1
|
Cropley TC, Liu FC, Chai M, Bush MF, Bleiholder C. Metastability of Protein Solution Structures in the Absence of a Solvent: Rugged Energy Landscape and Glass-like Behavior. J Am Chem Soc 2024:10.1021/jacs.3c12892. [PMID: 38598661 PMCID: PMC11464637 DOI: 10.1021/jacs.3c12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Native ion mobility/mass spectrometry is well-poised to structurally screen proteomes but characterizes protein structures in the absence of a solvent. This raises long-standing unanswered questions about the biological significance of protein structures identified through ion mobility/mass spectrometry. Using newly developed computational and experimental ion mobility/ion mobility/mass spectrometry methods, we investigate the unfolding of the protein ubiquitin in a solvent-free environment. Our data suggest that the folded, solvent-free ubiquitin observed by ion mobility/mass spectrometry exists in a largely native fold with an intact β-grasp motif and α-helix. The ensemble of folded, solvent-free ubiquitin ions can be partitioned into kinetically stable subpopulations that appear to correspond to the structural heterogeneity of ubiquitin in solution. Time-resolved ion mobility/ion mobility/mass spectrometry measurements show that folded, solvent-free ubiquitin exhibits a strongly stretched-exponential time dependence, which simulations trace to a rugged energy landscape with kinetic traps. Unfolding rate constants are estimated to be approximately 800 to 20,000 times smaller than in the presence of water, effectively quenching the unfolding process on the time scale of typical ion mobility/mass spectrometry measurements. Our proposed unfolding pathway of solvent-free ubiquitin shares substantial characteristics with that established for the presence of solvent, including a polarized transition state with significant native content in the N-terminal β-hairpin and α-helix. Our experimental and computational data suggest that (1) the energy landscape governing the motions of folded, solvent-free proteins is rugged in analogy to that of glassy systems; (2) large-scale protein motions may at least partially be determined by the amino acid sequence of a polypeptide chain; and (3) solvent facilitates, rather than controls, protein motions.
Collapse
Affiliation(s)
- Tyler. C. Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Fanny. C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
2
|
Wörner TP, Thurman HA, Makarov AA, Shvartsburg AA. Expanding Differential Ion Mobility Separations into the MegaDalton Range. Anal Chem 2024; 96:5392-5398. [PMID: 38526848 DOI: 10.1021/acs.analchem.3c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Along with mass spectrometry (MS), ion mobility separations (IMS) are advancing to ever larger biomolecules. The emergence of electrospray ionization (ESI) and native MS enabled the IMS/MS analyses of proteins up to ∼100 kDa in the 1990s and whole protein complexes and viruses up to ∼10 MDa since the 2000s. Differential IMS (FAIMS) is substantially orthogonal to linear IMS based on absolute mobility K and offers exceptional resolution, unique selectivity, and steady filtering readily compatible with slower analytical methods such as electron capture or transfer dissociation (ECD/ETD). However, the associated MS stages had limited FAIMS to ions with m/z < 8000 and masses under ∼300 kDa. Here, we integrate high-definition FAIMS with the Q-Exactive Orbitrap UHMR mass spectrometer that can handle m/z up to 80,000 and MDa-size ions in the native ESI regime. In the initial evaluation, the oligomers of monoclonal antibody adalimumab (148 kDa) are size-selected up to at least the nonamers (1.34 MDa) with m/z values up to ∼17,000. This demonstrates the survival and efficient separation of noncovalent MDa assemblies in the FAIMS process, opening the door to novel analyses of the heaviest macromolecules.
Collapse
Affiliation(s)
- Tobias P Wörner
- Thermo Fisher Scientific, Hanna-Kunath Strasse 11, Bremen 28199, Germany
| | - Hayden A Thurman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexander A Makarov
- Thermo Fisher Scientific, Hanna-Kunath Strasse 11, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
3
|
Papanastasiou D, Kounadis D, Lekkas A, Orfanopoulos I, Mpozatzidis A, Smyrnakis A, Panagiotopoulos E, Kosmopoulou M, Reinhardt-Szyba M, Fort K, Makarov A, Zubarev RA. The Omnitrap Platform: A Versatile Segmented Linear Ion Trap for Multidimensional Multiple-Stage Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1990-2007. [PMID: 36113052 PMCID: PMC9850925 DOI: 10.1021/jasms.2c00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Multidimensional multiple-stage tandem processing of ions is demonstrated successfully in a novel segmented linear ion trap. The enhanced performance is enabled by incorporating the entire range of ion activation methods into a single platform in a highly dynamic fashion. The ion activation network comprises external injection of reagent ions, radical neutral species, photons, electrons, and collisions with neutrals. Axial segmentation of the two-dimensional trapping field provides access to a unique functionality landscape through a system of purpose-designed regions for processing ions with maximum flexibility. Design aspects of the segmented linear ion trap, termed the Omnitrap platform, are highlighted, and motion of ions trapped by rectangular waveforms is investigated experimentally by mapping the stability diagram, tracing secular frequencies, and exploring different isolation techniques. All fragmentation methods incorporated in the Omnitrap platform involving radical chemistry are shown to provide complete sequence coverage for partially unfolded ubiquitin. Three-stage (MS3) tandem mass spectrometry experiments combining collision-induced dissociation of radical ions produced by electron meta-ionization and further involving two intermediate steps of ion isolation and accumulation are performed with high efficiency, producing information rich spectra with signal-to-noise levels comparable to those obtained in a two-stage (MS2) experiment. The advanced capabilities of the Omnitrap platform to provide in-depth top-down MSn characterization of proteins are portrayed. Performance is further enhanced by connecting the Omnitrap platform to an Orbitrap mass analyzer, while successful integration with time-of-flight analyzers has already been demonstrated.
Collapse
Affiliation(s)
- Dimitris Papanastasiou
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Diamantis Kounadis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Alexandros Lekkas
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Ioannis Orfanopoulos
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Andreas Mpozatzidis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Athanasios Smyrnakis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Elias Panagiotopoulos
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Mariangela Kosmopoulou
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | | | - Kyle Fort
- Thermo
Fisher Scientific, Hanna-Kunath-Straße
11, 28199 Bremen, Germany
| | - Alexander Makarov
- Thermo
Fisher Scientific, Hanna-Kunath-Straße
11, 28199 Bremen, Germany
| | - Roman A. Zubarev
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17165 Solna, Sweden
| |
Collapse
|
4
|
Pathak P, Shvartsburg AA. Assessing the Dipole Moments and Directional Cross Sections of Proteins and Complexes by Differential Ion Mobility Spectrometry. Anal Chem 2022; 94:7041-7049. [PMID: 35500292 DOI: 10.1021/acs.analchem.2c00343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ion mobility spectrometry (IMS) has become a mainstream approach to fractionate complex mixtures, separate isomers, and assign the molecular geometries. All modalities were grouped into linear IMS (based on the absolute ion mobility, K) and field asymmetric waveform IMS (FAIMS) relying on the evolution of K at a high normalized electric field (E/N) that induces strong ion heating. In the recently demonstrated low-field differential (LOD) IMS, the field is too weak for significant heating but locks the macromolecular dipoles to produce novel separations controlled by the relevant directional collision cross sections (CCSs). Here, we show LODIMS for mass-selected species, exploring the dipole alignment across charge states for the monomers and dimers of an exemplary protein, the alcohol dehydrogenase. Distinct conformational families for aligned species are revealed with directional CCS estimated from the field-dependent trend lines. We set up a model to extract the fractions of pendular conformers as a function of field intensity and translate them into dipole moment distributions. These developments make a critical step toward establishing LODIMS as a new tool for top-down proteomics and integrative structural biology.
