1
|
Gass DT, Quintero AV, Hatvany JB, Gallagher ES. Metal adduction in mass spectrometric analyses of carbohydrates and glycoconjugates. MASS SPECTROMETRY REVIEWS 2024; 43:615-659. [PMID: 36005212 DOI: 10.1002/mas.21801] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Glycans, carbohydrates, and glycoconjugates are involved in many crucial biological processes, such as disease development, immune responses, and cell-cell recognition. Glycans and carbohydrates are known for the large number of isomeric features associated with their structures, making analysis challenging compared with other biomolecules. Mass spectrometry has become the primary method of structural characterization for carbohydrates, glycans, and glycoconjugates. Metal adduction is especially important for the mass spectrometric analysis of carbohydrates and glycans. Metal-ion adduction to carbohydrates and glycoconjugates affects ion formation and the three-dimensional, gas-phase structures. Herein, we discuss how metal-ion adduction impacts ionization, ion mobility, ion activation and dissociation, and hydrogen/deuterium exchange for carbohydrates and glycoconjugates. We also compare the use of different metals for these various techniques and highlight the value in using metals as charge carriers for these analyses. Finally, we provide recommendations for selecting a metal for analysis of carbohydrate adducts and describe areas for continued research.
Collapse
Affiliation(s)
- Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Ana V Quintero
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Jacob B Hatvany
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| |
Collapse
|
2
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Mendis PM, Jackson GP. Structural characterization of human milk oligosaccharides using ultrahigh performance liquid chromatography-helium charge transfer dissociation mass spectrometry. Glycobiology 2022; 32:483-495. [PMID: 35275172 PMCID: PMC9271224 DOI: 10.1093/glycob/cwac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The combination of helium charge transfer dissociation mass spectrometry (He-CTD-MS) with ultrahigh performance liquid chromatography (UHPLC) is presented for the analysis of a complex mixture of acidic and neutral human milk oligosaccharides (HMOs). The research focuses on the identification of the monosaccharide sequence, the branching patterns, the sialylation/fucosylation arrangements, and the differentiation of isomeric oligosaccharides in the mixture. Initial studies first optimized the conditions for the UHPLC separation and the He-CTD-MS conditions. Results demonstrate that He-CTD is compatible with UHPLC timescales and provides unambiguous glycosidic and cross-ring cleavages from both the reducing and the nonreducing ends, which is not typically possible using collision-induced dissociation. He-CTD produces informative fragments, including 0,3An and 0,4An ions, which have been observed with electron transfer dissociation, electron detachment dissociation, and ultraviolet photodissociation (UVPD) and are crucial for differentiating the α-2,3- versus α-2,6-linked sialic acid (Neu5Ac) residues present among sialyllacto-N-tetraose HMOs. In addition to the linkage positions, He-CTD is able to differentiate structural isomers for both sialyllacto-N-tetraoses and lacto-N-fucopentaoses structures by providing unique, unambiguous cross-ring cleavages of types 0,2An, 0,2Xn, and 1,5An while preserving most of the labile Neu5Ac and fucose groups.
Collapse
Affiliation(s)
- Praneeth M Mendis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506-6121, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506-6121, USA.,Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506-6121, USA
| |
Collapse
|
4
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
5
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Schaller-Duke RM, Bogala MR, Cassady CJ. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1021-1035. [PMID: 29492773 PMCID: PMC5943087 DOI: 10.1007/s13361-018-1906-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 05/04/2023]
Abstract
Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ranelle M Schaller-Duke
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Mallikharjuna R Bogala
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Carolyn J Cassady
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
8
|
Osburn S, Speciale G, Williams SJ, O'Hair RAJ. Gas-Phase Intercluster Thiyl-Radical Induced C-H Bond Homolysis Selectively Forms Sugar C2-Radical Cations of Methyl D-Glucopyranoside: Isotopic Labeling Studies and Cleavage Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1425-1431. [PMID: 28474266 DOI: 10.1007/s13361-017-1667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
A suite of isotopologues of methyl D-glucopyranosides is used in conjunction with multistage mass spectrometry experiments to determine the radical site and cleavage reactions of sugar radical cations formed via a recently developed 'bio-inspired' method. In the first stage of CID (MS2), collision-induced dissociation (CID) of a protonated noncovalent complex between the sugar and S-nitrosocysteamine, [H3NCH2CH2SNO + M]+, unleashes a thiyl radical via bond homolysis to give the noncovalent radical cation, [H3NCH2CH2S• + M]+. CID (MS3) of this radical cation complex results in dissociation of the noncovalent complex to generate the sugar radical cation. Replacement of all exchangeable OH and NH protons with deuterons reveals that the sugar radical cation is formed in a process involving abstraction of a hydrogen atom from a C-H bond of the sugar coupled with proton transfer to the sugar, to form [M - H• + D+]. Investigation of this process using individual C-D labeled sugars reveals that the main site of H/D abstraction is the C2 position, since only the C2-deuterium labeled sugar yields a dominant [M - D• + H+] product ion. The fragmentation reactions of the distonic sugar radical cation, [M - H•+ H+], were studied by another stage of CID (MS4). 13C-labeling studies revealed that a series of three related fragment ions each contain the C1-C3 atoms; these arise from cross-ring cleavage reactions of the sugar. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandra Osburn
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
- ARC Center of Excellence for Free Radical Chemistry and Biotechnology, The University of Melbourne, Victoria, 3010, Australia
| | - Gaetano Speciale
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
- ARC Center of Excellence for Free Radical Chemistry and Biotechnology, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
9
|
