1
|
Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Bouraoui A, Kraiem J, Safta F. A Shotgun Proteomic-Based Approach with a Q-Exactive Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometer for the Assessment of Pesticide Mixture-Induced Neurotoxicity on a 3D-Developed Neurospheroid Model from Human Brain Meningiomas: Identification of Trityl-Post-Translational Modification. J Proteome Res 2024; 23:5554-5576. [PMID: 39556108 PMCID: PMC11629387 DOI: 10.1021/acs.jproteome.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
The widespread use of pesticides, particularly in combinations, has resulted in enhanced hazardous health effects. However, little is known about their molecular mechanism of interactions. The aim of this study was to assess the neurotoxicity effect of pesticides in mixtures by adopting a 3D in vitro developed neurospheroid model, followed by treatment by increased concentrations of pesticides for 24 h and analysis by a shotgun proteomic-based approach with high-resolution tandem mass spectrometry. Three proteins, namely, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), α-enolase, and phosphoglycerate-kinase-1, were selected as key targets in the metabolic process. Only high doses of pesticides mitigated cell-density proliferation with the occurrence of apoptotic cells, which unlikely makes any neurological alterations in environmental regulatory exposures. The proteomic analysis showed that majority of altered proteins were implicated in cell metabolism. De novo peptide sequencing revealed ion losses and adduct formation, namely, a trityl-post-translational modification in the active site of 201-GAPDH protein. The study also highlights the plausible role of pyrethroids to be implicated in the deleterious effects of pesticides in a mixture. To the best of our knowledge, our finding is the first in toxicoproteomics to deeply elucidate pesticides' molecular interactions and their ability to adduct proteins as a pivotal role in the neurotoxicity mechanism.
Collapse
Affiliation(s)
- Kaouthar Louati
- Laboratory
of Chemical, Galenic and Pharmacological Drug Development- LR12ES09, University of Monastir, Road Avicenne , 5000Monastir, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177 , 3018Sfax, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029Sfax, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029Sfax, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029Sfax, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029Sfax, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
| | - Rania Zribi
- Faculty
of Letters and Humanities, University of
Sfax, Airport Road, Km
4.5, 3023 Sfax, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177 , 3018Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177 , 3018Sfax, Tunisia
| | - Basma Mnif
- Department
of Bacteriology, Habib Bourguiba University
Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029Sfax, Tunisia
| | - Zouheir Khemakhem
- Legal
Medicine
Department, Habib Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029Sfax, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029Sfax, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089Sfax, Tunisia
- Faculty
of Medicine, University of Sfax, Avenue of Majida Boulila, 3029Sfax, Tunisia
| | - Abderrahman Bouraoui
- Laboratory
of Chemical, Galenic and Pharmacological Drug Development- LR12ES09, University of Monastir, Road Avicenne , 5000Monastir, Tunisia
| | - Jamil Kraiem
- Laboratory
of Chemical, Galenic and Pharmacological Drug Development- LR12ES09, University of Monastir, Road Avicenne , 5000Monastir, Tunisia
| | - Fathi Safta
- Laboratory
of Chemical, Galenic and Pharmacological Drug Development- LR12ES09, University of Monastir, Road Avicenne , 5000Monastir, Tunisia
| |
Collapse
|
2
|
Carlo MJ, Nanney ALM, Patrick AL. Energy-Resolved In-Source Collison-Induced Dissociation for Isomer Discrimination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2631-2641. [PMID: 39016059 DOI: 10.1021/jasms.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
While mass spectrometry remains a gold-standard tool for analyte detection, characterization, and quantitation, isomer differentiation is often a challenge. Tandem mass spectrometry is a common approach to increase the selectivity of mass spectrometry and energy-resolved measurements can provide further improvements. However, not all mass spectrometers, especially those that are very compact and affordable, are amenable to such experiments. For instance, single-stage mass spectrometers with soft ionization provide no dissociation information and quadrupole ion trap instruments with resonant excitation do not necessarily provide as informative of energy-resolved curves, for instance when extensive sequential dissociation is responsible for much of the "fingerprint". In-source collision-induced dissociation (IS-CID) is one approach to overcoming these barriers to exploit the analytical selectivity of energy-resolved CID without the need for additional instrumentation; this approach could broaden the reach of these selectivity gains to additional user bases (e.g., educational settings, field portable devices). Here, we specifically investigate energy-resolved IS-CID with the goal of (1) comparing between energy-resolved appearance curves measured with true tandem mass spectrometry on a quadrupole time-of-flight instrument and those obtained using IS-CID, (2) evaluating the approach as a means of differentiating isomers/isobar sets, especially those with similar dissociation patterns, and (3) exploring additional analytical considerations relevant to method development and implementation. This proof-of-concept work establishes the analytical potential of this approach, opening doors for future method development for specific applications.