Collapse
Affiliation(s)
- Pratima Pathak
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
5
|
Fulcher JM, Makaju A, Moore RJ, Zhou M, Bennett DA, De Jager PL, Qian WJ, Paša-Tolić L, Petyuk VA. Enhancing Top-Down Proteomics of Brain Tissue with FAIMS. J Proteome Res 2021; 20:2780-2795. [PMID: 33856812 PMCID: PMC8672206 DOI: 10.1021/acs.jproteome.1c00049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteomic investigations of Alzheimer's and Parkinson's disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein's "intact" state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer's disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at -50, -40, and -30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1-42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.
Collapse
Affiliation(s)
- James M Fulcher
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aman Makaju
- Life Sciences Mass Spectrometry Unit, Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Philip L De Jager
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Medical Center, New York, New York 10032, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Leyva D, Jaffe R, Fernandez-Lima F. Structural Characterization of Dissolved Organic Matter at the Chemical Formula Level Using TIMS-FT-ICR MS/MS. Anal Chem 2020; 92:11960-11966. [PMID: 32786462 DOI: 10.1021/acs.analchem.0c02347] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TIMS-FT-ICR MS is an important alternative to study the isomeric diversity and elemental composition of complex mixtures. While the chemical structure of many compounds in the dissolved organic matter (DOM) remains largely unknown, the high structural diversity has been described at the molecular level using chemical formulas. In this study, we further push the boundaries of TIMS-FT-ICR MS by performing chemical formula-based ion mobility and tandem MS analysis for the structural characterization of DOM. The workflow described is capable to mobility select (R ∼ 100) and isolate molecular ion signals (Δm/z = 0.036) in the ICR cell, using single-shot ejections after broadband ejections and MS/MS based on sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The workflow results are compared to alternative TIMS-q-FT-ICR MS/MS experiments with quadrupole isolation at nominal mass (∼1 Da). The technology is demonstrated with isomeric and isobaric mixtures (e.g., 4-methoxy-1-naphthoic acid, 2-methoxy-1-naphthoic acid, decanedioic acid) and applied to the characterization of DOM. The application of this new methodology to the analysis of a DOM is illustrated by the isolation of the molecular ion [C18H18O10-H]- in the presence of other isobars at nominal mass 393. Five IMS bands were assigned to the heterogeneous ion mobility profile of [C18H18O10-H]-, and candidate structures from the PubChem database were screened based on their ion mobility and the MS/MS matching score. This approach overcomes traditional challenges associated with the similarity of fragmentation patterns of DOM samples (e.g., common neutral losses of H2O, CO2, and CH2-H2O) by narrowing down the isomeric candidate structures using the mobility domain.
Collapse
|
7
|
Shliaha PV, Gorshkov V, Kovalchuk SI, Schwämmle V, Baird MA, Shvartsburg AA, Jensen ON. Middle-Down Proteomic Analyses with Ion Mobility Separations of Endogenous Isomeric Proteoforms. Anal Chem 2020; 92:2364-2368. [DOI: 10.1021/acs.analchem.9b05011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pavel V. Shliaha
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sergey I. Kovalchuk
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Veit Schwämmle
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Matthew A. Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Ole N. Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
8
|
Shvartsburg AA, Andrzejewski R, Entwistle A, Giles R. Ion Mobility Spectrometry of Macromolecules with Dipole Alignment Switchable by Varying the Gas Pressure. Anal Chem 2019; 91:8176-8183. [DOI: 10.1021/acs.analchem.9b00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Roch Andrzejewski
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Andrew Entwistle
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Roger Giles
- Shimadzu Research Laboratory, Wharfside, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| |
Collapse
|
9
|
Baird MA, Shliaha PV, Anderson GA, Moskovets E, Laiko V, Makarov AA, Jensen ON, Shvartsburg AA. High-Resolution Differential Ion Mobility Separations/Orbitrap Mass Spectrometry without Buffer Gas Limitations. Anal Chem 2019; 91:6918-6925. [DOI: 10.1021/acs.analchem.9b01309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew A. Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Pavel V. Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gordon A. Anderson
- GAACE, 101904 Wiser Parkway Suite 105, Kennewick, Washington 99338, United States
| | - Eugene Moskovets
- MassTech Inc., 6992 Columbia Gateway Drive, Columbia, Maryland 21046, United States
| | - Victor Laiko
- MassTech Inc., 6992 Columbia Gateway Drive, Columbia, Maryland 21046, United States
| | - Alexander A. Makarov
- Thermo Fisher Scientific, Hanna-Kunath Strasse 11, Bremen 28199, Germany
- Department of Chemistry, University of Utrecht, 3508 TC Utrecht, Netherlands
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
10
|
Leyva D, Tose LV, Porter J, Wolff J, Jaffé R, Fernandez-Lima F. Understanding the structural complexity of dissolved organic matter: isomeric diversity. Faraday Discuss 2019; 218:431-440. [DOI: 10.1039/c8fd00221e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present work, the advantages of ESI-TIMS-FT-ICR MS to address the isomeric content of dissolved organic matter are studied.
Collapse
Affiliation(s)
- Dennys Leyva
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Southeast Environmental Research Center
| | - Lilian V. Tose
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | - Jacob Porter
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
| | | | - Rudolf Jaffé
- Southeast Environmental Research Center
- Florida International University
- Miami
- USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| |
Collapse
|
11
|
Chouinard CD, Nagy G, Smith RD, Baker ES. Ion Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses. ADVANCES IN ION MOBILITY-MASS SPECTROMETRY: FUNDAMENTALS, INSTRUMENTATION AND APPLICATIONS 2019. [DOI: 10.1016/bs.coac.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Baird MA, Anderson GA, Shliaha PV, Jensen ON, Shvartsburg AA. Differential Ion Mobility Separations/Mass Spectrometry with High Resolution in Both Dimensions. Anal Chem 2018; 91:1479-1485. [DOI: 10.1021/acs.analchem.8b04518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew A. Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Gordon A. Anderson
- GAACE, 101904 Wiser Parkway Ste 105, Kennewick, Washington 99338, United States
| | - Pavel V. Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
13
|
Schneeberger EM, Breuker K. Replacing H + by Na + or K + in phosphopeptide anions and cations prevents electron capture dissociation. Chem Sci 2018; 9:7338-7353. [PMID: 30542537 PMCID: PMC6237128 DOI: 10.1039/c8sc02470g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/07/2018] [Indexed: 01/29/2023] Open
Abstract
By successively replacing H+ by Na+ or K+ in phosphopeptide anions and cations, we show that the efficiency of fragmentation into c and z˙ or c˙ and z fragments from N-Cα backbone bond cleavage by negative ion electron capture dissociation (niECD) and electron capture dissociation (ECD) substantially decreases with increasing number of alkali ions attached. In proton-deficient phosphopeptide ions with a net charge of 2-, we observed an exponential decrease in electron capture efficiency with increasing number of Na+ or K+ ions attached, suggesting that electrons are preferentially captured at protonated sites. In proton-abundant phosphopeptide ions with a net charge of 3+, the electron capture efficiency was not affected by replacing up to four H+ ions with Na+ or K+ ions, but the yield of c, z˙ and c˙, z fragments from N-Cα backbone bond cleavage generally decreased next to Na+ or K+ binding sites. We interpret the site-specific decrease in fragmentation efficiency as Na+ or K+ binding to backbone amide oxygen in competition with interactions of protonated sites that would otherwise lead to backbone cleavage into c, z˙ or c˙, z fragments. Our findings seriously challenge the hypothesis that the positive charge responsible for ECD into c, z˙ or c˙, z fragments can generally be a sodium or other metal ion instead of a proton.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| | - Kathrin Breuker
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| |
Collapse
|
14
|
Tose LV, Benigni P, Leyva D, Sundberg A, Ramírez CE, Ridgeway ME, Park MA, Romão W, Jaffé R, Fernandez-Lima F. Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1287-1295. [PMID: 29756663 DOI: 10.1002/rcm.8165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 05/05/2023]
Abstract
RATIONALE There is a need for fast, post-ionization separation during the analysis of complex mixtures. In this study, we evaluate the use of a high-resolution mobility analyzer with high-resolution and ultrahigh-resolution mass spectrometry for unsupervised molecular feature detection. Goals include the study of the reproducibility of trapped ion mobility spectrometry (TIMS) across platforms, applicability range, and potential challenges during routine analysis. METHODS A TIMS analyzer was coupled to time-of-flight mass spectrometry (TOF MS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) instruments for the analysis of singly charged species in the m/z 150-800 range of a complex mixture (Suwannee River Fulvic Acid Standard). Molecular features were detected using an unsupervised algorithm based on chemical formula and IMS profiles. RESULTS TIMS-TOF MS and TIMS-FT-ICR MS analysis provided 4950 and 7760 m/z signals, 1430 and 3050 formulas using the general Cx Hy N0-3 O0-19 S0-1 composition, and 7600 and 22 350 [m/z; chemical formula; K; CCS] features, respectively. CONCLUSIONS TIMS coupled to TOF MS and FT-ICR MS showed similar performance and high reproducibility. For the analysis of complex mixtures, both platforms were able to capture the major trends and characteristics; however, as the chemical complexity at the level of nominal mass increases with m/z (m/z >300-350), only TIMS-FT-ICR MS was able to report the lower abundance compositional trends.
