1
|
Chen C, Lin P, Wu Z, Lin Y, Huang M, He L, Yao X, Gonzalez FJ, Qin Z, Yao Z. Farnesoid X receptor regulates CYP1A1 and CYP1B1 and estradiol metabolism in mouse and human cell lines. Chem Biol Interact 2025; 412:111471. [PMID: 40064219 DOI: 10.1016/j.cbi.2025.111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Human CYP1A1 and CYP1B1 are two important enzymes for the hydroxylation of estrogens. In this study, we aimed to investigate the potential role for FXR receptor in the regulation of CYP1A1 and CYP1B1 expressions and activities. First, pharmacokinetic analysis was conducted in male wild-type and Fxr-/- mice after intraperitoneal dosing of exogenous estradiol. In vitro microsomal Cyp1a1 and Cyp1b1 activities were probed using their substrates estradiol, phenacetin, and melatonin. The regulatory effects of FXR on these two enzymes were explored using female Fxr-/- mice, mouse 4T1 and human MCF-7 cell lines. As a result, Fxr-deficiency significantly changed the plasma concentration-time curve and exposure (AUC0-2 h) of estradiol, and the metabolism ratios of its hydroxylated metabolites. Global deletion of Fxr led to significant down-regulation of Cyp1a1 and Cyp1b1 mRNA and protein in major organs (liver, lung, kidney, stomach, small intestine). Overexpression of Fxr in mouse 4T1 cells resulted in increased levels of Cyp1a1 and Cyp1b1 mRNA and protein, whereas Fxr knockdown caused down-regulation of Cyp1a1 and Cyp1b1 expression. In human MCF-7 cells, there was a similar regulatory trend of FXR towards CYP1A1 and CYP1B1 as well as those in mouse 4T1 cells. In vitro incubation assays also supported these results. Based on luciferase reporter and electrophoretic mobility shift assays, Fxr directly activated Cyp1a1 and Cyp1b1 via their specific binding to (-488 ∼ -477 bp) and (-1475 ∼ -1460 bp) regions in their promoters, respectively. Therefore, FXR transcriptionally regulates the expression of CYP1A1 and CYP1B1, impacting the in vitro metabolism and pharmacokinetics of their substrates.
Collapse
Affiliation(s)
- Chanjuan Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Pei Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zubao Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yihan Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Meixia Huang
- Department of Pharmacy, Henan Province Engineering Research Center of Application & Translation of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liangliang He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xinsheng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Frank J Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Zifei Qin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Department of Pharmacy, Henan Province Engineering Research Center of Application & Translation of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhihong Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Yao W, Hua DM, Zhang YR, Zhao YY, Feng Y, Zhang ZZ, Ni ZY, Guo HD, Guan YF, Wang Y. Molecular mechanisms of the Xiao-chai-hu-tang on chronic stress-induced colorectal cancer growth based on an integrated network pharmacology and RNA sequencing approach with experimental validation. BMC Complement Med Ther 2025; 25:135. [PMID: 40221743 PMCID: PMC11992767 DOI: 10.1186/s12906-025-04860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 03/14/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Chronic stress is a risk factor for the development of colorectal cancer (CRC). Xiao-chai-hu-tang (XCHT) is a traditional Chinese medicine prescription and has been widely used to treat chronic stress-related diseases and cancer. However, its role in chronic stress-induced CRC remains unclear. METHODS Our study aimed to investigate the roles of XCHT in CRC development under chronic stress. A xenografted CRC mouse model subjected to chronic restraint stress (CRS) was utilized to determine the effects of XCHT on CRC growth in vitro and in vivo. XCHT was administered via oral gavage once daily at dosages of 10.27 g/kg and 20.54 g/kg. RNA-sequencing was combined with network pharmacology to investigate potential target and pathway in this study. ELISA, RT-qPCR and immunofluorescence were performed to detect the expression of inflammation related genes. Glycolysis related genes and phenotype were evaluated by western blot, RT-qPCR and seahorse. RESULTS XCHT significantly alleviated depression-like behaviors in CRS mice (p < 0.05) and effectively reduced tumor size and weight in a dose-dependent manner (p < 0.01). Mechanistic studies revealed that XCHT inhibited the CRS-induced upregulation of IL-6, attenuated the IL-6/JAK2/STAT3 signaling pathway (p < 0.05), and suppressed glycolysis by downregulating glycolytic enzymes (p < 0.01). Additionally, XCHT treatment reversed the CRS-induced decrease in immune cell infiltration, including CD4+ and CD8+ T cells, and reduced F4/80+ macrophage levels. CONCLUSIONS XCHT could reverse the tumor energy metabolism reprogramming and improve the inflammatory microenvironment in CRC under chronic stress through the IL-6/JAK2/STAT3 pathway. Therefore, XCHT might represent a promising therapeutic strategy for suppressing psychologically associated CRC progression.
