molecular targets for new-generation cancer treatments, especially in resistant disease. We report here original findings on expression and prognostic significance of CSC markers in several cancers. We examined and compared the transcriptional expression of CSC markers (ABCB1, ABCG2, ALDH1A1, CD24, CD44, CD90, CD133, CXCR4, EPCAM, ICAM1, and NES) in tumor tissues versus the adjacent normal tissues using publicly available databases, The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis. We found that CSC transcriptional markers were, to a large extent, expressed in higher abundance in solid tumors such as colon, lung, pancreatic, and esophageal cancers. On the other hand, no CSC marker in our analysis was expressed in the same pattern in all cancers, while individual CSC marker expression, alone, was not significantly associated with overall patient survival. Innovation in next-generation cancer therapeutics and diagnostics ought to combine CSC markers as well as integrative diagnostics that pool knowledge from CSCs and other TME components and cancer cells.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
38
|
Akhtar S, Hourani S, Therachiyil L, Al-Dhfyan A, Agouni A, Zeidan A, Uddin S, Korashy HM. Epigenetic Regulation of Cancer Stem Cells by the Aryl Hydrocarbon Receptor Pathway. Semin Cancer Biol 2020; 83:177-196. [PMID: 32877761 DOI: 10.1016/j.semcancer.2020.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Compelling evidence has demonstrated that tumor bulk comprises distinctive subset of cells generally referred as cancer stem cells (CSCs) that have been proposed as a strong sustainer and promoter of tumorigenesis and therapeutic resistance. These distinguished properties of CSCs have raised interest in understanding the molecular mechanisms that govern the maintenance of these cells. Numerous experimental and epidemiological studies have demonstrated that exposure to environmental toxins such as the polycyclic aromatic hydrocarbons (PAHs) is strongly involved in cancer initiation and progression. The PAH-induced carcinogenesis is shown to be mediated through the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR)/Cytochrome P4501A pathway, suggesting a possible direct link between AhR and CSCs. Several recent studies have investigated the role of AhR in CSCs self-renewal and maintenance, however the molecular mechanisms and particularly the epigenetic regulations of CSCs by the AhR/CYP1A pathway have not been reviewed before. In this review, we first summarize the crosstalk between AhR and cancer genetics, with a particular emphasis on the mechanisms relevant to CSCs such as Wnt/β-catenin, Notch, NF-κB, and PTEN-PI3K/Akt signaling pathways. The second part of this review discusses the recent advances and studies highlighting the epigenetic mechanisms mediated by the AhR/CYP1A pathway that control CSC gene expression, self-renewal, and chemoresistance in various human cancers. Furthermore, the review also sheds light on the importance of targeting the epigenetic pathways as a novel therapeutic approach against CSCs.
Collapse
Affiliation(s)
- Sabah Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shireen Hourani
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdullah Al-Dhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Biomedical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
39
|
Sala M, Ros M, Saltel F. A Complex and Evolutive Character: Two Face Aspects of ECM in Tumor Progression. Front Oncol 2020; 10:1620. [PMID: 32984031 PMCID: PMC7485352 DOI: 10.3389/fonc.2020.01620] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment, including extracellular matrix (ECM) and stromal cells, is a key player during tumor development, from initiation, growth and progression to metastasis. During all of these steps, remodeling of matrix components occurs, changing its biochemical and physical properties. The global and basic cancer ECM model is that tumors are surrounded by activated stromal cells, that remodel physiological ECM to evolve into a stiffer and more crosslinked ECM than in normal conditions, thereby increasing invasive capacities of cancer cells. In this review, we show that this too simple model does not consider the complexity, specificity and heterogeneity of each organ and tumor. First, we describe the general ECM in context of cancer. Then, we go through five invasive and most frequent cancers from different origins (breast, liver, pancreas, colon, and skin), and show that each cancer has its own specific matrix, with different stromal cells, ECM components, biochemical properties and activated signaling pathways. Furthermore, in these five cancers, we describe the dual role of tumor ECM: as a protective barrier against tumor cell proliferation and invasion, and as a major player in tumor progression. Indeed, crosstalk between tumor and stromal cells induce changes in matrix organization by remodeling ECM through invadosome formation in order to degrade it, promoting tumor progression and cell invasion. To sum up, in this review, we highlight the specificities of matrix composition in five cancers and the necessity not to consider the ECM as one general and simple entity, but one complex, dynamic and specific entity for each cancer type and subtype.