Collapse
Affiliation(s)
- Lilian V Tose
- Federal University of Espírito Santo, Petroleomic and Forensic Chemistry Laboratory, Department of Chemistry, 29075-910, Vitória, ES, Brazil
| | - Paolo Benigni
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - Dennys Leyva
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - Abigail Sundberg
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - César E Ramírez
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | | | | | - Wanderson Romão
- Federal University of Espírito Santo, Petroleomic and Forensic Chemistry Laboratory, Department of Chemistry, 29075-910, Vitória, ES, Brazil
- Federal Institute of Education, Science and Technology of Espírito Santo, 29106-010, Vila Velha, ES, Brazil
| | - Rudolf Jaffé
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
- Florida International University, Southeast Environmental Research Center, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
- Florida International University, Southeast Environmental Research Center, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
15
|
Benigni P, Porter J, Ridgeway ME, Park MA, Fernandez-Lima F. Increasing Analytical Separation and Duty Cycle with Nonlinear Analytical Mobility Scan Functions in TIMS-FT-ICR MS. Anal Chem 2018; 90:2446-2450. [PMID: 29376337 DOI: 10.1021/acs.analchem.7b04053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, nonlinear, stepping analytical mobility scan functions are implemented to increase the analytical separation and duty cycle during tandem Trapped Ion Mobility Spectrometry and FT-ICR MS operation. The differences between linear and stepping scan functions are described based on length of analysis, mobility scan rate, signal-to-noise, and mobility resolving power. Results showed that for the linear mobility scan function only a small fraction of the scan is sampled, resulting in the lowest duty cycle 0.5% and longest experiment times. Implementing nonlinear targeted scan functions for analysis of known mobilities resulted in increased duty cycle (0.85%) and resolving powers (R up to 300) with a 6-fold reduction in time from 30 to 5 min. For broad range characterization, a nonlinear mobility stepping scan function provided the best sensitivity, resolving power, duty cycle (4%), and points per peak. The applicability of nonlinear mobility scan functions for the analysis of complex mixtures is illustrated for the case of a direct infusion of a MCF-7 breast cancer cell digest, where isobaric peptides (e.g., DFTPAELR and TTILQSTGK) were separated in the mobility domain (RIMS: 110) and identified based on their CCS, accurate mass (RMS: 550k), and tandem MS using IRMPD in the ICR cell.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Jacob Porter
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Mark E Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University , Miami, Florida 33199, United States.,Biomolecular Sciences Institute , Miami, Florida 33199, United States
| |
Collapse
|
16
|
Benigni P, Sandoval K, Thompson CJ, Ridgeway ME, Park MA, Gardinali P, Fernandez-Lima F. Analysis of Photoirradiated Water Accommodated Fractions of Crude Oils Using Tandem TIMS and FT-ICR MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5978-5988. [PMID: 28457132 PMCID: PMC5661887 DOI: 10.1021/acs.est.7b00508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For the first time, trapped ion mobility spectrometry (TIMS) in tandem with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is applied to the analysis of the low energy water accommodated fraction (WAF) of a crude oil as a function of the exposure to light. The TIMS-FT-ICR MS analysis provided, in addition to the heteroatom series identification, new insights into the WAF isomeric complexity (e.g., [m/z; chemical formula; collision cross section] data sets) for a better evaluation of the degree of chemical and structural photoinduced transformations. Inspection of the [m/z; chemical formula; collision cross section] data sets shows that the WAF composition changes as a function of the exposure to light in the first 115 h by initial photosolubilization of HC components and their photo-oxidation up to O4-5 of mainly high double bond equivalence species (DBE > 9). The addition of high resolution TIMS (resolving power of 90-220) to ultrahigh resolution FT-ICR MS (resolving power over 400k) permitted the identification of a larger number of molecular components in a single analysis (e.g., over 47k using TIMS-MS compared to 12k by MS alone), with instances of over 6-fold increase in the number of molecular features per nominal mass due to the WAF isomeric complexity. This work represents a stepping stone toward a better understanding of the WAF components and highlights the need for better experimental and theoretical approaches to characterize the WAF structural diversity.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Kathia Sandoval
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | - Melvin A. Park
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, USA
| | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Southeast Environmental Research Center, Florida International University, Miami, Florida 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
| |
Collapse
|
17
|
Gillig KJ. Gas-phase protein conformation/multimer ion formation by electrospray ion mobility-mass spectrometry: bovine insulin and ubiquitin. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150368. [PMID: 27644980 PMCID: PMC5031634 DOI: 10.1098/rsta.2015.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Ion mobility-mass spectrometry (IMMS) is a very attractive method for studies in structural biology because of the ability of rapid isolation by nearly simultaneous m/z characterization and size separation, leading to an emergence of IMMS as a complimentary biochemical tool. Earlier, we developed a method based on varying the protein concentration in solution prior to electrospray ionization (ESI) with subsequent m/z selection and dissociation of protein multimers by IMMS of cytochrome c. The focus of this work will be to correctly distinguish truly different ion conformations formed by ESI versus homomultimeric complexes with the same m/z for well-studied proteins bovine ubiquitin and insulin. These proteins were chosen due to their large difference in solution phase structures: insulin tightly bound by disulfide linkages, and ubiquitin-a protein that may adopt a range of states from compact to extended. Our preliminary results, as with cytochrome c reveal false negatives for protein oligomer formation and false positives for protein conformational states. In addition, these results will be couched in terms of the need for quantification of IMMS analysis of proteins given the total area under IMMS peaks can also distinguish conformation versus aggregation as higher order oligomers have more mass per ion.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Kent J Gillig
- Genomics Research Center, Academia Sinica, 128 Academia Road, Nangang Section 2, Taipei 115, Taiwan, Republic of China
| |
Collapse
|
18
|
Jiang T, Chen Y, Mao L, Marshall AG, Xu W. Extracting biomolecule collision cross sections from the high-resolution FT-ICR mass spectral linewidths. Phys Chem Chem Phys 2016; 18:713-7. [PMID: 26314765 DOI: 10.1039/c5cp02987b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is known that the ion collision cross section (CCS) may be calculated from the linewidth of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectral peak at elevated pressure (e.g., ∼10(-6) Torr). However, the high mass resolution of FT-ICR is sacrificed in those experiments due to high buffer gas pressure. In this study, we describe a linewidth correction method to eliminate the windowing-induced peak broadening effect. Together with the energetic ion-neutral collision model previously developed by our group, this method enables the extraction of CCSs of biomolecules from high-resolution FT-ICR mass spectral linewidths, obtained at a typical operating buffer gas pressure of modern FT-ICR instruments (∼10(-10) Torr). CCS values of peptides including MRFA, angiotensin I, and bradykinin measured by the proposed method agree well with ion mobility measurements, and the unfolding of protein ions (ubiquitin) at higher charge states is also observed.