Collapse
Affiliation(s)
- Wang Yao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong-Ming Hua
- Department of Medical Oncology, Pudong New Area, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Ying-Ru Zhang
- Department of Medical Oncology, Pudong New Area, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Yi-Yang Zhao
- Department of Medical Oncology, Pudong New Area, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Ying Feng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhao-Zhou Zhang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong-Ya Ni
- Department of Medical Oncology, Pudong New Area, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun-Feng Guan
- Department of Medical Oncology, Pudong New Area, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Pudong New Area, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Jiang S, Li C, Liu D, Zeng F, Wei W, He T, Yang W. Role, mechanisms and effects of Radix Bupleuri in anti‑breast cancer (Review). Oncol Lett 2025; 29:166. [PMID: 39963320 PMCID: PMC11831725 DOI: 10.3892/ol.2025.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The prevalence of breast cancer among women has led to a growing need for innovative anti-breast cancer medications and an in-depth investigation into their molecular mechanisms of action, both of which are essential tactics in clinical intervention. In the clinical practice of Traditional Chinese Medicine, Radix Bupleuri and its active components have shown promise as potential anti-breast cancer agents due to their ability to target multiple pathways, exhibit synergistic effects and reduce toxicity. These compounds are considered to enhance the prognosis of patients with cancer, prolong survival and combat chemotherapy resistance. The present review aimed to delve into the anti-breast cancer properties of Radix Bupleuri and its active ingredients, highlighting their mechanisms, such as inhibition of cell proliferation, promotion of apoptosis, metastasis prevention, microenvironment improvement and synergy with certain chemotherapeutic agents. These findings may provide a scientific rationale for combining Radix Bupleuri and its active components with traditional chemotherapy agents for the management of breast cancer.
Collapse
Affiliation(s)
- Shiting Jiang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chengxia Li
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Wei
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao He
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Yang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
4
|
Zhang Y, Li J, Peng D, Jiang L, Cheng S, Xiang H, Ni R, Li L, Long S, Li Z, Song L, Xie H, Liu Y. Integrating metabolomics and network pharmacology to explore the mechanism of Xiangshao Sanjie Oral Liquid in treating rats with mammary gland hyperplasia. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119493. [PMID: 39961425 DOI: 10.1016/j.jep.2025.119493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiangshao Sanjie Oral Liquid (XSSJ) is a traditional Chinese medicine formulation used clinically for the treatment of mammary gland hyperplasia (MGH), yet its mechanism remains obscure. AIM OF THE STUDY The purpose of this study was to explore the therapeutic mechanism of XSSJ on MGH using a comprehensive strategy of plasma metabolomics and network pharmacology. MATERIALS AND METHODS The rat model of MGH was established, and the multiple indicators were employed for efficacy evaluation. Then, a metabolomics strategy was established to find plasma metabolites and metabolic pathways that may be important in inducing MGH. In addition, UPLC-Q-TOF-MS and network pharmacological analysis were used to identify the prototype compounds of XSSJ in rat plasma and target genes that may cause the effect. Finally, the results were integrated and verified by RT-qPCR and Western Blot (WB). RESULTS XSSJ has a therapeutic effect on MGH. 29 differential metabolites of XSSJ in the treatment of MGH were identified by metabolomics. After administration of XSSJ, 16 prototype compounds were found in the rat plasma, which were associated with 179 potential therapeutic targets. Comprehensive analysis revealed that XSSJ reversed the mRNA expression of EGFR, ESR1, AKT1, SRC and PTPN11 in MGH rats. In addition, different doses of XSSJ inhibited the expression of p-PI3K and p-AKT proteins. CONCLUSION This study combined metabolomics and network pharmacology to reveal the regulatory effect of XSSJ on MGH through PI3K/AKT pathway, which provided further support for the clinical application of XSSJ.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China; School of Medicine, Tibet University, Lhasa, China
| | - Jiaming Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lining Jiang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Shiqi Cheng
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China; Medical Research Institute, Southwest University, Chongqing, China
| | - Hong Xiang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Shilin Long
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Song
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, National Clinical Research Centre for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Clinical Pharmacy Key Specialty Construction Project, Chongqing, China
| | - Hongjun Xie
- School of Medicine, Tibet University, Lhasa, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China; School of Medicine, Tibet University, Lhasa, China.