Lelario F, Labella C, Napolitano G, Scrano L, Bufo SA. Fragmentation study of major spirosolane-type glycoalkaloids by collision-induced dissociation linear ion trap and infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2395-2406. [PMID: 27593526 DOI: 10.1002/rcm.7727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/20/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Glycoalkaloids play a key role in the plant protection system against phytopathogens including fungi, viruses, bacteria, insects and worms. They can be toxic to humans if consumed in high concentrations causing gastrointestinal disturbances. METHODS The structural characterization of the major spirosolane glycoalkaloids, solasonine, solamargine, α-tomatine and dehydrotomatine, were investigated by positive electrospray ionization (ESI) coupled with a hybrid linear ion trap (LIT) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Tandem mass spectrometric analysis of spirosolane glycoalkaloids was performed by both collision-induced dissociation (CID) within the LIT and infrared multiphoton dissociation (IRMPD) in conjunction with the FTICR cell. RESULTS Several common product ions were observed, generated by losses of the sugar moiety or aglycone fragmentation in the B- or E-ring, that can provide information on the accurate mass of aglycone and the primary sequence and branching of the oligosaccharide chains. Thanks to the multistage CID it was possible to understand the fragmentation pathways and thanks to the high resolution of IRMPD-FTICR the elemental compositions of product ions were obtained. CONCLUSIONS Because the investigated tandem mass spectra data were acquired with high mass accuracy, unambiguous interpretation and determination of the chemical compositions for the majority of detected fragment ions were feasible. From these data, generalized fragmentation pathways were proposed, providing guidance for the characterization of unknown glycoalkaloids in plants. Copyright © John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- F Lelario
- Department of Science, University of Basilicata, Potenza, Italy.
| | - C Labella
- Department of Science, University of Basilicata, Potenza, Italy
| | - G Napolitano
- Department of Science, University of Basilicata, Potenza, Italy
| | - L Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Matera, Italy
| | - S A Bufo
- Department of Science, University of Basilicata, Potenza, Italy
| |
Collapse
|
10
|
Huang Y, Pu Y, Yu X, Costello CE, Lin C. Mechanistic Study on Electronic Excitation Dissociation of the Cellobiose-Na(+) Complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:319-28. [PMID: 26432580 PMCID: PMC4724539 DOI: 10.1007/s13361-015-1277-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 05/04/2023]
Abstract
The recent development of electron activated dissociation (ExD) techniques has opened the door for high-throughput, detailed glycan structural elucidation. Among them, ExD methods employing higher-energy electrons offer several advantages over low-energy electron capture dissociation (ECD), owing to their applicability towards chromophore-labeled glycans and singly charged ions, and ability to provide more extensive structural information. However, a lack of understanding of these processes has hindered rational optimization of the experimental conditions for more efficient fragmentation as well as the development of informatics tools for interpretation of the complex glycan ExD spectra. Here, cellobiose-Na(+) was used as the model system to investigate the fragmentation behavior of metal-adducted glycans under irradiation of electrons with energy exceeding their ionization potential, and served as the basis on which a novel electronic excitation dissociation (EED) mechanism was proposed. It was found that ionization of the glycan produces a mixture of radical cations and ring-opened distonic ions. These distonic ions then capture a low-energy electron to produce diradicals with trivial singlet-triplet splitting, and subsequently undergo radical-induced dissociation to produce a variety of fragment ions, the abundances of which are influenced by the stability of the distonic ions from which they originate. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yiqun Huang
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yi Pu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Xiang Yu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Catherine E Costello
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Cheng Lin
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
11
|
Antoine R, Lemoine J, Dugourd P. Electron photodetachment dissociation for structural characterization of synthetic and bio-polymer anions. MASS SPECTROMETRY REVIEWS 2014; 33:501-22. [PMID: 24285407 DOI: 10.1002/mas.21402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 05/25/2023]
Abstract
Tandem mass spectrometry (MS-MS) is a generic term evoking techniques dedicated to structural analysis, detection or quantification of molecules based on dissociation of a precursor ion into fragments. Searching for the most informative fragmentation patterns has led to the development of a vast array of activation modes that offer complementary ion reactivity and dissociation pathways. Collisional activation of ions using atoms, molecules or surface resulting in unimolecular dissociation of activated ions still plays a key role in tandem mass spectrometry. The discovery of electron capture dissociation (ECD) and then the development of other electron-ion or ion/ion reaction methods, constituted a significant breakthrough, especially for structural analysis of large biomolecules. Similarly, photon activation opened promising new frontiers in ion fragmentation owing to the ability of tightly controlled internal energy deposition and easy implementation on commercial instruments. Ion activation by photons includes slow heating methods such as infrared multiple photon dissociation (IRMPD) and black-body infrared radiative dissociation (BIRD) and higher energy methods like ultra-violet photodissociation (UVPD) and electron photo detachment dissociation (EPD). EPD occurs after UV irradiation of multiply negatively charged ions resulting in the formation of oxidized radical anions. The present paper reviews the hypothesis regarding the mechanisms of electron photo-detachment, radical formation and direct or activated dissociation pathways that support the observation of odd and even electron product ions. Finally, the value of EPD as a complementary structural analysis tool is illustrated through selected examples of synthetic polymers, oligonucleotides, polypeptides, lipids, and polysaccharides.