Collapse
Affiliation(s)
- Matthew J Carlo
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Andie L M Nanney
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Amanda L Patrick
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
3
|
Schultz T. Correlated rotational alignment spectroscopy: a new tool for high-resolution spectroscopy and the analysis of heterogeneous samples. Phys Chem Chem Phys 2024; 26:25287-25313. [PMID: 39328147 DOI: 10.1039/d4cp00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Correlated rotational alignment spectroscopy correlates observables of ultrafast gas-phase spectroscopy with high-resolution, broad-band rotational Raman spectra. This article reviews the measurement principle of CRASY, existing implementations for mass-correlated measurements, and the potential for future developments. New spectroscopic capabilities are discussed in detail: signals for individual sample components can be separated even in highly heterogeneous samples. Isotopologue rotational spectra can be observed at natural isotope abundance. Fragmentation channels are readily assigned in molecular and cluster mass spectra. And finally, rotational Raman spectra can be measured with sub-MHz resolution, an improvement of several orders-of-magnitude as compared to preceding experiments.
Collapse
Affiliation(s)
- Thomas Schultz
- UNIST (Ulsan National Institute of Science and Technology), Advanced Materials Research, Building 103-413, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, South Korea.
| |
Collapse
|
4
|
Calvete JJ, Lomonte B, Saviola AJ, Calderón Celis F, Ruiz Encinar J. Quantification of snake venom proteomes by mass spectrometry-considerations and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:977-997. [PMID: 37155340 DOI: 10.1002/mas.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The advent of soft ionization mass spectrometry-based proteomics in the 1990s led to the development of a new dimension in biology that conceptually allows for the integral analysis of whole proteomes. This transition from a reductionist to a global-integrative approach is conditioned to the capability of proteomic platforms to generate and analyze complete qualitative and quantitative proteomics data. Paradoxically, the underlying analytical technique, molecular mass spectrometry, is inherently nonquantitative. The turn of the century witnessed the development of analytical strategies to endow proteomics with the ability to quantify proteomes of model organisms in the sense of "an organism for which comprehensive molecular (genomic and/or transcriptomic) resources are available." This essay presents an overview of the strategies and the lights and shadows of the most popular quantification methods highlighting the common misuse of label-free approaches developed for model species' when applied to quantify the individual components of proteomes of nonmodel species (In this essay we use the term "non-model" organisms for species lacking comprehensive molecular (genomic and/or transcriptomic) resources, a circumstance that, as we detail in this review-essay, conditions the quantification of their proteomes.). We also point out the opportunity of combining elemental and molecular mass spectrometry systems into a hybrid instrumental configuration for the parallel identification and absolute quantification of venom proteomes. The successful application of this novel mass spectrometry configuration in snake venomics represents a proof-of-concept for a broader and more routine application of hybrid elemental/molecular mass spectrometry setups in other areas of the proteomics field, such as phosphoproteomics, metallomics, and in general in any biological process where a heteroatom (i.e., any atom other than C, H, O, N) forms integral part of its mechanism.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
5
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
6
|
Chen L, Zhang Z, Matsumoto C, Gao Y. High-Throughput Proteomics Enabled by a Fully Automated Dual-Trap and Dual-Column LC-MS. Anal Chem 2024; 96:9761-9766. [PMID: 38887087 DOI: 10.1021/acs.analchem.3c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This Technical Note describes a dual-column liquid chromatography system coupled to mass spectrometry (LC-MS) for high-throughput bottom-up proteomic analysis. This system made full use of two 2-position 10-port valves and a binary pump with an integrated loading pump of a commercial LC instrument to provide successive operation of two parallel subsystems. Each subsystem consisted of a set of trap columns and an analytical column. A T-junction union was used to split the mobile phase from the loading pump into two parts. This allowed one set of columns to be washed and equilibrated, followed by the injection of the next sample, while the previous sample was eluting and being analyzed on the other set of columns, thereby greatly increasing the analysis throughput. This approach showed high reproducibility for the analysis of HeLa tryptic digests with average relative standard deviation (RSD) values of 1.75%, 6.90%, and 5.19% for the identification number of proteins, peptides, and peptide-spectrum matches (PSMs), respectively, across 10 consecutive runs. The capacity for peptide and protein identification, as well as proteome depth, of the dual-column LC system was comparable to a conventional single-column system. Due to its simple equipment requirements and set up process, this method should be highly accessible for other laboratories.