| |
Collapse
|
5
|
Li L, Zheng Y, Yang Y, Shi S, Liu S, Huang K, Qiu L, Zhang R, Huang W, Leng Y. Dehydrodiisoeugenol targets the PLK1-p53 axis to inhibit breast cancer cell cycle. Front Pharmacol 2025; 16:1545498. [PMID: 40093330 PMCID: PMC11908378 DOI: 10.3389/fphar.2025.1545498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction There are about 2,300,000 new cases of breast cancer worldwide each year. Breast cancer has become the first most common cancer in the world and the leading cause of death among women. At the same time, chemotherapy resistance in patients with advanced breast cancer is still a serious challenge. Alpinia Katsumadai Hayata (AKH), as a traditional Chinese herbal medicine, has a wide range of pharmacological activities. Related studies have found that many compounds in AKH have anti-breast cancer activity. However, it is still worth exploring which component is the main active component of AKH in inhibiting breast cancer and its mechanism of action. Methods In this study, dehydrodiisoeugenol (DHIE) was screened as the main active ingredient of AKH against breast cancer based on LC-MS combined with drug similarity and disease enrichment analysis. WGCNA, network pharmacology, molecular docking, transcriptome sequencing analysis, immune infiltration analysis and single-cell sequencing were used to explore the mechanism of DHIE on breast cancer. CCK-8, flow cytometry and Western blot were used to verify the results in vitro. The efficacy of the drugs was verified in vivo by constructing a subcutaneous tumor-bearing mouse model. Results Our research showed that DHIE and breast cancer enriched core gene targets mainly act on epithelial cells in breast cancer tissues and significantly inhibit the growth of breast cancer by affecting the PLK1-p53 signaling axis to arrest the breast cancer cell cycle at G0/G1 phase. Further analysis showed that although DHIE had opposite regulatory effects on different isoforms of p53 in different types of breast cancer cells, they eventually caused cell cycle arrest. In addition, in vivo studies showed that DHIE reduced tumor burden, significantly reduced the infiltration level of tumor proliferation-related marker Ki-67, and inhibited the expression of PLK1 in the mouse model, which was further enhanced when combined with DOX. Discussion Collectively, our study suggests that DHIE in AHK may eventually induce cell cycle arrest and inhibit breast cancer growth by regulating the PLK1-p53 signaling axis, which may provide a new therapeutic strategy for breast cancer. However, the specific mechanisms by which DHIE regulates p53 in different subtypes of breast cancer and the advantages of chemotherapeutic combinations compared with other drugs are still worth exploring.