Collapse
Affiliation(s)
- Rodolphe Antoine
- University of Lyon, F-69622, Lyon, France; CNRS et Université Lyon 1, UMR5306, Institut Lumière Matière, Villeurbanne, France
| | | | | |
Collapse
|
12
|
Huang Y, Pu Y, Yu X, Costello CE, Lin C. Mechanistic study on electron capture dissociation of the oligosaccharide-Mg²⁺ complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1451-60. [PMID: 24845360 PMCID: PMC4108535 DOI: 10.1007/s13361-014-0921-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 05/04/2023]
Abstract
Electron capture dissociation (ECD) has shown great potential in structural characterization of glycans. However, our current understanding of the glycan ECD process is inadequate for accurate interpretation of the complex glycan ECD spectra. Here, we present the first comprehensive theoretical investigation on the ECD fragmentation behavior of metal-adducted glycans, using the cellobiose-Mg²⁺ complex as the model system. Molecular dynamics simulation was carried out to determine the typical glycan-Mg²⁺ binding patterns and the lowest-energy conformer identified was used as the initial geometry for density functional theory-based theoretical modeling. It was found that the electron is preferentially captured by Mg²⁺ and the resultant Mg⁺• can abstract a hydroxyl group from the glycan moiety to form a carbon radical. Subsequent radical migration and α-cleavage(s) result in the formation of a variety of product ions. The proposed hydroxyl abstraction mechanism correlates well with the major features in the ECD spectrum of the Mg²⁺-adducted cellohexaose. The mechanism presented here also predicts the presence of secondary, radical-induced fragmentation pathways. These secondary fragment ions could be misinterpreted, leading to erroneous structural determination. The present study highlights an urgent need for continuing investigation of the glycan ECD mechanism, which is imperative for successful development of bioinformatics tools that can take advantage of the rich structural information provided by ECD of metal-adducted glycans.
Collapse
Affiliation(s)
- Yiqun Huang
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Yi Pu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Xiang Yu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Catherine E. Costello
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Cheng Lin
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
13
|
Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal Chem 2014; 86:196-212. [PMID: 24313268 PMCID: PMC3924431 DOI: 10.1021/ac403969n] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - L. Renee Ruhaak
- Department of Chemistry, University of California at Davis, Davis, CA 95616
| | | | | |
Collapse
|
14
|
Deciphering the structure of isomeric oligosaccharides in a complex mixture by tandem mass spectrometry: Photon activation with vacuum ultra-violet brings unique information and enables definitive structure assignment. Anal Chim Acta 2014; 807:84-95. [DOI: 10.1016/j.aca.2013.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 11/23/2022]
|
15
|
Zhou W, Håkansson K. Electron capture dissociation of divalent metal-adducted sulfated N-glycans released from bovine thyroid stimulating hormone. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1798-806. [PMID: 23982932 PMCID: PMC3867818 DOI: 10.1007/s13361-013-0700-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 05/04/2023]
Abstract
Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca(2+), Mg(2+), and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
16
|
Abstract
Powerful new strategies based on mass spectrometry are revolutionizing the structural analysis and profiling of glycans and glycoconjugates. We survey here the major biosynthetic pathways that underlie the biological diversity in glycobiology, with emphasis on glycoproteins, and the approaches that can be used to address the resulting heterogeneity. Included among these are derivatizations, on- and off-line chromatography, electrospray and matrix-assisted laser desorption/ionization, and a variety of dissociation methods, the recently introduced electron-based techniques being of particular interest.
Collapse
Affiliation(s)
- Liang Han
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
17
|
Asakawa D. 5-nitrosalicylic Acid as a novel matrix for in-source decay in matrix-assisted laser desorption/ionization mass spectrometry. Mass Spectrom (Tokyo) 2013; 2:A0019. [PMID: 24860709 DOI: 10.5702/massspectrometry.a0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/18/2013] [Indexed: 11/23/2022] Open
Abstract
The matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) of peptides and glycans was studied using an oxidizing chemical, 5-nitrosalicylic acid (5-NSA) as the matrix. The use of 5-NSA for the MALDI-ISD of peptides and glycans promoted fragmentation pathways involving "hydrogen-deficient" radical precursors. Hydrogen abstraction from peptides resulted in the production of a "hydrogen-deficient" peptide radical that contained a radical site on the amide nitrogen in the peptide backbone with subsequent radical-induced cleavage at the Cα-C bonds. Cleavage at the Cα-C bond leads to the production of an a (•)/x fragment pair and the radical a (•) ions then undergo further hydrogen abstraction to form a ions after Cα-C bond cleavage. Since the Pro residue does not contain a nitrogen-centered radical site, Cα-C bond cleavage does not occur at this site. Alternatively, the specific cleavage of CO-N bonds leads to a b (•)/y fragment pair at Xxx-Pro which occurs via hydrogen abstraction from the Cα-H in the Pro residue. In contrast, "hydrogen-deficient" glycan radicals were generated by hydrogen abstraction from hydroxyl groups in glycans. Both glycosidic and cross-ring cleavages occurred as the result of the degradation of "hydrogen-deficient" glycan radicals. Cross-ring cleavage ions are potentially useful in linkage analysis, one of the most critical steps in the characterization of glycans. Moreover, isobaric glycans could be distinguished by structure specific ISD ions, and the molar ratio of glycan isomers in a mixture can be estimated from their fragment ions abundance ratios. MALDI-ISD with 5-NSA could be a useful method for the sequencing of peptides including the location of post-translational modifications, identification and semi-quantitative analysis of mixtures of glycan isomers.