Collapse
Affiliation(s)
- Liang Chen
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ziwei Zhang
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cory Matsumoto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Yu Gao
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
7
|
Jiménez C, Garrote-de-Barros A, López-Portugués C, Hernández-Sánchez M, Díez P. Characterization of Human B Cell Hematological Malignancies Using Protein-Based Approaches. Int J Mol Sci 2024; 25:4644. [PMID: 38731863 PMCID: PMC11083628 DOI: 10.3390/ijms25094644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The maturation of B cells is a complex, multi-step process. During B cell differentiation, errors can occur, leading to the emergence of aberrant versions of B cells that, finally, constitute a malignant tumor. These B cell malignancies are classified into three main groups: leukemias, myelomas, and lymphomas, the latter being the most heterogeneous type. Since their discovery, multiple biological studies have been performed to characterize these diseases, aiming to define their specific features and determine potential biomarkers for diagnosis, stratification, and prognosis. The rise of advanced -omics approaches has significantly contributed to this end. Notably, proteomics strategies appear as promising tools to comprehensively profile the final molecular effector of these cells. In this narrative review, we first introduce the main B cell malignancies together with the most relevant proteomics approaches. Then, we describe the core studies conducted in the field and their main findings and, finally, we evaluate the advantages and drawbacks of flow cytometry, mass cytometry, and mass spectrometry for the profiling of human B cell disorders.
Collapse
Affiliation(s)
- Cristina Jiménez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain;
| | - Alba Garrote-de-Barros
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Carlos López-Portugués
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Paula Díez
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Faculty of Medicine and Health Science, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
8
|
Hoang C, Uritboonthai W, Hoang L, Billings EM, Aisporna A, Nia FA, Derks RJE, Williamson JR, Giera M, Siuzdak G. Tandem Mass Spectrometry across Platforms. Anal Chem 2024; 96:5478-5488. [PMID: 38529642 PMCID: PMC11007677 DOI: 10.1021/acs.analchem.3c05576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/12/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
PubChem serves as a comprehensive repository, housing over 100 million unique chemical structures representing the breadth of our chemical knowledge across numerous fields including metabolism, pharmaceuticals, toxicology, cosmetics, agriculture, and many more. Rapid identification of these small molecules increasingly relies on electrospray ionization (ESI) paired with tandem mass spectrometry (MS/MS), particularly by comparison to genuine standard MS/MS data sets. Despite its widespread application, achieving consistency in MS/MS data across various analytical platforms remains an unaddressed concern. This study evaluated MS/MS data derived from one hundred molecular standards utilizing instruments from five manufacturers, inclusive of quadrupole time-of-flight (QTOF) and quadrupole orbitrap "exactive" (QE) mass spectrometers by Agilent (QTOF), Bruker (QTOF), SCIEX (QTOF), Waters (QTOF), and Thermo QE. We assessed fragment ion variations at multiple collisional energies (0, 10, 20, and 40 eV) using the cosine scoring algorithm for comparisons and the number of fragments observed. A parallel visual analysis of the MS/MS spectra across instruments was conducted, consistent with a standard procedure that is used to circumvent the still prevalent issue of mischaracterizations as shown for dimethyl sphingosine and C20 sphingosine. Our analysis revealed a notable consistency in MS/MS data and identifications, with fragment ions' m/z values exhibiting the highest concordance between instrument platforms at 20 eV, the other collisional energies (0, 10, and 40 eV) were significantly lower. While moving toward a standardized ESI MS/MS protocol is required for dependable molecular characterization, our results also underscore the continued importance of corroborating MS/MS data against standards to ensure accurate identifications. Our findings suggest that ESI MS/MS manufacturers, akin to the established norms for gas chromatography mass spectrometry instruments, should standardize the collision energy at 20 eV across different instrument platforms.