Collapse
|
40
|
A novel naphthalimide that selectively targets breast cancer via the arylhydrocarbon receptor pathway. Sci Rep 2020; 10:13978. [PMID: 32814815 PMCID: PMC7438328 DOI: 10.1038/s41598-020-70597-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
We report that the naphthalimide analogue 2-(2-aminophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NAP-6) is a highly potent and selective breast cancer targeting molecule. These effects are mediated via the aryl hydrocarbon receptor (AHR) pathway and the subsequent induction of CYP1 metabolising monooxygenases in breast cancer cell line models. Indeed the triple negative breast cancer cell line MDA-MB-468 with a GI50 value of 100 nM is greater than 500-fold more sensitive to NAP-6 compared with other tumour derived cell models. Within 1 h exposure of these cells to NAP-6, CYP1A1 expression increases 25-fold, rising to 250-fold by 24 h. A smaller concurrent increase in CYP1A2 and CYP1B1 is also observed. Within 24 h these cells present with DNA damage as evident by enhanced H2AXγ expression, cell cycle checkpoint activation via increased CHK2 expression, S-phase cell cycle arrest and cell death. Specific small molecule inhibitors of the AHR and CYP1 family ameliorate these events. A positive luciferase reporter assay for NAP-6 induced XRE binding further confirms the role of the AHR in this phenomenon. Non-sensitive cell lines fail to show these biological effects. For the first time we identify 2-(2-aminophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione as a new AHR ligand that selectively targets breast cancer.
Collapse
|
41
|
Larsen MC, Almeldin A, Tong T, Rondelli CM, Maguire M, Jaskula-Sztul R, Jefcoate CR. Cytochrome P4501B1 in bone marrow is co-expressed with key markers of mesenchymal stem cells. BMS2 cell line models PAH disruption of bone marrow niche development functions. Toxicol Appl Pharmacol 2020; 401:115111. [PMID: 32553695 PMCID: PMC7293885 DOI: 10.1016/j.taap.2020.115111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that are metabolized to carcinogenic dihydrodiol epoxides (PAHDE) by cytochrome P450 1B1 (CYP1B1). This metabolism occurs in bone marrow (BM) mesenchymal stem cells (MSC), which sustain hematopoietic stem and progenitor cells (HSPC). In BM, CYP1B1-mediated metabolism of 7, 12-dimethylbenz[a]anthracene (DMBA) suppresses HSPC colony formation within 6 h, whereas benzo(a)pyrene (BP) generates protective cytokines. MSC, enriched from adherent BM cells, yielded the bone marrow stromal, BMS2, cell line. These cells express elevated basal CYP1B1 that scarcely responds to Ah receptor (AhR) inducers. BMS2 cells exhibit extensive transcriptome overlap with leptin receptor positive mesenchymal stem cells (Lepr+ MSC) that control the hematopoietic niche. The overlap includes CYP1B1 and the expression of HSPC regulatory factors (Ebf3, Cxcl12, Kitl, Csf1 and Gas6). MSC are large, adherent fibroblasts that sequester small HSPC and macrophage in the BM niche (Graphic abstract). High basal CYP1B1 expression in BMS2 cells derives from interactions between the Ah-receptor enhancer and proximal promoter SP1 complexes, boosted by autocrine signaling. PAH effects on BMS2 cells model Lepr+MSC niche activity. CYP1B1 metabolizes DMBA to PAHDE, producing p53-mediated mRNA increases, long after the in vivo HSPC suppression. Faster, direct p53 effects, favored by stem cells, remain possible PAHDE targets. However, HSPC regulatory factors remained unresponsive. BP is less toxic in BMS2 cells, but, in BM, CYP1A1 metabolism stimulates macrophage cytokines (Il1b > Tnfa> Ifng) within 6 h. Although absent from BMS2 and Lepr+MSC, their receptors are highly expressed. The impact of this cytokine signaling in MSC remains to be determined. BMS2 and Lepr+MSC cells co-express CYP1B1 and 12 functional niche activity markers. CYP1B1 mRNA in BMS2 cells depends on activation of SP1 coupled to an AhR enhancer unit. DMBA metabolism by CYP1B1 activates p53 gene targets in BMS2 cells far more than BP. HSPC suppression by CYP1B1 generation of PAHDE requires rapid, non-genomic targets. BMS2 and Lepr+MSC share receptors activated by BP stimulation of macrophage cytokines.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America
| | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America; Physiology Department, Faculty of Medicine, Tanta University, Egypt
| | - Tiegang Tong
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America
| | - Catherine M Rondelli
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America
| | - Meghan Maguire
- Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53705, United States of America
| | - Renata Jaskula-Sztul
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America; Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53705, United States of America.