Collapse
Affiliation(s)
- Daiki Asakawa
- Department of Chemistry, Mass Spectrometry Laboratory, University of Liège
| |
Collapse
|
18
|
Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013; 113:2668-732. [PMID: 23531120 PMCID: PMC3992972 DOI: 10.1021/cr3003714] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Benjamin F. Mann
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
19
|
Przybylski C, Bonnet V. Discrimination of cyclic and linear oligosaccharides by tandem mass spectrometry using collision-induced dissociation (CID), pulsed-Q-dissociation (PQD) and the higher-energy C-trap dissociation modes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:75-87. [PMID: 23239319 DOI: 10.1002/rcm.6422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/02/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE Carbohydrates have essential functions in living organisms and cells, but, due to the presence of numerous linkage combinations, substituent sites and possible conformations, they are the class of biomolecules which exhibits the huge structural diversity found in nature. Thereby, due to such diversity and poor ionization, their structural deciphering by mass spectrometry is still a very challenging task. METHODS Here, we studied a series of linear and cyclic neutral oligosaccharides using electrospray with collision-induced dissociation (CID), pulsed-Q-dissociation (PQD) and the higher-energy C-trap dissociation (HCD) feature of a linear ion trap Orbitrap hybrid mass spectrometer (LTQ-Orbitrap). The collision energy necessary to obtain 50% fragmentation (CE(50) values) in CID, PQD and HCD was used to correlate both size and structures. RESULTS The default settings for activation time and/or activation Q are the most appropriate, except for HCD, where 100 ms instead of 30 ms gave more intense fragment ions. PQD exhibits a 2-8-fold lower sensitivity than CID. HCD provides signals closer or slightly superior by 1.5-fold than PQD, and offers a more balanced ion distribution through the spectrum. Furthermore, HCD offers the possibility to make fine adjustments of the energy via the eV scale to further increase the yield of low-mass fragments. CONCLUSIONS The complementarity of CID, PQD and HCD was clearly demonstrated by obtaining structural information on hexa-, hepta- and octasaccharides. Together, these results clearly indicate the usefulness of the CID/HCD pair for further structural deciphering, and analysis of more complex structures such as multi-antennary carbohydrates or glycoconjuguates alone or in mixture.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d'Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR 8587, F-91025, Evry, France.
| | | |
Collapse
|
20
|
Palmisano G, Larsen MR, Packer NH, Thaysen-Andersen M. Structural analysis of glycoprotein sialylation – part II: LC-MS based detection. RSC Adv 2013. [DOI: 10.1039/c3ra42969e] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
21
|
Kornacki JR, Adamson JT, Håkansson K. Electron detachment dissociation of underivatized chloride-adducted oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2031-2042. [PMID: 22911097 DOI: 10.1007/s13361-012-0459-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/22/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto-N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.
Collapse
Affiliation(s)
- James R Kornacki
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
22
|
Shi X, Huang Y, Mao Y, Naimy H, Zaia J. Tandem mass spectrometry of heparan sulfate negative ions: sulfate loss patterns and chemical modification methods for improvement of product ion profiles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1498-511. [PMID: 22825743 PMCID: PMC4146577 DOI: 10.1007/s13361-012-0429-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 05/05/2023]
Abstract
Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO(3)) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO(3) loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO(3) from N-sulfate was energetically favored by 3-8 kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
23
|
Wu S, Salcedo J, Tang N, Waddell K, Grimm R, German JB, Lebrilla CB. Employment of tandem mass spectrometry for the accurate and specific identification of oligosaccharide structures. Anal Chem 2012; 84:7456-62. [PMID: 22867103 DOI: 10.1021/ac301398h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A method is described for the rapid identification of oligosaccharides employing a library of tandem MS spectra. Identification is aided by software that compares the sample tandem MS to those in the library. The method incorporates quadrupole time-of-flight mass spectrometry along with an annotated oligosaccharide (OS) structure library and the MassHunter Personal Compound Database and Library (PCDL) software. With an automated spectra search, OS structures in different samples are readily identified. This method is shown to be useful in the study of milk oligosaccharides but can be readily applied to oligosaccharide pools in other biological tissues.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Leymarie N, Zaia J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem 2012; 84:3040-8. [PMID: 22360375 PMCID: PMC3319649 DOI: 10.1021/ac3000573] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most proteins are glycosylated. Mass spectrometry methods are used for mapping glycoprotein glycosylation and detailed glycan structural determination. This technology enables precise characterization of recombinant glycoproteins in the pharmaceutical industry and academic biomedicine.