Collapse
Affiliation(s)
- Corey Hoang
- Scripps
Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Winnie Uritboonthai
- Scripps
Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linh Hoang
- Scripps
Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Elizabeth M. Billings
- Scripps
Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Aries Aisporna
- Scripps
Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Farshad A. Nia
- Department
of Integrative Structural and Computational Biology, Department of
Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Rico J. E. Derks
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, Netherlands
| | - James R. Williamson
- Department
of Integrative Structural and Computational Biology, Department of
Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Martin Giera
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Albinusdreef 2, Leiden 2333ZA, Netherlands
- The
Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Gary Siuzdak
- Scripps
Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Departments
of Chemistry, Molecular, and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Partington JM, Rana S, Szabo D, Anumol T, Clarke BO. Comparison of high-resolution mass spectrometry acquisition methods for the simultaneous quantification and identification of per- and polyfluoroalkyl substances (PFAS). Anal Bioanal Chem 2024; 416:895-912. [PMID: 38159142 DOI: 10.1007/s00216-023-05075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
Simultaneous identification and quantification of per- and polyfluoroalkyl substances (PFAS) were evaluated for three quadrupole time-of-flight mass spectrometry (QTOF) acquisition methods. The acquisition methods investigated were MS-Only, all ion fragmentation (All-Ions), and automated tandem mass spectrometry (Auto-MS/MS). Target analytes were the 25 PFAS of US EPA Method 533 and the acquisition methods were evaluated by analyte response, limit of quantification (LOQ), accuracy, precision, and target-suspect screening identification limit (IL). PFAS LOQs were consistent across acquisition methods, with individual PFAS LOQs within an order of magnitude. The mean and range for MS-Only, All-Ions, and Auto-MS/MS are 1.3 (0.34-5.1), 2.1 (0.49-5.1), and 1.5 (0.20-5.1) pg on column. For fast data processing and tentative identification with lower confidence, MS-Only is recommended; however, this can lead to false-positives. Where high-confidence identification, structural characterisation, and quantification are desired, Auto-MS/MS is recommended; however, cycle time should be considered where many compounds are anticipated to be present. For comprehensive screening workflows and sample archiving, All-Ions is recommended, facilitating both quantification and retrospective analysis. This study validated HRMS acquisition approaches for quantification (based upon precursor data) and exploration of identification workflows for a range of PFAS compounds.
Collapse
Affiliation(s)
- Jordan M Partington
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Sahil Rana
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Department of Materials and Environmental Chemistry, Stockholm University, 11418, Stockholm, Sweden
| | - Tarun Anumol
- Agilent Technologies Inc, Wilmington, DE, 19808, USA
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
10
|
Polák M, Palasser M, Kádek A, Kavan D, Wootton CA, Delsuc MA, Breuker K, Novák P, van Agthoven MA. Top-Down Proteoform Analysis by 2D MS with Quadrupolar Detection. Anal Chem 2023; 95:16123-16130. [PMID: 37877738 PMCID: PMC10633810 DOI: 10.1021/acs.analchem.3c02225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Two-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell. We discuss the advantages of quadrupolar detection in 2D MS and how we adapted existing data processing techniques for accurate frequency-to-mass conversion. We apply 2D MS with quadrupolar detection to the top-down analysis of covalently labeled ubiquitin with ECD fragmentation, and we develop a workflow for label-free relative quantification of biomolecule isoforms in 2D MS.