| |
Collapse
|
42
|
Ban Q, Qiao L, Xia H, Xie B, Liu J, Ma Y, Zhang L, Zhang M, Liu LG, Jiao W, Yang S, Li Z, Zheng S, Liu D, Xia J, Qi Z. β-catenin regulates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice by modulating PTEN pathways. Am J Transl Res 2020; 12:4757-4771. [PMID: 32913548 PMCID: PMC7476114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Ischemia reperfusion (I/R) injury, an inevitable event accompanying heart transplantation, is the primary factor leading to organ failure and graft rejection. In order to prevent I/R injury, we established murine heart transplantation model with I/R and cell culture system to determine whether β-catenin is a mediate factor in preventing I/R injury in heart transplantation. After successfully established heterotopic heart transplantation mice model, the I/R injury was induced, and two dynamic temporal were studied during different I/R phases. With the increase of ischemia and reperfusion time, heart damage was more severe. In the initial study, we observed that β-catenin was significantly decreased, while ROCK1 and PTEN increased during the perfusion phase from day 0 to day 1, and remain the same level until 3 days later. The similar pattern that β-catenin was down-regulated while ROCK1 and PTEN were up-regulated was also observed in the dynamic temporal ischemia study. To further investigate the role of β-catenin signaling in I/R injury in vitro, β-catenin over-expressing plasmid was transfected into HL-1 cells, a cardiac cell line. We noted that β-catenin over-expressing cardiomyocytes showed decreased ROCK1/PTEN expression both at mRNA and protein levels. In addition, cobalt dichloride (CoCl2) -induced oxidative stress model was further established to mimic cardiac I/R injury. We observed that CoCl2-induced activation of ROCK1/PTEN signaling pathway were attenuated by transient transfection of a β-catenin over-expressing plasmid. Taken together, our results suggest that cardiac transplant induced IR injury is closely associated with the down-regulation of β-catenin and up-regulation of ROCK1 and PTEN expression.
Collapse
Affiliation(s)
- Qian Ban
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui UniversityHefei 230601, People’s Republic of China
| | - Li Qiao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui UniversityHefei 230601, People’s Republic of China
| | - Haidong Xia
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui UniversityHefei 230601, People’s Republic of China
| | - Baiyi Xie
- School of Medicine, Guangxi UniversityNanning, People’s Republic of China
| | - Justin Liu
- Edwards Lifesciences1901 Alton Pkwy, Santa Ana, CA 92705, USA
| | - Yunhan Ma
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamen, People’s Republic of China
| | - Liyi Zhang
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamen, People’s Republic of China
| | - Meng Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui UniversityHefei 230601, People’s Republic of China
| | - Leyna G Liu
- Portola High School1001 Cadence, Irvine, CA 92618, USA
| | - Wenqiao Jiao
- School of Stomatology and Medicine, Foshan UniversityFoshan 528000, Guangdong, People’s Republic of China
| | - Shuting Yang
- School of Stomatology and Medicine, Foshan UniversityFoshan 528000, Guangdong, People’s Republic of China
| | - Zongye Li
- School of Stomatology and Medicine, Foshan UniversityFoshan 528000, Guangdong, People’s Republic of China
| | - Songguo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical CenterColumbus, OH 43210, United States
| | - Dahai Liu
- School of Stomatology and Medicine, Foshan UniversityFoshan 528000, Guangdong, People’s Republic of China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamen, People’s Republic of China
| | - Zhongquan Qi
- School of Medicine, Guangxi UniversityNanning, People’s Republic of China
| |
Collapse
|
43
|
Microbiota-Derived Metabolites in Tumor Progression and Metastasis. Int J Mol Sci 2020; 21:ijms21165786. [PMID: 32806665 PMCID: PMC7460823 DOI: 10.3390/ijms21165786] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Microbial communities and human cells, through a dynamic crosstalk, maintain a mutualistic relationship that contributes to the maintenance of cellular metabolism and of the immune and neuronal systems. This dialogue normally occurs through the production and regulation of hormonal intermediates, metabolites, secondary metabolites, proteins, and toxins. When the balance between host and microbiota is compromised, the dynamics of this relationship change, creating favorable conditions for the development of diseases, including cancers. Microbiome metabolites can be important modulators of the tumor microenvironment contributing to regulate inflammation, proliferation, and cell death, in either a positive or negative way. Recent studies also highlight the involvement of microbiota metabolites in inducing epithelial-mesenchymal transition, thus favoring the setup of the metastatic niche. An investigation of microbe-derived metabolites in "liquid" human samples, such as plasma, serum, and urine, provide further information to clarify the relationship between host and microbiota.