Collapse
Affiliation(s)
- Lin Li
- Department of General Surgery Ⅱ, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yifan Zheng
- Department of General Surgery Ⅱ, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yongxia Yang
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Senlin Shi
- Department of General Surgery Ⅱ, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shangjie Liu
- Department of General Surgery Ⅱ, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Keying Huang
- Department of General Surgery Ⅱ, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Luonan Qiu
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenbin Huang
- Department of General Surgery Ⅱ, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Department of Hepatobiliary Surgery Ⅱ, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yin Leng
- Department of General Surgery Ⅱ, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Li Y, Bai X. Naringenin induces ferroptosis in osteosarcoma cells through the STAT3-MGST2 signaling pathway. J Bone Oncol 2025; 50:100657. [PMID: 39835176 PMCID: PMC11743371 DOI: 10.1016/j.jbo.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Osteosarcoma is a common malignant tumor found in adolescents, characterized by a high metastatic potential and poor prognosis, but it is sensitive to radiotherapy and chemotherapy. Ferroptosis is a novel form of regulated cell death induced by excessive iron accumulation, leading to lipid peroxidation that results in cellular dysfunction and death. Naringenin is a flavonoid known for its anti-cancer properties, yet its role in osteosarcoma has not been thoroughly studied. In this study, we found that naringenin significantly reduced the viability of osteosarcoma cells while increasing the accumulation of reactive oxygen species (ROS), iron overload, and the excessive expression of malondialdehyde (MDA). Bioinformatics analysis revealed that microsomal glutathione S-transferase 2 (MGST2) is highly expressed in osteosarcoma cells. Silencing MGST2 decreased the proliferation, migration, and invasion of these cells and enhanced their sensitivity to ferroptosis. Mechanistically, signal transducer and activator of transcription 3 (STAT3) binds to the MGST2 promoter, promoting its transcription. Naringenin inhibits STAT3, blocking the expression of MGST2, while the STAT3 agonist Colivelin reverses this effect. In vivo experiments further confirmed that naringenin inhibited tumor growth in subcutaneous xenograft models and exhibited good biosafety. In summary, our study demonstrates that naringenin induces ferroptosis in osteosarcoma cells through the STAT3-MGST2 signaling pathway, providing a promising strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yingang Li
- China Medical University, Shenyang, Liaoning, China
- Liaoning Provincial People’s Hospital, Shenyang, Liaoning, China
| | - Xizhuang Bai
- Liaoning Provincial People’s Hospital, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Chen Y, Wang Y, Zheng X, Liu T, Liu C, Lin S, Xie H, Shi J, Liu X, Ma X, Deng L, Wu S, Shi H. Body Roundness Index Trajectories and the Risk of Cancer: A Cohort Study. Cancer Med 2024; 13:e70447. [PMID: 39606808 PMCID: PMC11602755 DOI: 10.1002/cam4.70447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/20/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The body rounds index (BRI), an innovative obesity indicator integrating waist circumference (WC) and height, offers a two-dimensional assessment of obesity. The relationship between BRI trajectories and cancer has been overlooked in previous studies. This study aims to explore the association between BRI trajectories and the incidence of cancer. METHODS This study included 42,022 participants with a median age of 48.91 years. Based on the changes in participants' BRI during the period from 2006 to 2010, three BRI trajectory patterns were identified: low-stable, medium-stable, and high-stable. The primary outcome was cancer incidence and the secondary outcome was cancer-specific deaths. The association between BRI trajectories and cancer incidence and death was explored by cox regression analysis in the total, sex-specific and age-specific populations, respectively. Additionally, we further investigated the relationship between BRI and site-specific cancer incidence. Sensitivity analyses were applied to exclude interferences and ensure the stability of the results. RESULTS After a median follow-up time of 11.04 years, high-stable BRI trajectory was significantly associated with increased risk of cancer occurrence compared to low-stable BRI trajectory. This association was more pronounced in middle-aged men (men: HR = 1.46, 95% CI = 1.21-1.77, p < 0.001; age < 65: HR = 11.38, 95% CI = 1.15-1.66, p = 0.001). Additionally, high-stable BRI trajectory was significantly associated with a substantial increase in the risk of site-specific uterine cancers (HR = 4.92, 95% CI = 1.69-14.33, p = 0.004). Sensitivity analysis confirmed the stability of the results. CONCLUSION Our study identified a significant association between a high-stable BRI trajectory and cancer incidence, with this association being most pronounced in middle-aged men. Moreover, the high-stable BRI trajectory was strongly associated with uterine site-specific cancer development. Our findings underscore the importance of implementing lifestyle modifications and monitoring BRI values and their changes to provide effective health guidance.