Collapse
Affiliation(s)
- Ting Jiang
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing 100081, China.
| | - Yu Chen
- The Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lu Mao
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing 100081, China.
| | - Alan G Marshall
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA. and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Wei Xu
- School of Life Science, Beijing Institute of Technology, Haidian, Beijing 100081, China.
| |
Collapse
|
19
|
Benigni P, Fernandez-Lima F. Oversampling Selective Accumulation Trapped Ion Mobility Spectrometry Coupled to FT-ICR MS: Fundamentals and Applications. Anal Chem 2016; 88:7404-12. [DOI: 10.1021/acs.analchem.6b01946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry and ‡Biomolecular Sciences
Institute, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and ‡Biomolecular Sciences
Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
20
|
Cooper HJ. To What Extent is FAIMS Beneficial in the Analysis of Proteins? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:566-77. [PMID: 26843211 PMCID: PMC4792363 DOI: 10.1007/s13361-015-1326-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 05/11/2023]
Abstract
High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, is emerging as a tool for biomolecular analysis. In this article, the benefits and limitations of FAIMS for protein analysis are discussed. The principles and mechanisms of FAIMS separation of ions are described, and the differences between FAIMS and conventional ion mobility spectrometry are detailed. Protein analysis is considered from both the top-down (intact proteins) and the bottom-up (proteolytic peptides) perspective. The roles of FAIMS in the analysis of complex mixtures of multiple intact proteins and in the analysis of multiple conformers of a single protein are assessed. Similarly, the application of FAIMS in proteomics and targeted analysis of peptides are considered.
Collapse
Affiliation(s)
- Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
21
|
Lermyte F, Sobott F. Electron transfer dissociation provides higher-order structural information of native and partially unfolded protein complexes. Proteomics 2015; 15:2813-22. [DOI: 10.1002/pmic.201400516] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Frederik Lermyte
- UA-VITO Center for Proteomics; University of Antwerp; Antwerp Belgium
- Biomolecular & Analytical Mass Spectrometry group; Department of Chemistry; University of Antwerp; Antwerp Belgium
| | - Frank Sobott
- UA-VITO Center for Proteomics; University of Antwerp; Antwerp Belgium
- Biomolecular & Analytical Mass Spectrometry group; Department of Chemistry; University of Antwerp; Antwerp Belgium
| |
Collapse
|
22
|
Cammarata MB, Thyer R, Rosenberg J, Ellington A, Brodbelt JS. Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry. J Am Chem Soc 2015; 137:9128-35. [PMID: 26125523 DOI: 10.1021/jacs.5b04628] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The stepwise reduction of dihydrofolate to tetrahydrofolate entails significant conformational changes of dihydrofolate reductase (DHFR). Binary and ternary complexes of DHFR containing cofactor NADPH, inhibitor methotrexate (MTX), or both NADPH and MTX were characterized by 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. UVPD yielded over 80% sequence coverage of DHFR and resulted in production of fragment ions that revealed the interactions between DHFR and each ligand. UVPD of the binary DHFR·NADPH and DHFR·MTX complexes led to an unprecedented number of fragment ions containing either an N- or C-terminal protein fragment still bound to the ligand via retention of noncovalent interactions. In addition, holo-fragments retaining both ligands were observed upon UVPD of the ternary DHFR·NADPH·MTX complex. The combination of extensive holo and apo fragment ions allowed the locations of the NADPH and MTX ligands to be mapped, with NADPH associated with the adenosine binding domain of DHFR and MTX interacting with the loop domain. These findings are consistent with previous crystallographic evidence. Comparison of the backbone cleavage propensities for apo DHFR and its holo counterparts revealed significant variations in UVPD fragmentation in the regions expected to experience conformational changes upon binding NADPH, MTX, or both ligands. In particular, the subdomain rotation and loop movements, which are believed to occur upon formation of the transition state of the ternary complex, are reflected in the UVPD mass spectra. The UVPD spectra indicate enhanced backbone cleavages in regions that become more flexible or show suppressed backbone cleavages for those regions either shielded by the ligand or involved in new intramolecular interactions. This study corroborates the versatility of 193 nm UVPD mass spectrometry as a sensitive technique to track enzymatic cycles that involve conformational rearrangements.
Collapse
Affiliation(s)
- Michael B Cammarata
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ross Thyer
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jake Rosenberg
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- †Department of Chemistry and ‡Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Schennach M, Breuker K. Probing Protein Structure and Folding in the Gas Phase by Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1059-67. [PMID: 25868904 PMCID: PMC4475247 DOI: 10.1007/s13361-015-1088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 05/11/2023]
Abstract
The established methods for the study of atom-detailed protein structure in the condensed phases, X-ray crystallography and nuclear magnetic resonance spectroscopy, have recently been complemented by new techniques by which nearly or fully desolvated protein structures are probed in gas-phase experiments. Electron capture dissociation (ECD) is unique among these as it provides residue-specific, although indirect, structural information. In this Critical Insight article, we discuss the development of ECD for the structural probing of gaseous protein ions, its potential, and limitations.
Collapse
Affiliation(s)
- Moritz Schennach
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
24
|
Benigni P, Thompson CJ, Ridgeway ME, Park MA, Fernandez-Lima F. Targeted high-resolution ion mobility separation coupled to ultrahigh-resolution mass spectrometry of endocrine disruptors in complex mixtures. Anal Chem 2015; 87:4321-5. [PMID: 25818070 PMCID: PMC4867114 DOI: 10.1021/ac504866v] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Traditional separation and detection of targeted compounds from complex mixtures from environmental matrices requires the use of lengthy prefractionation steps and high-resolution mass analyzers due to the large number of chemical components and their large structural diversity (highly isomeric). In the present work, selected accumulation trapped ion mobility spectrometry (SA-TIMS) is coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for direct separation and characterization of targeted endocrine-disrupting compounds (EDC) from a complex environmental matrix in a single analysis. In particular, targeted identification based on high-resolution mobility (R ∼ 70-120) and ultrahigh-resolution mass measurements (R > 400 000) of seven commonly targeted EDC and their isobars (e.g., bisphenol A, (Z)- and (E)-diethylstilbestrol, hexestrol, estrone, α-estradiol, and 17-ethynylestradiol) is shown from a complex mixture of water-soluble organic matter (e.g., Suwannee River Fulvic Acid Standard II) complemented with reference standard measurements and theoretical calculations (<3% error).