Collapse
|
44
|
Sun L. Advances in the discovery and development of selective heme-displacing IDO1 inhibitors. Expert Opin Drug Discov 2020; 15:1223-1232. [DOI: 10.1080/17460441.2020.1781811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Zhu P, Yu H, Zhou K, Bai Y, Qi R, Zhang S. 3,3'-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE 2 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:113. [PMID: 32546278 PMCID: PMC7298755 DOI: 10.1186/s13046-020-01618-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive tumors in the world. Aryl hydrocarbon receptor (AHR) has been reported to promote tumor metastasis and epithelial-mesenchymal transition (EMT) is a vital process of conferring cancer cells capabilities of migration and invasion. However, the mechanism by which modulation of AHR can inhibit tumor metastasis remains unknown. Thus, we aim to investigate the underlying mechanism regarding reversing EMT process of ESCC through modulation of AHR. METHODS We used AHR selective modulator 3,3'-diindolylmethane (DIM) to treat ESCC cell lines TE1 and KYSE150 so as to examine alterations of migration and invasion by wound healing and Transwell assay. Western blotting (WB) and qPCR were performed to detect relative genes and proteins changes regarding EMT process. Cell transfection was utilized for confirming pathways involved in DIM-induced reversal of EMT and in vivo assay was conducted for verification of the underlying mechanism. Co-IP assay was conducted for detecting protein-protein interactions. RESULTS AHR was overexpressed in ESCC and modulation of AHR by DIM could inhibit migration and invasion as well as downregulate mesenchymal cell markers β-Catenin, Vimentin and Slug and upregulate epithelial cell marker Claudin-1. Meanwhile, synergically overexpression of AHR, RhoA and ROCK1 correlated with poor clinical outcomes. DIM could inhibit COX2/PGE2 pathway by targeting AHR, and COX2 selective inhibitor Celecoxib could suppress EMT and metastasis. Results of PGE2 treatment were opposite to that of Celecoxib. Meanwhile, blockade of RhoA/ROCK1 pathway also exerted prohibitive effects on EMT and metastasis. WB results showed COX2/PGE2 pathway could be regulated by RhoA/ROCK1 pathway and DIM could inhibit RhoA/ROCK1 pathway through modulation of AHR. In vivo assay verified the results in vitro. Co-IP results showed DIM could modulate AHR to reverse EMT directly through inhibition of interaction between AHR and EGFR (epidermal growth factor receptor) so as to block RhoA/ROCK1-mediated COX2/PGE2 pathway which was connected by NF-κB. CONCLUSIONS In brief, modulation of AHR by DIM can reverse EMT process and inhibit metastasis of ESCC through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway.