Collapse
Affiliation(s)
- Yue Chen
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Yiming Wang
- Department of Cardiology, Kailuan General HospitalNorth China University of Science and TechnologyTangshanChina
| | - Xin Zheng
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Tong Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Chenan Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Shiqi Lin
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Hailun Xie
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Jinyu Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Xiaoyue Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Xiangming Ma
- Department of Hepatological SurgeryKailuan General HospitalTangshanChina
| | - Li Deng
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| | - Shouling Wu
- Department of Cardiology, Kailuan General HospitalNorth China University of Science and TechnologyTangshanChina
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of National Clinical Research Center for Geriatric Diseases, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Cancer FSMP for State Market RegulationBeijingChina
| |
Collapse
|
8
|
Zhu J, Yang L, Deng H, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Hepatic-derived extracellular vesicles in late pregnancy promote mammary gland development by stimulating prolactin receptor-mediated JAK2/STAT5/mTOR signalling. Int J Biol Macromol 2024; 281:136498. [PMID: 39393720 DOI: 10.1016/j.ijbiomac.2024.136498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The mammary glands develop rapidly in late pregnancy to prepare adequately for lactation. At this stage the liver is crucial for mammary gland development, and it can achieve distal mammary gland regulation through hepatic factors and hormones. Recently, an increasing number of studies have found that hepatic-derived extracellular vesicles play an essential role in organ-to-organ communication, however, its effect on mammary gland development remains unclear. In this study, we extracted hepatic-derived extracellular vesicles from pregnant (P-hEVs) and non-pregnant mice (NP-hEVs), respectively, and explored their regulatory role on mammary gland development. The results revealed that P-hEVs was able to promote the proliferation and differentiation of HC11 cells. In addition, intraperitoneal injection of P-hEVs into pubertal female mice increased mammary gland weight and promoted mammary gland development. Mechanistically, P-hEVs activated the PI3K/AKT signalling pathway to enhance the proliferation of mammary epithelial cells, and also activated prolactin receptor-mediated JAK2/STAT5/mTOR signalling to promote mammary epithelial cell lactation and the synthesis of milk proteins and milk lipids. Overall, mouse liver during pregnancy can transmit signals to the mammary gland in the form of extracellular vesicles to promote its development and provide for subsequent lactation.
Collapse
Affiliation(s)
- Jiahao Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Lekai Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Haibin Deng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Junyi Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ting Chen
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Jiajie Sun
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yongliang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Qianyun Xi
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China..
| |
Collapse
|
9
|
Tan P, Wei X, Huang H, Wang F, Wang Z, Xie J, Wang L, Liu D, Hu Z. Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine. Chin Med 2024; 19:123. [PMID: 39252074 PMCID: PMC11385818 DOI: 10.1186/s13020-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.
Collapse
Affiliation(s)
- Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
10
|
Liu Y, Yin S, Lu G, Du Y. The intersection of the nervous system and breast cancer. Cancer Lett 2024; 598:217132. [PMID: 39059572 DOI: 10.1016/j.canlet.2024.217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Guanyu Lu
- Cancer Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
11
|
Elsori D, Pandey P, Ramniwas S, Kumar R, Lakhanpal S, Rab SO, Siddiqui S, Singh A, Saeed M, Khan F. Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics. Front Pharmacol 2024; 15:1406619. [PMID: 38957397 PMCID: PMC11217354 DOI: 10.3389/fphar.2024.1406619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
The bioactive compounds present in citrus fruits are gaining broader acceptance in oncology. Numerous studies have deciphered naringenin's antioxidant and anticancer potential in human and animal studies. Naringenin (NGE) potentially suppresses cancer progression, thereby improving the health of cancer patients. The pleiotropic anticancer properties of naringenin include inhibition of the synthesis of growth factors and cytokines, inhibition of the cell cycle, and modification of several cellular signaling pathways. As an herbal remedy, naringenin has significant pharmacological properties, such as anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. The inactivation of carcinogens following treatment with pure naringenin, naringenin-loaded nanoparticles, and naringenin combined with anti-cancer agents was demonstrated by data in vitro and in vivo studies. These studies included colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancers, bladder neoplasms, gastric cancer, and osteosarcoma. The effects of naringenin on processes related to inflammation, apoptosis, proliferation, angiogenesis, metastasis, and invasion in breast cancer are covered in this narrative review, along with its potential to develop novel and secure anticancer medications.