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | | | - Mark E. Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
25
|
Cammarata MB, Brodbelt JS. Structural characterization of holo- and apo-myoglobin in the gas phase by ultraviolet photodissociation mass spectrometry. Chem Sci 2015; 6:1324-1333. [PMID: 29560219 PMCID: PMC5811132 DOI: 10.1039/c4sc03200d] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 11/26/2014] [Indexed: 01/18/2023] Open
Abstract
Ultraviolet photodissociation (UVPD) mass spectrometry is employed to investigate the structure of holo-myoglobin as well as its apo form transferred to the gas phase by native electrospray. UVPD provided insight into the stability of native structural elements of holo-myoglobin. The fragmentation yields from UVPD showed the greatest overall correlation with B-factors generated from the crystal structure of apo-myoglobin, particularly for the more disordered loop regions. Solvent accessibility measurements also showed some correlation with the UVPD fragmentation of holo-myoglobin. Comparison of UVPD of holo- and apo-myoglobin revealed similarities in fragmentation yields, particularly for the lower charge states (8 and 9+). Both holo- and apo-myoglobin exhibited low fragmentation yields for the AGH helical core, whereas regions known to interact with the heme show suppressed fragmentation for holo-myoglobin. The fragment yields from HCD showed the lowest correlation with B-factor values and rather reflected preferential charge-directed backbone cleavages.
Collapse
Affiliation(s)
- Michael B Cammarata
- Department of Chemistry , The University of Texas at Austin , 1 University Station A5300 , Austin , TX , USA 78712 .
| | - Jennifer S Brodbelt
- Department of Chemistry , The University of Texas at Austin , 1 University Station A5300 , Austin , TX , USA 78712 .
| |
Collapse
|
26
|
Zhu F, Glover MS, Shi H, Trinidad JC, Clemmer DE. Populations of metal-glycan structures influence MS fragmentation patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:25-35. [PMID: 25315458 PMCID: PMC4276451 DOI: 10.1007/s13361-014-1000-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 09/04/2014] [Accepted: 09/07/2014] [Indexed: 05/19/2023]
Abstract
The structures and collision-induced dissociation (CID) fragmentation patterns of the permethylated glycan Man5GlcNAc2 are investigated by a combination of hybrid ion mobility spectrometry (IMS), mass spectrometry (MS), and MS/MS techniques. IMS analysis of eight metal-adducted glycans ([Man5GlcNAc2 + M](2+), where M = Mn, Fe, Co, Ni, Cu, Mg, Ca, and Ba) shows distinct conformer patterns. These conformers appear to arise from individual metals binding at different sites on the glycan. Fragmentation studies suggest that these different binding sites influence the CID fragmentation patterns. This paper describes a series of separation, activation, and fragmentation studies that assess which fragments arise from each of the different gas-phase conformer states. Comparison of the glycan distributions formed under gentle ionization conditions with those obtained after activation of the gas-phase ions suggests that these conformer binding states also appear to exist in solution.
Collapse
Affiliation(s)
- Feifei Zhu
- Department of Chemistry, Indiana University, 800 Kirkwood Ave. Bloomington, IN 47405
| | - Matthew S. Glover
- Department of Chemistry, Indiana University, 800 Kirkwood Ave. Bloomington, IN 47405
| | - Huilin Shi
- Department of Chemistry, Indiana University, 800 Kirkwood Ave. Bloomington, IN 47405
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, 800 Kirkwood Ave. Bloomington, IN 47405
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 Kirkwood Ave. Bloomington, IN 47405
| |
Collapse
|
27
|
Shi H, Atlasevich N, Merenbloom SI, Clemmer DE. Solution dependence of the collisional activation of ubiquitin [M + 7H](7+) ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:2000-8. [PMID: 24658799 PMCID: PMC4171273 DOI: 10.1007/s13361-014-0834-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/31/2013] [Accepted: 01/10/2014] [Indexed: 05/12/2023]
Abstract
The solution dependence of gas-phase unfolding for ubiquitin [M + 7H](7+) ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed.
Collapse
|
28
|
Abstract
![]()
Ion mobility spectrometry coupled
with mass spectrometry (IMS–MS)
is used to investigate the populations of different states for ubiquitin
in water:methanol solutions. In these experiments, ubiquitin is electrosprayed
from 20 water:methanol (100:0 to 5:95, pH = 2) solutions, ranging
from native to denaturing conditions. With an increased percentage
of methanol in solution, ubiquitin ions ([M + 7H]7+ to
[M + 12H]12+) show substantial variations in both charge
state distributions and ion mobility distributions. Analysis of these
data provides evidence for the existence of five ubiquitin states
in solution: the native N state, favored in solutions of 100:0 to
70:30 water:methanol for the +7 and +8 charge states; the more helical
A state and a new closely related A′ state, favored in solutions
of 70:30 to 5:95 water:methanol for the +9 to +12 charge states; the
unfolded U state, populated in 40:60 to 5:95 water:methanol solutions
for the +8 to +10 and +12 charge states; and a new low-abundance state
termed the B state, observed for 100:0 to 70:30 water:methanol solutions
in the +8 to +10 and +12 charge states. The relative abundances for
different states in different solutions are determined. The analysis
presented here provides insight into how solution structures evolve
into anhydrous conformations and demonstrates the utility of IMS–MS
methods as a means of characterizing populations of conformers for
proteins in solution.
Collapse
Affiliation(s)
- Huilin Shi
- Department of Chemistry, Indiana University , 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | |
Collapse
|
29
|
Frese CK, Nolting D, Altelaar AFM, Griep-Raming J, Mohammed S, Heck AJR. Characterization of electron transfer dissociation in the Orbitrap Velos HCD cell. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1663-1670. [PMID: 23605687 DOI: 10.1007/s13361-013-0618-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
Electron transfer dissociation (ETD) is commonly employed in ion traps utilizing rf fields that facilitate efficient electron transfer reactions. Here, we explore performing ETD in the HCD collision cell on an Orbitrap Velos instrument by applying a static DC gradient axially to the rods. This gradient enables simultaneous three dimensional, charge sign independent, trapping of cations and anions, initiating electron transfer reactions in the center of the HCD cell where oppositely charged ions clouds overlap. Here, we evaluate this mode of operation for a number of tryptic peptide populations and the top-down sequence analysis of ubiquitin. Our preliminary data show that performing ETD in the HCD cell provides similar fragmentation as ion trap-ETD but requires further optimization to match performance of ion trap-ETD.