Collapse
Affiliation(s)
- Nancy Leymarie
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medical Campus, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
25
|
Song H, Håkansson K. Electron detachment dissociation and negative ion infrared multiphoton dissociation of electrosprayed intact proteins. Anal Chem 2011; 84:871-6. [PMID: 22175525 DOI: 10.1021/ac202909z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In top-down proteomics, intact gaseous proteins are fragmented in a mass spectrometer by, e.g., electron capture dissociation (ECD) to obtain structural information. By far, most top-down approaches involve dissociation of protein cations. However, in electrospray ionization of phosphoproteins, the high acidity of phosphate may contribute to the formation of intramolecular hydrogen bonds or salt bridges, which influence subsequent fragmentation behavior. Other acidic proteins or proteins with regions containing multiple acidic residues may also be affected similarly. Negative ion mode, on the other hand, may enhance deprotonation and unfolding of multiply phosphorylated or highly acidic protein regions. Here, activated ion electron detachment dissociation (AI-EDD) and negative ion infrared multiphoton dissociation (IRMPD) were employed to investigate the fragmentation of intact proteins, including multiply phosphorylated β-casein, calmodulin, and glycosylated ribonuclease B. Compared to AI-ECD and positive ion IRMPD, AI-EDD and negative ion IRMPD provide complementary protein sequence information, particularly in regions with high acidity, including the multiply phosphorylated region of β-casein.
Collapse
|
26
|
Zhou W, Håkansson K. Structural Characterization of Carbohydrates by Fourier Transform Tandem Mass Spectrometry. CURR PROTEOMICS 2011; 8:297-308. [PMID: 22389641 PMCID: PMC3289259 DOI: 10.2174/157016411798220826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fourier transform tandem mass spectrometry (MS/MS) provides high mass accuracy, high sensitivity, and analytical versatility and has therefore emerged as an indispensable tool for structural elucidation of biomolecules. Glycosylation is one of the most common posttranslational modifications, occurring in ~50% of proteins. However, due to the structural diversity of carbohydrates, arising from non-template driven biosynthesis, achievement of detailed structural insight is highly challenging. This review briefly discusses carbohydrate sample preparation and ionization methods, and highlights recent developments in alternative high-resolution MS/MS strategies, including infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD), and electron detachment dissociation (EDD), for carbohydrates with a focus on glycans and proteoglycans from mammalian glycoproteins.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Zhou W, Håkansson K. Electron detachment dissociation of fluorescently labeled sialylated oligosaccharides. Electrophoresis 2011; 32:3526-35. [PMID: 22120881 DOI: 10.1002/elps.201100327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/11/2011] [Accepted: 09/05/2011] [Indexed: 01/07/2023]
Abstract
We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
28
|
Ko BJ, Brodbelt JS. 193 nm Ultraviolet Photodissociation of Deprotonated Sialylated Oligosaccharides. Anal Chem 2011; 83:8192-200. [DOI: 10.1021/ac201751u] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Byoung Joon Ko
- Departments of †Chemical Engineering, and ‡Chemistry and Biochemistry, 1 University Station A5300, University of Texas at Austin, Austin, Texas, United States
| | - Jennifer S. Brodbelt
- Departments of †Chemical Engineering, and ‡Chemistry and Biochemistry, 1 University Station A5300, University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
29
|
Wuhrer M, Deelder AM, van der Burgt YEM. Mass spectrometric glycan rearrangements. MASS SPECTROMETRY REVIEWS 2011; 30:664-80. [PMID: 21560141 DOI: 10.1002/mas.20337] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/28/2011] [Accepted: 03/28/2011] [Indexed: 05/04/2023]
Abstract
Mass spectrometric rearrangement reactions have been reported for a large variety of compounds such as peptides, lipids, and carbohydrates. In the case of carbohydrates this phenomenon has been described as internal residue loss. Resulting fragment ions may be misinterpreted as fragments arising from conventional glycosidic bond cleavages, which may result in incorrect structural assignment. Therefore, awareness of the occurrence of glycan rearrangements is important for avoiding misinterpretation of tandem mass spectra. In this review mass spectrometric rearrangements of both derivatized and underivatized (native) oligosaccharide structures are discussed. Similar phenomena have been reported for glycopeptides, labeled glycan structures and other biomolecules containing a carbohydrate part. Rearrangements in oligosaccharides and glycoconjugates have been observed with different types of mass spectrometers. Most of the observed carbohydrate rearrangement reactions appear to be linked to the presence of a proton. Hence, tandem mass spectrometric analysis of alkali adducts or deprotonated ions often prevents rearrangement reactions, while they may happen with high efficacy with protonated glycoconjugates.