Collapse
Affiliation(s)
- Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University Gharuan, Mohali, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Ha’il, Ha’il, Saudi Arabia
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Ha’il, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
12
|
Li X, Yang X, Guo W, Li H, Sun W, Lin X, Ma Z, Li X, Liu Z. Natural products as inhibitors against pancreatic cancer cell proliferation and invasion: possible mechanisms. Am J Cancer Res 2024; 14:2695-2713. [PMID: 39005683 PMCID: PMC11236794 DOI: 10.62347/xlzx8935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic cancer is one of the gastrointestinal tumors with the lowest survival rate and the worst prognosis. At the time of diagnosis, the majority of patients have missed the opportunity for radical surgical resection and opt for chemotherapy as their primary treatment choice. And drug resistance emerges during the application of the most widely used chemotherapeutic regimens such as modified FOLFIRINOX regimen, gemcitabine monotherapy or 5-Fluorouracil combination therapy, which further reduces the therapeutic efficacy. Therefore, it is urgent to explore better treatment strategies for pancreatic cancer. In recent years, more and more studies have found that natural products have significant anti-pancreatic cancer properties. In this paper, we reviewed the possible mechanisms by which natural products inhibit the proliferation and invasion of pancreatic cancer cells, including the possible mechanisms of targeting the inhibition of the growth and proliferation regulatory pathways of pancreatic cancer cells, inducing apoptosis and autophagy of pancreatic cancer cells, inhibiting the EMT process of pancreatic cancer cells, and inhibiting the angiogenesis of pancreatic cancer. Meanwhile, natural products have also hindered the progress of their basic and clinical research due to the complexity of their composition and the limitation of biological extraction technology. Further exploration of the specific molecular mechanisms of natural products to inhibit the proliferation and invasion of pancreatic cancer cells, optimization of purification and preparation techniques, and enrichment of basic and clinical trials to verify their efficacy and safety may be the future direction of natural products in the field of anti-pancreatic cancer research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Hao Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Weiqing Sun
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Xingda Lin
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| | - Zuoxin Ma
- Medical Laboratory, Liaoning Province Hospital Shenyang 110001, Liaoning, China
| | - Xuan Li
- Department of Orthopedics, Liaoning Province Hospital Shenyang 110001, Liaoning, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University Shenyang 110001, Liaoning, China
| |
Collapse
|
13
|
Wang F, Mo CL, Lu M, Deng XL, Luo JY. Network pharmacology to explore the mechanism of traditional Chinese medicine in the treatment of ground glass nodules. J Thorac Dis 2024; 16:2745-2756. [PMID: 38883612 PMCID: PMC11170372 DOI: 10.21037/jtd-23-1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/08/2024] [Indexed: 06/18/2024]
Abstract
Background Ground glass nodules (GGNs) in the lung are considered to be a high-risk factor of lung adenocarcinoma. Immediate surgery is not recommended for GGNs patients, and low-dose computed tomography (CT) is often used for observation and follow-up, which brings high psychological and economic burden to the patient. Methods Three traditional Chinese medicine (TCM) prescriptions for the treatment of GGNs were found through database including PubMed, Google Scholar, and China National Knowledge Infrastructure (CNKI), Scopus and so on. The possible targets of the active ingredients of the TCM preparations and the gene targets of GGNs were screened out from Traditional Chinese Medicine Systems Pharmacology (TCMSP), UniProt and GeneCards. Network visualization was realized via STRING, Cytoscape 3.7.2, Evenn, DAVID and Hiplot. Finally, molecular docking Vina and PyMOL software were performed to further explore the possibility of drug-target interactions using PubChem compounds, protein data bank (PDB) database, Autodocktools and Autodock. Results Three TCM preparations could target the same 13 potential therapeutic targets in GGNs. From network pharmacology, 14 signaling pathways, the functions of the significant targets, an effective ingredient in TCM prescriptions and its functions were obtained. Conclusions Chinese herbal formulas containing quercetin could be a potential treatment for GGNs, targeting C-reactive protein (CRP), tumor necrosis factor (TNF), interferon gamma (IFN-γ), intercellular adhesion molecule 1 (ICAM-1), and vascular endothelial growth factor A (VEGFA) through the hypoxia-inducible factor 1 (HIF-1) pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Feng Wang
- Department of Traditional Chinese Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cui-Lian Mo
- The First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Ming Lu
- The First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Long Deng