Collapse
Affiliation(s)
- Christian K Frese
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, University of Washington , Seattle, Washington 98195-1700, United States
| | | |
Collapse
|
31
|
Shaw JB, Kaplan DA, Brodbelt JS. Activated ion negative electron transfer dissociation of multiply charged peptide anions. Anal Chem 2013; 85:4721-8. [PMID: 23577957 DOI: 10.1021/ac4005315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the implementation and evaluation of activated ion negative electron transfer dissociation (AI-NETD) in order to enhance the analytical capabilities of NETD for the elucidation of doubly deprotonated peptide anions. The analytical figures-of-merit and fragmentation characteristics are compared for NETD alone and with supplemental collisional activation of the charge reduced precursors or infrared photoactivation of the entire ion population during the NETD reaction period. The addition of supplemental collisional activation of charge reduced precursor ions or infrared photoactivation of the entire ion population concomitant with the NETD reaction period significantly improves sequencing capabilities for peptide anions as evidenced by the greater abundances of product ions and overall sequence coverage. Neither of these two AI-NETD methods significantly alters the net fragmentation efficiencies relative to NETD; however, the sequence ion conversion percentages with respect to formation of diagnostic product ions are notably higher. Supplemental infrared photoactivation outperforms collisional activation for most of the peptide fragmentation metrics evaluated.
Collapse
Affiliation(s)
- Jared B Shaw
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, United States
| | | | | |
Collapse
|
32
|
Cassou CA, Sterling HJ, Susa AC, Williams ER. Electrothermal supercharging in mass spectrometry and tandem mass spectrometry of native proteins. Anal Chem 2012. [PMID: 23194134 DOI: 10.1021/ac302256d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrothermal supercharging of protein ions formed by electrospray ionization from buffered aqueous solutions results in significant increases to both the maximum and average charge states compared to native mass spectrometry in which ions are formed from the same solutions but with lower spray potentials. For eight of the nine proteins investigated, the maximum charge states of protonated ions formed from native solutions with electrothermal supercharging is greater than those obtained from conventional denaturing solutions consisting of water/methanol/acid, although the average charging is slightly lower owing to contributions of small populations of more folded low charge-state structures. Under these conditions, electrothermal supercharging is slightly less effective for anions than for cations. Equivalent sequence coverage (80%) is obtained with electron transfer dissociation of the same high charge-state ion of cytochrome c formed by electrothermal supercharging from native solutions and from denaturing solutions. Electrothermal supercharging should be advantageous for combining structural studies of proteins in native environments with mass spectrometers that have limited high m/z capabilities and for significantly improving tandem mass spectrometry performance for protein ions formed from solutions in which the molecules have native structures and activities.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California, Berkeley, 94720-1460, United States
| | | | | | | |
Collapse
|
33
|
Abstract
Peptide and protein characterization by mass spectrometry (MS) relies on their dissociation in the gas phase into specific fragments whose mass values can be aligned as 'mass ladders' to provide sequence information and to localize possible post-translational modifications. The most common dissociation method involves slow heating of even-electron (M+nH) n+ ions from electrospray ionization by energetic collisions with inert gas, and cleavage of amide backbone bonds. More recently, dissociation methods based on electron capture or transfer were found to provide far more extensive sequence coverage through unselective cleavage of backbone N-Cα bonds. As another important feature of electron capture dissociation (ECD) and electron transfer dissociation (ETD), their unique unimolecular radical ion chemistry generally preserves labile posttranslational modifications such as glycosylation and phosphorylation. Moreover, it was postulated that disulfide bond cleavage is preferred over backbone cleavage, and that capture of a single electron can break both a backbone and a disulfide bond, or even two disulfide bonds between two peptide chains. However, the proposal of preferential disulfide bond cleavage in ECD or ETD has recently been debated. The experimental data presented here reveal that the mechanism of protein disulfide bond cleavage is much more intricate than previously anticipated.
Collapse
Affiliation(s)
- Barbara Ganisl
- Institute for Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Kathrin Breuker
- Institute for Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| |
Collapse
|
34
|
Flick TG, Williams ER. Supercharging with trivalent metal ions in native mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1885-95. [PMID: 22948901 PMCID: PMC3474886 DOI: 10.1007/s13361-012-0463-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 05/11/2023]
Abstract
Addition of 1.0 mM LaCl(3) to aqueous ammonium acetate solutions containing proteins in their folded native forms can result in a significant increase in the molecular ion charging obtained with electrospray ionization as a result of cation adduction. In combination with m-nitrobenzyl alcohol, molecular ion charge states that are greater than the number of basic sites in the protein can be produced from these native solutions, even for lysozyme, which is conformationally constrained by four intramolecular disulfide bonds. Circular dichroism spectroscopy indicates that the conformation of ubiquitin is not measurably affected with up to 1.0 M LaCl(3), but ion mobility data indicate that the high charge states that are formed when 1.0 mM LaCl(3) is present are more unfolded than the low charge states formed without this reagent. These and other results indicate that the increased charging is a result of La(3+) preferentially adducting onto compact or more native-like conformers during ESI and the gas-phase ions subsequently unfolding as a result of increased Coulomb repulsion. Electron capture dissociation of these high charge-state ions formed from these native solutions results in comparable sequence coverage to that obtained for ions formed from denaturing solutions without supercharging reagents, making this method a potentially powerful tool for obtaining structural information in native mass spectrometry.
Collapse
Affiliation(s)
- Tawnya G Flick
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720-1460, USA
| | | |
Collapse
|
35
|
Kalli A, Hess S. Electron capture dissociation of hydrogen-deficient peptide radical cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1729-1740. [PMID: 22855421 DOI: 10.1007/s13361-012-0433-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Hydrogen-deficient peptide radical cations exhibit fascinating gas phase chemistry, which is governed by radical driven dissociation and, in many cases, by a combination of radical and charge driven fragmentation. Here we examine electron capture dissociation (ECD) of doubly, [M + H](2+•), and triply, [M + 2H](3+•), charged hydrogen-deficient species, aiming to investigate the effect of a hydrogen-deficient radical site on the ECD outcome and characterize the dissociation pathways of hydrogen-deficient species in ECD. ECD of [M + H](2+•) and [M + 2H](3+•) precursor ions resulted in efficient electron capture by the hydrogen-deficient species. However, the intensities of c- and z-type product ions were reduced, compared with those observed for the even electron species, indicating suppression of N-C(α) backbone bond cleavages. We postulate that radical recombination occurs after the initial electron capture event leading to a stable even electron intermediate, which does not trigger N-C(α) bond dissociations. Although the intensities of c- and z-type product ions were reduced, the number of backbone bond cleavages remained largely unaffected between the ECD spectra of the even electron and hydrogen-deficient species. We hypothesize that a small ion population exist as a biradical, which can trigger N-C(α) bond cleavages. Alternatively, radical recombination and N-C(α) bond cleavages can be in competition, with radical recombination being the dominant pathway and N-C(α) cleavages occurring to a lesser degree. Formation of b- and y-type ions observed for two of the hydrogen-deficient peptides examined is also discussed.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, 91125, USA
| | | |
Collapse
|
36
|
Moss CL, Liang W, Li X, Tureček F. The early life of a peptide cation-radical. Ground and excited-state trajectories of electron-based peptide dissociations during the first 330 femtoseconds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:446-459. [PMID: 22187160 DOI: 10.1007/s13361-011-0283-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/11/2011] [Accepted: 10/18/2011] [Indexed: 05/31/2023]
Abstract
We report a new approach to investigating the mechanisms of fast peptide cation-radical dissociations based on an analysis of time-resolved reaction progress by Ehrenfest dynamics, as applied to an Ala-Arg cation-radical model system. Calculations of stationary points on the ground electronic state that were carried out with effective CCSD(T)/6-311++G(3df,2p) could not explain the experimental branching ratios for loss of a hydrogen atom, ammonia, and N-C(α) bond dissociation in (AR + 2H)(+•). The Ehrenfest dynamics results indicate that the ground and low-lying excited electronic states of (AR + 2H)(+•) follow different reaction courses in the first 330 femtoseconds after electron attachment. The ground (X) state undergoes competing loss of N-terminal ammonia and isomerization to an aminoketyl radical intermediate that depend on the vibrational energy of the charge-reduced ion. The A and B excited states involve electron capture in the Arg guanidine and carboxyl groups and are non-reactive on the short time scale. The C state is dissociative and progresses to a fast loss of an H atom from the Arg guanidine group. Analogous results were obtained by using the B3LYP and CAM-B3LYP density functionals for the excited state dynamics and including the universal M06-2X functional for ground electronic state calculations. The results of this Ehrenfest dynamics study indicate that reaction pathway branching into the various dissociation channels occurs in the early stages of electron attachment and is primarily determined by the electronic states being accessed. This represents a new paradigm for the discussion of peptide dissociations in electron based methods of mass spectrometry.