Collapse
Affiliation(s)
- Peiyao Zhu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Huayun Yu
- Department of Gynecology and Obstetrics, Clinical Medical School, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, China
| | - Kun Zhou
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Yu Bai
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
46
|
Donini CF, El Helou M, Wierinckx A, Győrffy B, Aires S, Escande A, Croze S, Clezardin P, Lachuer J, Diab-Assaf M, Ghayad SE, Fervers B, Cavaillès V, Maguer-Satta V, Cohen PA. Long-Term Exposure of Early-Transformed Human Mammary Cells to Low Doses of Benzo[a]pyrene and/or Bisphenol A Enhances Their Cancerous Phenotype via an AhR/GPR30 Interplay. Front Oncol 2020; 10:712. [PMID: 32670863 PMCID: PMC7326103 DOI: 10.3389/fonc.2020.00712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
It is of utmost importance to decipher the role of chronic exposure to low doses of environmental carcinogens on breast cancer progression. The early-transformed triple-negative human mammary MCF10AT1 cells were chronically (60 days) exposed to low doses (10−10 M) of Benzo[a]pyrene (B[a]P), a genotoxic agent, and/or Bisphenol A (BPA), an endocrine disruptor. Our study revealed that exposed MCF10AT1 cells developed, in a time-dependent manner, an acquired phenotype characterized by an increase in cancerous properties (anchorage independent growth and stem-like phenotype). Co-exposure of MCF10AT1 cells to B[a]P and BPA led to a significantly greater aggressive phenotype compared to B[a]P or BPA alone. This study provided new insights into the existence of a functional interplay between the aryl hydrocarbon receptor (AhR) and the G protein-coupled receptor 30 (GPR30) by which chronic and low-dose exposure of B[a]P and/or BPA fosters the progression of MCF10AT1 cells into a more aggressive substage. Experiments using AhR or GPR30 antagonists, siRNA strategies, and RNAseq analysis led us to propose a model in which AhR signaling plays a “driver role” in the AhR/GPR30 cross-talk in mediating long-term and low-dose exposure of B[a]P and/or BPA. Retrospective analysis of two independent breast cancer cohorts revealed that the AhR/GPR30 mRNA expression signature resulted in poor breast cancer prognosis, in particular in the ER-negative and the triple-negative subtypes. Finally, the study identified targeting AhR and/or GPR30 with specific antagonists as a strategy capable of inhibiting carcinogenesis associated with chronic exposure to low doses of B[a]P and BPA in MCF10AT1 cells. Altogether, our results indicate that the engagement of both AhR and GPR30 functions, in particular in an ER-negative/triple-negative context of breast cells, favors tumor progression and leads to poor prognosis.
Collapse
Affiliation(s)
- Caterina F Donini
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Myriam El Helou
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Faculty of sciences II, Lebanese University, Fanar, Lebanon
| | - Anne Wierinckx
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University and TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Sophie Aires
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France
| | | | - Séverine Croze
- Université Lyon 1, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | - Joël Lachuer
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | | | - Béatrice Fervers
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Vincent Cavaillès
- IRCM - Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, CNRS, Montpellier, France
| | | | - Pascale A Cohen
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France.,INSERM, UMR1033 LYOS, Lyon, France
| |
Collapse
|
47
|
Baker JR, Russell CC, Gilbert J, Sakoff JA, McCluskey A. Amino Alcohol Acrylonitriles as Activators of the Aryl Hydrocarbon Receptor Pathway: An Unexpected MTT Phenotypic Screening Outcome. ChemMedChem 2020; 15:490-505. [PMID: 32012442 DOI: 10.1002/cmdc.201900643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Lead (Z)-N-(4-(2-cyano-2-(3,4-dichlorophenyl)vinyl)phenyl)acetamide, 1 showed MCF-7 GI50 =30 nM and 400-fold selective c.f. MCF10A (normal breast tissue). Acetamide moiety modification (13 a-g) to introduce additional hydrophobicity was favoured with MCF-7 breast cancer cell activity enhanced at 1.3 nM. Other analogues were potent against the HT29 colon cancer cell line at 23 nM. Textbook SAR data was observed in the MCF-7 cell line, in an MTT assay, via the ortho (17 a), meta (17 b) and para (13 f). The amino alcohol -OH moiety was pivotal, but no stereochemical preference noted. But, these data did not fit our homology modelling expectations. Aberrant MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) screening results and metabolic interference confirmed by sulforhodamine B (SRB) screening. Interfering analogues resulted in 120 and 80-fold CYP1A1 and CYP1A2 amplification, with no upregulation of SULT1A1. This is consistent with activation of the AhR pathway. Piperidine per-deuteration reduced metabolic inactivation. 3-OH / 4-OH piperidine analogues showed differential MTT and SRB activity supporting MTT assay metabolic inactivation. Data supports piperidine 3-OH, but not the 4-OH, as a CYP substrate. This family of β-amino alcohol substituted 3,4-dichlorophenylacetonitriles show broad activity modulated via the AhR pathway. By SRB analysis the most potent analogue was 23 b, (Z)-3-(4-(3-(4-phenylpiperidin-1-yl)-2-hydroxypropoxy)phenyl)-2-(3,4-dichlorophenyl)-acrylonitrile.