Collapse
Affiliation(s)
- Manfred Wuhrer
- Leiden University Medical Center, Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden, The Netherlands.
| | | | | |
Collapse
|
30
|
Han L, Costello CE. Electron transfer dissociation of milk oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:997-1013. [PMID: 21953041 PMCID: PMC3606914 DOI: 10.1007/s13361-011-0117-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 05/02/2023]
Abstract
For structural identification of glycans, the classic collision-induced dissociation (CID) spectra are dominated by product ions that derived from glycosidic cleavages, which provide only sequence information. The peaks from cross-ring fragmentation are often absent or have very low abundances in such spectra. Electron transfer dissociation (ETD) is being applied to structural identification of carbohydrates for the first time, and results in some new and detailed information for glycan structural studies. A series of linear milk sugars was analyzed by a variety of fragmentation techniques such as MS/MS by CID and ETD, and MS(3) by sequential CID/CID, CID/ETD, and ETD/CID. In CID spectra, the detected peaks were mainly generated via glycosidic cleavages. By comparison, ETD generated various types of abundant cross-ring cleavage ions. These complementary cross-ring cleavages clarified the different linkage types and branching patterns of the representative milk sugar samples. The utilization of different MS(3) techniques made it possible to verify initial assignments and to detect the presence of multiple components in isobaric peaks. Fragment ion structures and pathways could be proposed to facilitate the interpretation of carbohydrate ETD spectra, and the main mechanisms were investigated. ETD should contribute substantially to confident structural analysis of a wide variety of oligosaccharides.
Collapse
Affiliation(s)
- Liang Han
- Center for Biomedical Mass Spectrometry, Boston, MA 02118-2646 USA
- Department of Chemistry, Boston University, Boston, MA 02118-2646 USA
| | - Catherine E. Costello
- Center for Biomedical Mass Spectrometry, Boston, MA 02118-2646 USA
- Department of Chemistry, Boston University, Boston, MA 02118-2646 USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118-2646 USA
- Correspondence to: Prof. Catherine E. Costello, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Rm. 511, Boston, MA 02118-2646, tel: (617) 638-6490, fax: (617) 638-6491,
| |
Collapse
|
31
|
Ganisl B, Valovka T, Hartl M, Taucher M, Bister K, Breuker K. Electron detachment dissociation for top-down mass spectrometry of acidic proteins. Chemistry 2011; 17:4460-9. [PMID: 21433149 PMCID: PMC3120980 DOI: 10.1002/chem.201003709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Indexed: 02/01/2023]
Abstract
Electron detachment dissociation (EDD) is an emerging mass spectrometry (MS) technique for the primary structure analysis of peptides, carbohydrates, and oligonucleotides. Herein, we explore the potential of EDD for sequencing of proteins of up to 147 amino acid residues by using top-down MS. Sequence coverage ranged from 72% for Melittin, which lacks carboxylic acid functionalities, to 19% for an acidic 147-residue protein, to 12% for Ferredoxin, which showed unusual backbone fragmentation next to cysteine residues. A limiting factor for protein sequencing by EDD is the facile loss of small molecules from amino acid side chains, in particular CO(2). Based on the types of fragments observed and fragmentation patterns found, we propose detailed mechanisms for protein backbone cleavage and side chain dissociation in EDD. The insights from this study should further the development of EDD for top-down MS of acidic proteins.
Collapse
Affiliation(s)
- Barbara Ganisl
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnrain 52a, 6020 Innsbruck (Austria), Fax: (+43) 512-507-2892 E-mail:
| | - Taras Valovka
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckPeter-Mayr-Strasse 1a, 6020 Innsbruck (Austria)
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckPeter-Mayr-Strasse 1a, 6020 Innsbruck (Austria)
| | - Monika Taucher
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnrain 52a, 6020 Innsbruck (Austria), Fax: (+43) 512-507-2892 E-mail:
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckPeter-Mayr-Strasse 1a, 6020 Innsbruck (Austria)
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnrain 52a, 6020 Innsbruck (Austria), Fax: (+43) 512-507-2892 E-mail:
| |
Collapse
|
32
|
Ko BJ, Brodbelt JS. Ultraviolet photodissociation of chromophore-labeled oligosaccharides via reductive amination and hydrazide conjugation. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:359-366. [PMID: 21438085 DOI: 10.1002/jms.1901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The fragmentation patterns of hydrazide-conjugated and reductively aminated oligosaccharides, including lacto-N-fucopentaoses and lacto-N-difucohexaoses, produced on collisionally induced dissociation (CID) and ultraviolet photodissociation (UVPD) in a quadrupole ion trap are presented. The two derivatization methods generate different cross-ring cleavages on UVPD and CID. UVPD of hydrazide-conjugated oligosaccharides yield predominant (2, 4)A-type cross-ring cleavage ions. In contrast, UVPD of aminated oligosaccharides results mainly in (0, 1)A-type ions. Moreover, more extensive dual-cleavage pathways (i.e. internal fragment ions) were observed on UVPD.