Collapse
Affiliation(s)
- Christopher L Moss
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, USA
| | | | | | | |
Collapse
|
37
|
Rožman M, Gaskell SJ. Charge state dependent top-down characterisation using electron transfer dissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:282-286. [PMID: 22223314 DOI: 10.1002/rcm.5330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The dissociation of protein ions (5-30 kDa) as a function of charge state has been explored in order to suggest the optimal charge state range for top-down sequencing. Proteins were generated under denaturing conditions and their charge states were modified via ion/ion proton transfer reactions prior to dissociation. Electron transfer dissociation (ETD) data suggested optimal sequence coverage for charge states in the m/z range from 700 to 950 while limited sequence coverage was noted when the precursor m/z was above 1000. Sequence coverage from ETD data was found to be dependent on protein size, with smaller proteins having better sequence coverage. An observed depletion in sequence-related information was mainly attributed to limited instrument (ion trap) performance (m/z range and resolution). For a combined ETD/collision-induced dissociation (CID) approach it is difficult to propose an optimal m/z range since good sequence coverage for CID is at intermediate charge states and the optimal m/z range increases with protein size. When only one charge state can be analysed in a combined ETD/CID approach, a range around 950 m/z is suggested as a starting point. Alternatively, two charge states should be explored, each optimal for either ETD or CID. Overall, these suggestions should be useful to achieve enhanced characterisation of smaller proteins/large protein fragments (generated from denaturing solutions) in minimal analysis times.
Collapse
Affiliation(s)
- Marko Rožman
- Ruđer Bošković Institute, HR-10002, Zagreb, Croatia.
| | | |
Collapse
|
38
|
Liu L, Michelsen K, Kitova EN, Schnier PD, Klassen JS. Energetics of Lipid Binding in a Hydrophobic Protein Cavity. J Am Chem Soc 2012; 134:3054-60. [DOI: 10.1021/ja208909n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lan Liu
- Alberta Glycomics Centre and
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Klaus Michelsen
- Molecular Structure, Amgen, Thousand Oaks,
California 91320, United States
| | - Elena N. Kitova
- Alberta Glycomics Centre and
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Paul D. Schnier
- Molecular Structure, Amgen, Thousand Oaks,
California 91320, United States
| | - John S. Klassen
- Alberta Glycomics Centre and
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
39
|
Fragmentation methods on the balance: unambiguous top–down mass spectrometric characterization of oxaliplatin–ubiquitin binding sites. Anal Bioanal Chem 2011; 402:2655-62. [DOI: 10.1007/s00216-011-5523-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
|
40
|
Hansen TA, Jung HR, Kjeldsen F. Electron transfer dissociation reveals changes in the cleavage frequencies of backbone bonds distant to amide-to-ester substitutions in polypeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1953-1957. [PMID: 21952783 DOI: 10.1007/s13361-011-0242-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/22/2011] [Accepted: 08/22/2011] [Indexed: 05/31/2023]
Abstract
Interrogation of electron transfer dissociation (ETD) mass spectra of peptide amide-to-ester backbone bond substituted analogues (depsipeptides) reveals substantial differences in the entire backbone cleavage frequencies. It is suggested that the point permutation of backbone bonds leads to changes in the predominant ion structures by removal/weakening of specific hydrogen bonding. ETD responds to these changes by redistributing the cleavage frequencies of the peptide backbone bonds. In comparison, no distinction between depsi-/peptide was observed using collision-activated dissociation, which is consistent with a general unfolding and elimination of structural information of these ions. These results should encourage further exploration of depsipeptides for gas-phase structural characterization.
Collapse
Affiliation(s)
- Thomas A Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
41
|
Yoo HJ, Wang N, Zhuang S, Song H, Håkansson K. Negative-Ion Electron Capture Dissociation: Radical-Driven Fragmentation of Charge-Increased Gaseous Peptide Anions. J Am Chem Soc 2011; 133:16790-3. [DOI: 10.1021/ja207736y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hyun Ju Yoo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ning Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Shuyi Zhuang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hangtian Song
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
42
|
Wyttenbach T, Bowers MT. Structural Stability from Solution to the Gas Phase: Native Solution Structure of Ubiquitin Survives Analysis in a Solvent-Free Ion Mobility–Mass Spectrometry Environment. J Phys Chem B 2011; 115:12266-75. [DOI: 10.1021/jp206867a] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Wyttenbach
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
43
|
Zimnicka M, Gregersen JA, Tureček F. A Stable Aminothioketyl Radical in the Gas Phase. J Am Chem Soc 2011; 133:10290-301. [DOI: 10.1021/ja203611x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magdalena Zimnicka
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| | - Joshua A. Gregersen
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| |
Collapse
|
44
|
Moss CL, Chung TW, Čeřovský V, Tureček F. Electron transfer dissociation of a melectin peptide: correlating the precursor ion structure with peptide backbone dissociations. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Electron transfer dissociation (ETD) of doubly and triply charged ions from the amphipathic N-terminal decapeptide GFLSILKKVL-NH2 segment of melectin gave different distributions of fragment ions. The triply charged ions generated extensive series of fragment ions of c and z type that covered the entire sequence from both the N and C termini. In contrast, electron transfer to the doubly charged ions caused backbone cleavages that occurred at residues close to the N and C termini. Attachment of a free low-energy electron to the doubly charged ions caused primary dissociations close to the N and C termini that were followed by consecutive dissociations of z ions. The structure of gaseous doubly charged ions from the melectin peptide was elucidated by a combination of exhaustive conformational search by force-field molecular dynamics, large-scale gradient optimization using the semiempirical PM6 method, and density functional theory single-point energy and gradient optimization calculations. The most stable doubly charged ions were found to be protonated at the lysine ε-amino groups and have globular conformations. The backbone cleavages in ETD correlated with the electronic structure of cation-radicals produced by electron attachment to the most stable conformers. The charged lysine ammonium groups direct the incoming electron to the π* orbitals at the proximate amide groups at Phe, Leu, Lys and Val residues that show the highest spin densities. Electron attachment at these amide groups weakens the N–Cα bonds between the Phe-Leu, Leu-Ser, Lys-Lys and Lys-Val residues and causes backbone dissociations.