- The First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Jia-Ying Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Zhao Y, Tan H, Zhang J, Zhan D, Yang B, Hong S, Pan B, Wang N, Chen T, Shi Y, Wang Z. Developing liver-targeted naringenin nanoparticles for breast cancer endocrine therapy by promoting estrogen metabolism. J Nanobiotechnology 2024; 22:122. [PMID: 38504208 PMCID: PMC10953142 DOI: 10.1186/s12951-024-02356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Endocrine therapy is standard for hormone receptor-positive (HR+) breast cancer treatment. However, current strategies targeting estrogen signaling pay little attention to estradiol metabolism in the liver and is usually challenged by treatment failure. In a previous study, we demonstrated that the natural compound naringenin (NAR) inhibited HR+ breast cancer growth by activating estrogen sulfotransferase (EST) expression in the liver. Nevertheless, the poor water solubility, low bio-barrier permeability, and non-specific distribution limited its clinical application, particularly for oral administration. Here, a novel nano endocrine drug NAR-cell penetrating peptide-galactose nanoparticles (NCG) is reported. We demonstrated that NCG presented specific liver targeting and increased intestinal barrier permeability in both cell and zebrafish xenotransplantation models. Furthermore, NCG showed liver targeting and enterohepatic circulation in mouse breast cancer xenografts following oral administration. Notably, the cancer inhibition efficacy of NCG was superior to that of both NAR and the positive control tamoxifen, and was accompanied by increased hepatic EST expression and reduced estradiol levels in the liver, blood, and tumor tissue. Moreover, few side effects were observed after NCG treatment. Our findings reveal NCG as a promising candidate for endocrine therapy and highlight hepatic EST targeting as a novel therapeutic strategy for HR+ breast cancer.
Collapse
Affiliation(s)
- Yuying Zhao
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hanxu Tan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Juping Zhang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dandan Zhan
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Yang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shicui Hong
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Pan
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Yafei Shi
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Zhiyu Wang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Wang J, Feng Y, Liu B, Xie W. Estrogen sulfotransferase and sulfatase in steroid homeostasis, metabolic disease, and cancer. Steroids 2024; 201:109335. [PMID: 37951289 PMCID: PMC10842091 DOI: 10.1016/j.steroids.2023.109335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Sulfation and desulfation of steroids are opposing processes that regulate the activation, metabolism, excretion, and storage of steroids, which account for steroid homeostasis. Steroid sulfation and desulfation are catalyzed by cytosolic sulfotransferase and steroid sulfatase, respectively. By modifying and regulating steroids, cytosolic sulfotransferase (SULT) and steroid sulfatase (STS) are also involved in the pathophysiology of steroid-related diseases, such as hormonal dysregulation, metabolic disease, and cancer. The estrogen sulfotransferase (EST, or SULT1E1) is a typical member of the steroid SULTs. This review is aimed to summarize the roles of SULT1E1 and STS in steroid homeostasis and steroid-related diseases.
Collapse
Affiliation(s)
- Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ye Feng
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Brian Liu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
16
|
Sabanayagam R, Krishnamoorthy S, Anbuselvam M, Muruganantham B, Muthusami S. A comparative analysis of phyto-components on EGFR binding, viability, and migration in HPV positive ME180 and HPV negative C33A cervical cancer cells. Med Oncol 2023; 40:357. [PMID: 37964051 DOI: 10.1007/s12032-023-02223-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023]
Abstract
A need for effective implementation of cervical cancer (CC) even in developed countries insist the urge for developing an effective drug molecule to treat CC. Previously, we showed an inverse correlation between survival of CC patients and epidermal growth factor (EGF) receptor (EGFR) levels. Newer tyrosine kinase inhibitors to treat CC are being constantly pursued. In this context, the proposed study is an attempt to perform a comparative analysis using 20 phyto-components to determine the effective lead molecule. Molecular docking was utilized to determine the comparative efficacy of 20 phyto-components in binding to EGFR. It was then validated by cell viability, mitochondrial membrane potential, apoptosis, migration, and matrix metalloproteinase (MMP-2) in human papilloma virus (HPV) positive and HPV negative CC cells using top nine phyto-components based on computational screening. Computational analysis identified nine phyto-components out of which five compounds were effective in reducing the survival, mitochondrial membrane potential, apoptosis, migration, and MMP-2 secretion. EGCG, plumbagin, quercetin, emodin, and naringenin were identified as effective molecules in attenuating CC survival, proliferation, and migration.