Collapse
Affiliation(s)
- Byoung Joon Ko
- Department Chemical Engineering, The University of Texas at Austin, 1 University Station A5300, Texas 78712, USA
| | | |
Collapse
|
33
|
Wu S, Grimm R, German JB, Lebrilla CB. Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res 2011; 10:856-68. [PMID: 21133381 DOI: 10.1021/pr101006u] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sialylated human milk oligosaccharides (SHMOs) are important components of human milk oligosaccharides. Sialic acids are typically found on the nonreducing end and are known binding sites for pathogens and aid in neonates' brain development. Due to their negative charge and hydrophilic nature, they also help modulate cell-cell interactions. It has also been shown that sialic acids are involved in regulating the immune response and aid in brain development. In this study, the enriched SHMOs from pooled milk sample were analyzed by HPLC-Chip/QTOF MS. The instrument employs a microchip-based nano-LC column packed with porous graphitized carbon (PGC) to provide excellent isomer separation for SHMOs with highly reproducible retention time. The precursor ions were further examined with collision-induced dissociation (CID). By applying the proper collision energy, isomers can be readily differentiated by diagnostic peaks and characteristic fragmentation patterns. A set of 30 SHMO structures with retention times, accurate masses, and MS/MS spectra was deduced and incorporated into an HMO library. When combined with previously determined neutral components, a library with over 70 structures is obtained allowing high-throughput oligosaccharide structure identification.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
34
|
Fenn LS, McLean JA. Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys Chem Chem Phys 2011; 13:2196-205. [DOI: 10.1039/c0cp01414a] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Abstract
Glycosylation defines the adhesive properties of animal cell surfaces and the surrounding extracellular environments. Because cells respond to stimuli by altering glycan expression, glycan structures vary according to spatial location in tissue and temporal factors. These dynamic structural expression patterns, combined with the essential roles glycans play in physiology, drive the need for analytical methods for glycoconjugates. In addition, recombinant glycoprotein drug products represent a multibillion dollar market. Effective analytical methods are needed to speed the identification of new targets and the development of industrial glycoprotein products, both new and biosimilar. Mass spectrometry is an enabling technology in glycomics. This review summarizes mass spectrometry of glycoconjugate glycans. The intent is to summarize appropriate methods for glycans given their chemical properties as distinct from those of proteins, lipids, and small molecule metabolites. Special attention is given to the uses of mass spectral profiling for glycomics with respect to the N-linked, O-linked, ganglioside, and glycosaminoglycan compound classes. Next, the uses of tandem mass spectrometry of glycans are summarized. The review finishes with an update on mass spectral glycoproteomics.
Collapse
Affiliation(s)
- Joseph Zaia
- Department of Biochemistry, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
36
|
Zaia J. On-line separations combined with MS for analysis of glycosaminoglycans. MASS SPECTROMETRY REVIEWS 2009; 28:254-72. [PMID: 18956477 PMCID: PMC4119066 DOI: 10.1002/mas.20200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The glycosaminoglycan (GAG) family of polysaccharides includes the unsulfated hyaluronan and the sulfated heparin, heparan sulfate, keratan sulfate, and chondroitin/dermatan sulfate. GAGs are biosynthesized by a series of enzymes, the activities of which are controlled by complex factors. Animal cells alter their responses to different growth conditions by changing the structures of GAGs expressed on their cell surfaces and in extracellular matrices. Because this variation is a means whereby the functions of the limited number of protein gene products in animal genomes is elaborated, the phenotypic and functional assessment of GAG structures expressed spatially and temporally is an important goal in glycomics. On-line mass spectrometric separations are essential for successful determination of expression patterns for the GAG compound classes due to their inherent complexity and heterogeneity. Options include size exclusion, anion exchange, reversed phase, reversed phase ion pairing, hydrophilic interaction, and graphitized carbon chromatographic modes and capillary electrophoresis. This review summarizes the application of these approaches to on-line MS analysis of the GAG classes.
Collapse
Affiliation(s)
- Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
37
|
Leach FE, Wolff JJ, Laremore TN, Linhardt RJ, Amster IJ. EVALUATION OF THE EXPERIMENTAL PARAMETERS WHICH CONTROL ELECTRON DETACHMENT DISSOCIATION, AND THEIR EFFECT ON THE FRAGMENTATION EFFICIENCY OF GLYCOSAMINOGLYCAN CARBOHYDRATES. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2008; 276:110-115. [PMID: 19802340 PMCID: PMC2633944 DOI: 10.1016/j.ijms.2008.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The efficiency of conversion of precursor ions to observable products for electron detachment dissociation (EDD) was measured as a function of the key experimental parameters to determine their optimal values for the Fourier transform mass spectrometry analysis of anionic glycosaminoglycan carbohydrates. These parameters include electron current, electron energy, dispenser cathode heater current, electron beam duration, charge state of the precursor ion, oligomer length, and precursor ion number accumulated in an external radio frequency multipole trap. Precursor conversion is most efficient at an electron current of 15 µA, and decreases at higher and lower values. The conversion of precursor to product ions increases in efficiency as the electron pulse duration is increased. Together, these data suggest that a radially repulsive electric field is produced between the electron beam and negative ions during EDD which causes the reaction cross section to decrease at higher values of electron current (>15 µA). Elevating the heater current of the dispenser cathode increases the electron flux, but also causes ion activation, presumably by blackbody infrared irradiation. An electronic circuit is described that allows the electron current produced by the dispenser cathode to be measured during an EDD or electron capture dissociation (ECD) experiment.