Collapse
|
45
|
Giganti VG, Kundoor S, Best WA, Angel LA. Ion mobility-mass spectrometry study of folded ubiquitin conformers induced by treatment with cis-[Pd(en)(H2O2]2+. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:300-309. [PMID: 21472589 DOI: 10.1007/s13361-010-0044-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/09/2010] [Accepted: 12/09/2010] [Indexed: 05/30/2023]
Abstract
Ion mobility-mass spectrometry is used to study the new conformers of bovine ubiquitin (Ub) and the palladium(II) binding sites after the incubation with cis-[Pd(en)(H(2)O)(2)](2+) where en = ethylenediamine. Palladium(II) complexes are potentially useful proteomic reagents because they selectively bind to the side groups of methionine and histidine and hydrolytically cleave the peptide bond. Incubating 1.0 mM solution of Ub with 10.0 molar excess of cis-[Pd(en)(H(2)O)(2)](2+) results with one to four Pd(2+) or Pd(en)(2+) being attached to intact Ub and two conformer families at each of the 4+ to 11+ charge states. The 4+ and 5+ species exhibit a compact form, which is also observed in untreated Ub, and a new highly folded conformer. The 6+ to 10+ exhibit an elongated form, also observed in Ub, and a new partially folded conformer. The new conformers are shown to be more stable if they contain at least one Pd(2+), rather than all Pd(en)(2+). IM-MS/MS of [UbPd(2)en+5H](9+) shows that both the partially folded and elongated conformers first lose the en ligand, followed by dissociating into product ions that indicate that Met1, Glu51/Asp52, His68, and Glu16 are binding sites for Pd(2+). These results suggest that Pd(2+) is simultaneously binding to multiple side groups across different regions of Ub. This type of sequestering of Pd(2+) probably reduces the efficiency of Pd(2+) ions to selectively cleave Ub because it prevents Pd(2+) anchoring to only Met or His and to an adjacent backbone amide nitrogen and forming the "activated complex" necessary for specific peptide bond cleavage.
Collapse
|
46
|
Tanabe T, Noda K, Miyagi S, Kurita N, Tanaka S, Setzler J, Wenzel W, Starikov EB, Cuniberti G. Resonant neutral particle emission in collisions of electrons with protonated peptides with disulfide bonds at high energies. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Chung TW, Moss CL, Zimnicka M, Johnson RS, Moritz RL, Tureček F. Electron-capture and -transfer dissociation of peptides tagged with tunable fixed-charge groups: structures and dissociation energetics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:13-30. [PMID: 21472540 DOI: 10.1007/s13361-010-0012-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/26/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Pyridiniummethylcarbonyl moieties that were previously designed on the basis of electronic structure analysis are now utilized as fixed-charge tags with tunable electronic properties to be used for N-terminal peptide derivatization and sequencing by electron-transfer dissociation. Dipeptides AK and KA were derivatized at the peptide N-terminus with 4-dimethylaminopyridinium-N-acetyl (DMAP-ac) and pyridinium-N-acetyl (pyrid-ac) tags of increasing intrinsic recombination energies. Upon the capture of a free electron or electron transfer from fluoranthene anions, (DMAP-ac-AK+H)(2+), (DMAP-ac-KA+H)(2+), (pyrid-ac-AK+H)(2+) and (pyrid-ac-KA+H)(2+) ions, as well as underivatized (AK+2H)(2+), completely dissociated. The fixed-charge tags steered the dissociation upon electron transfer to form abundant backbone N-C(α) bond cleavages, whereas the underivatized peptide mainly underwent H-atom and side-chain losses. Precursor ion structures for the tagged peptides were analyzed by an exhaustive conformational search combined with B3LYP/6-31+G(d,p) geometry optimization and single-point energy calculations in order to select the global energy minima. Structures, relative energies, transition states, ion-molecule complexes, and dissociation products were identified for several charge-reduced species from the tagged peptides. The electronic properties of the charge tags and their interactions with the peptide moieties are discussed. Electrospray ionization and electron-transfer dissociation of larger peptides are illustrated with a DMAP-tagged pentapeptide.
Collapse
Affiliation(s)
- Thomas W Chung
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sterling HJ, Williams ER. Real-time hydrogen/deuterium exchange kinetics via supercharged electrospray ionization tandem mass spectrometry. Anal Chem 2010; 82:9050-7. [PMID: 20942406 PMCID: PMC3049191 DOI: 10.1021/ac101957x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amide hydrogen/deuterium exchange (HDX) rate constants of bovine ubiquitin in an ammonium acetate solution containing 1% of the electrospray ionization (ESI) "supercharging" reagent m-nitrobenzyl alcohol (m-NBA) were obtained using top-down, electron transfer dissociation (ETD) tandem mass spectrometry (MS). The supercharging reagent replaces the acid and temperature "quench" step in the conventional MS approach to HDX experiments by causing rapid protein denaturation to occur in the ESI droplet. The higher charge state ions that are produced with m-NBA are more unfolded, as measured by ion mobility, and result in higher fragmentation efficiency and higher sequence coverage with ETD. Single amino acid resolution was obtained for 44 of 72 exchangeable amide sites, and summed kinetic data were obtained for regions of the protein where adjacent fragment ions were not observed, resulting in an overall spatial resolution of 1.3 residues. Comparison of these results with previous values from NMR indicates that the supercharging reagent does not cause significant structural changes to the protein in the initial ESI solution and that scrambling or back-exchange is minimal. This new method for top-down HDX-MS enables real-time kinetic data measurements under physiological conditions, similar to those obtained using NMR, with comparable spatial resolution and significantly better sensitivity.
Collapse
Affiliation(s)
- Harry J. Sterling
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| |
Collapse
|
49
|
Zhang Z. Prediction of electron-transfer/capture dissociation spectra of peptides. Anal Chem 2010; 82:1990-2005. [PMID: 20148580 DOI: 10.1021/ac902733z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An empirical model, based on classic kinetics, was developed for quantitative prediction of electron-transfer dissociation (ETD) and electron-capture dissociation (ECD) spectra of peptides. The model includes most fragmentation pathways described in the literature plus some additional pathways based on the author's assumptions and observations. The ETD model was trained with more than 7000 ETD spectra, with and without supplemental activation. The ECD model was trained with more than 6000 ECD spectra. The trained ETD and ECD models are able to predict ETD and ECD spectra with reasonable accuracy in ion intensities for peptide precursors up to 4000 u in mass.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Process and Product Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.
| |
Collapse
|
50
|
Yin S, Loo JA. Elucidating the site of protein-ATP binding by top-down mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:899-907. [PMID: 20163968 DOI: 10.1016/j.jasms.2010.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 05/11/2023]
Abstract
A Fourier-transform ion cyclotron resonance (FT-ICR) top-down mass spectrometry strategy for determining the adenosine triphosphate (ATP)-binding site on chicken adenylate kinase is described. Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), but the ability to detect protein-ligand complexes depends on their stability in the gas phase. Previously, we showed that collisionally activated dissociation (CAD) of protein-nucleotide triphosphate complexes yield products from the dissociation of a covalent phosphate bond of the nucleotide with subsequent release of the nucleotide monophosphate (Yin, S. et al., J. Am. Soc. Mass Spectrom. 2008, 19, 1199-1208). The intrinsic stability of electrostatic interactions in the gas phase allows the diphosphate group to remain noncovalently bound to the protein. This feature is exploited to yield positional information on the site of ATP-binding on adenylate kinase. CAD and electron capture dissociation (ECD) of the adenylate kinase-ATP complex generate product ions bearing mono- and diphosphate groups from regions previously suggested as the ATP-binding pocket by NMR and crystallographic techniques. Top-down MS may be a viable tool to determine the ATP-binding sites on protein kinases and identify previously unknown protein kinases in a functional proteomics study.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|