Collapse
Affiliation(s)
- Rajalakshmi Sabanayagam
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Mohan Anbuselvam
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Bharathi Muruganantham
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
- Centre for Cancer Research, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
17
|
Zheng Y, Wang N, Wang S, Zhang J, Yang B, Wang Z. Chronic psychological stress promotes breast cancer pre-metastatic niche formation by mobilizing splenic MDSCs via TAM/CXCL1 signaling. J Exp Clin Cancer Res 2023; 42:129. [PMID: 37210553 DOI: 10.1186/s13046-023-02696-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Emerging studies have identified chronic psychological stress as an independent risk factor influencing breast cancer growth and metastasis. However, the effects of chronic psychological stress on pre-metastatic niche (PMN) formation and the underlying immunological mechanisms remain largely unknown. METHODS The effects and molecular mechanisms of chronic unpredictable mild stress (CUMS) on modulating tumor-associated macrophages (TAMs) and PMN formation were clarified by multiplex immunofluorescence technique, cytokine array, chromatin immunoprecipitation, the dual-luciferase reporter assay, and breast cancer xenografts. Transwell and CD8+ T cytotoxicity detection were used to analyze the mobilization and function of myeloid-derived suppressor cells (MDSCs). mCherry-labeled tracing strategy and bone marrow transplantation were applied to explore the crucial role of splenic CXCR2+/+ MDSCs facilitating PMN formation under CUMS. RESULTS CUMS significantly promoted breast cancer growth and metastasis, accompanied by TAMs accumulation in the microenvironment. CXCL1 was identified as a crucial chemokine in TAMs facilitating PMN formation in a glucocorticoid receptor (GR)-dependent manner. Interestingly, the spleen index was significantly reduced under CUMS, and splenic MDSCs were validated as a key factor mediating CXCL1-induced PMN formation. The molecular mechanism study revealed that TAM-derived CXCL1 enhanced the proliferation, migration, and anti-CD8+ T cell functions of MDSCs via CXCR2. Moreover, CXCR2 knockout and CXCR2-/-MDSCs transplantation significantly impaired CUMS-mediated MDSC elevation, PMN formation, and breast cancer metastasis. CONCLUSION Our findings shed new light on the association between chronic psychological stress and splenic MDSC mobilization, and suggest that stress-related glucocorticoid elevation can enhance TAM/CXCL1 signaling and subsequently recruit splenic MDSCs to promote PMN formation via CXCR2.
Collapse
Affiliation(s)
- Yifeng Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Neng Wang
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shengqi Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Juping Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Bowen Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
18
|
Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants (Basel) 2023; 12:antiox12030586. [PMID: 36978836 PMCID: PMC10045673 DOI: 10.3390/antiox12030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Citrus (genus Citrus L.) fruits are essential sources of bioactive compounds with antioxidant properties, such as flavonoids. These polyphenolic compounds are divided into subclasses, in which flavanones are the most prominent. Among them, naringenin and hesperidin are emerging compounds with anticancer potential, especially for breast cancer (BC). Several mechanisms have been proposed, including the modulation of epigenetics, estrogen signaling, induction of cell death via regulation of apoptotic signaling pathways, and inhibition of tumor invasion and metastasis. However, this information is sparse in the literature and needs to be brought together to provide an overview of how naringenin and hesperidin can serve as therapeutic tools for drug development and as a successful co-adjuvant strategy against BC. This review detailed such mechanisms in this context and highlighted how naringenin and hesperidin could interfere in BC carcinogenesis and be helpful as potential alternative therapeutic sources for breast cancer treatment.
Collapse
|