Collapse
Affiliation(s)
- Franklin E Leach
- University of Georgia, Department of Chemistry, Athens, GA 30602
| | | | | | | | | |
Collapse
|
38
|
Wolff JJ, Laremore TN, Aslam H, Linhardt RJ, Amster IJ. Electron-induced dissociation of glycosaminoglycan tetrasaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1449-58. [PMID: 18657442 PMCID: PMC2716736 DOI: 10.1016/j.jasms.2008.06.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/25/2008] [Accepted: 06/25/2008] [Indexed: 05/03/2023]
Abstract
Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a powerful tool for examining the structural features of sulfated glycosaminoglycans (GAGs). The characteristics of GAG fragmentation by EDD include abundant cross-ring fragmentation primarily on hexuronic acid residues, cleavage of all glycosidic bonds, and the formation of even- and odd-electron product ions. GAG dissociation by EDD has been proposed to occur through the formation of an excited species that can undergo direct decomposition or ejects an electron and then undergoes dissociation. In this work, we perform electron-induced dissociation (EID) on singly charged GAGs to identify products that form via direct decomposition by eliminating the pathway of electron detachment. EID of GAG tetrasaccharides produces cleavage of all glycosidic bonds and abundant cross-ring fragmentation primarily on hexuronic acid residues, producing fragmentation similar to EDD of the same molecules, but distinctly different from the products of infrared multiphoton dissociation or collisionally activated decomposition. These results suggest that observed abundant fragmentation of hexuronic acid residues occurs as a result of their increased lability when they undergo electronic excitation. EID fragmentation of GAG tetrasaccharides results in both even- and odd-electron products. EID of heparan sulfate tetrasaccharide epimers produces identical fragmentation, in contrast to EDD, in which the epimers can be distinguished by their fragment ions. These data suggest that for EDD, electron detachment plays a significant role in distinguishing glucuronic acid from iduronic acid.
Collapse
Affiliation(s)
- Jeremy J. Wolff
- Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Tatiana N. Laremore
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Hammad Aslam
- Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180
| | | |
Collapse
|
39
|
Zaia J. Mass spectrometry and the emerging field of glycomics. CHEMISTRY & BIOLOGY 2008; 15:881-92. [PMID: 18804025 PMCID: PMC2570164 DOI: 10.1016/j.chembiol.2008.07.016] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/22/2008] [Accepted: 07/30/2008] [Indexed: 12/29/2022]
Abstract
The biological significance of protein and lipid glycosylation is well established. For example, cells respond to environmental stimuli by altering glycan structures on their surfaces, and cancer cells evade normal growth regulation in part by remodeling their surface glycans. In general, glycan chemical properties differ significantly from those of proteins, lipids, nucleic acids, and small molecule metabolites. Thus, advances in glycomics, a comprehensive study to identify all glycans in an organism, rely on the development of specialized analytical methods. Mass spectrometry (MS) is emerging as an enabling technology in the field of glycomics. This review summarizes recent developments in mass spectrometric analysis methods for protein-based glycomics and glycoproteomics workflows.
Collapse
Affiliation(s)
- Joseph Zaia
- Deptartment of Biochemistry, Boston University, 670 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
40
|
Wilson JJ, Brodbelt JS. Ultraviolet photodissociation at 355 nm of fluorescently labeled oligosaccharides. Anal Chem 2008; 80:5186-96. [PMID: 18505268 DOI: 10.1021/ac800315k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ultraviolet photodissociation (UVPD) produces complementary fragmentation to collision-induced dissociation (CID) when implemented for activation of fluorescently labeled oligosaccharide and glycan ions. Reductive amination of oligosaccharides with fluorophore reagents results in efficient photon absorption at 355 nm, producing fragment ions from the nonreducing end that do not contain the appended fluorophore. In contrast to the fragment ions observed upon UVPD (A- and C-type ions), CID produces mainly reducing end fragments retaining the fluorophore (Y-type ions). UVPD affords better isomeric differentiation of both the lacto-N-fucopentaoses series and the lacto-N-difucohexaoses series, but in general, the combination of UVPD and CID offers the most diagnostic elucidation of complex branched oligosaccharides. Four fluorophores yielded similar MS/MS results; however, 6-aminoquinoline (6-AQ), 2-amino-9(10 H)-acridone (AMAC) and 7-aminomethylcoumarin (AMC) afforded more efficient photon absorption and subsequent dissociation than 2-aminobenzamide (2-AB). UVPD also was useful for characterization of glycans released from ribonuclease B and derivatized with 6-AQ. Lastly, electron photodetachment dissociation of oligosaccharides derivatized with 7-amino-1,3-naphthalenedisulfonic acid (AGA) yielded unique cross-ring cleavages similar to those obtained by electron detachment dissociation.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
41
|
Deguchi K. TRENDS GLYCOSCI GLYC 2008; 20:81-95. [DOI: 10.4052/tigg.20.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|