Collapse
Affiliation(s)
- Jennifer R Baker
- Department of Chemistry, The University of Newcastle University Drive, Callaghan, NSW 2308, Australia
| | - Cecilia C Russell
- Department of Chemistry, The University of Newcastle University Drive, Callaghan, NSW 2308, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group Department of Medical Oncology, Calvary Mater Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Jennette A Sakoff
- Experimental Therapeutics Group Department of Medical Oncology, Calvary Mater Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Adam McCluskey
- Department of Chemistry, The University of Newcastle University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
48
|
Keshavarzi M, Khoshnoud MJ, Ghaffarian Bahraman A, Mohammadi-Bardbori A. An Endogenous Ligand of Aryl Hydrocarbon Receptor 6-Formylindolo[3,2-b]Carbazole (FICZ) Is a Signaling Molecule in Neurogenesis of Adult Hippocampal Neurons. J Mol Neurosci 2020; 70:806-817. [DOI: 10.1007/s12031-020-01506-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
|
49
|
Xie P, Ma Y, Yu S, An R, He J, Zhang H. Development of an Immune-Related Prognostic Signature in Breast Cancer. Front Genet 2020; 10:1390. [PMID: 32047513 PMCID: PMC6997532 DOI: 10.3389/fgene.2019.01390] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although increased early detection, diagnosis and treatment have improved the outcome of breast cancer patients, prognosis estimation still poses challenges due to the disease heterogeneity. Accumulating data indicated an evident correlation between tumor immune microenvironment and clinical outcomes. OBJECTIVE To construct an immune-related signature that can estimate disease prognosis and patient survival in breast cancer. METHODS Gene expression profiles and clinical data of breast cancer patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, which were further divided into a training set (n = 499), a testing set (n = 234) and a Meta-validation set (n = 519). In the training set, immune-related genes were recognized using combination of gene expression data and ESTIMATE algorithm-derived immune scores. An immune-related prognostic signature was generated with LASSO Cox regression analysis. The prognostic value of the signature was validated in the testing set and the Meta-validation set. RESULTS A total of 991 immune-related genes were identified. Twelve genes with non-zero coefficients in LASSO analysis were used to construct an immune-related prognostic signature. The 12-gene signature significantly stratified patients into high and low immune risk groups in terms of overall survival independent of clinical and pathologic factors. The signature also significantly stratified overall survival in clinical defined groups, including stage I/II disease. Several biological processes, such as immune response, were enriched among genes in the immune-related signature. The percentage of M2 macrophage infiltration was significantly different between low and high immune risk groups. Time-dependent ROC curves indicated good performance of our signature in predicting the 1-, 3- and 5-year overall survival for patients from the full TCGA cohort. Furthermore, the composite signature derived by integrating immune-related signature with clinical factors, provided a more accurate estimation of survival relative to molecular signature alone. CONCLUSION We developed a 12-gene prognostic signature, providing novel insights into the identification of breast cancer with a high risk of death and assessment of the possibility of immunotherapy incorporation in personalized breast cancer management.
Collapse
Affiliation(s)
- Peiling Xie
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuying Ma
- Department of Structural Heart Disease, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shibo Yu
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rui An
- Department of Anesthesiology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianjun He
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huimin Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
50
|
Baker JR, Sakoff JA, McCluskey A. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev 2019; 40:972-1001. [PMID: 31721255 DOI: 10.1002/med.21645] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in women, with more than 1.7 million diagnoses worldwide per annum. Metastatic breast cancer remains incurable, and the presence of triple-negative phenotypes makes targeted treatment impossible. The aryl hydrocarbon receptor (AhR), most commonly associated with the metabolism of xenobiotic ligands, has emerged as a promising biological target for the treatment of this deadly disease. Ligands for the AhR can be classed as exogenous or endogenous and may have agonistic or antagonistic activity. It has been well reported that agonistic ligands may have potent and selective growth inhibition activity in a number of oncogenic cell lines, and one (aminoflavone) has progressed to phase I clinical trials for breast cancer sufferers. In this study, we examine the current state of the literature in this area and elucidate the promising advances that are being made in hijacking the cytosolic-to-nuclear pathway of the AhR for the possible future treatment of breast cancer.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A Sakoff
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|