Collapse
Affiliation(s)
- Marek Polák
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Faculty
of Science, Charles University, Prague 12843, Czech Republic
| | - Michael Palasser
- Center
for Chemistry and Biomedicine, University
of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Alan Kádek
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Daniel Kavan
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Faculty
of Science, Charles University, Prague 12843, Czech Republic
| | | | - Marc-André Delsuc
- Institut
de Génétique et de Biologie Moléculaire et Cellulaire,
INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Kathrin Breuker
- Center
for Chemistry and Biomedicine, University
of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Petr Novák
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Faculty
of Science, Charles University, Prague 12843, Czech Republic
| | - Maria A. van Agthoven
- Institute
of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Center
for Chemistry and Biomedicine, University
of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Park SG, Mohr JP, Anderson GA, Bruce JE. A planar quadrupole device for transmitting and trapping ions in high vacuum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9610. [PMID: 37580843 DOI: 10.1002/rcm.9610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023]
Abstract
RATIONALE Hybrid mass spectrometers combine multiple mass analyzers to achieve optimal performance in terms of tandem mass spectrometry, high mass resolving power, and mass measurement accuracy for studying highly complex samples. As a result, the need for transport, trapping, and control of ion kinetic energies is critical for the successful integration of multiple mass analyzers and hybrid instrument operation. In addition, transportation of ion populations between two physically distinct locations can result in time-of-flight (TOF) discrimination against ions with widely disparate m/z values, compromising full mass spectral performance. In this work, we demonstrated a new ion guide, referred to as a planar quadrupole (PQ) ion guide, composed of two parallel printed circuit boards (PCB) that allow radiofrequency (RF) and direct current (DC) voltages to be combined to enable both axial transport and trapping of ion populations in the ultrahigh vacuum region of the mass spectrometer. As compared with a conventional multipole ion guide, the PQ ion guide showed comparable performance in ion m/z values, signal-to-noise, and intensity and effectively reduced mass discrimination caused by TOF effects. METHODS A PQ device was developed with two PCBs and simulated with SIMION 8.1. Electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry instrumentation were used for the testing of PQ performance. RESULTS .In this work, we demonstrated a planar quadrupole (PQ) ion guide composed of two parallel PCB plates. The PQ enables both axial ion transport and trapping of ion populations throughout the ion transfer process from a LTQ to an ICR cell. As compared with a conventional multipole ion guide, the PQ showed comparable ion transmission efficiency and effectively reduced mass discrimination caused by TOF effects. CONCLUSIONS The PQ is a simple design that can be implemented for ion transmission and trapping on virtually any mass spectrometer.
Collapse
Affiliation(s)
- Sung-Gun Park
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Jared P Mohr
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | | | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Rasel AKMFK, Seyler SL, Hayes MA. A numerical study on microfluidic devices to maintain the concentration and purity of dielectrophoresis-induced separated fractions of analyte. Anal Bioanal Chem 2023; 415:4861-4873. [PMID: 37382654 DOI: 10.1007/s00216-023-04795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Determining the physical and chemical properties of biologically important particles such as cells, organelles, viruses, exosomes, complexes, nucleotides, and proteins is needed to understand their function. These properties are determined with common analytical tools (mass spectrometry, cryo-EM, NMR, various spectroscopies, nucleotide sequencing, etc.) whose function can be improved when samples are pure and concentrated. Separations science plays a central role in conditioning samples, ranging from low-resolution benchtop operations like precipitations or extractions to higher-resolution chromatography and electrophoresis. In the last two decades, gradient insulator-based dielectrophoresis (g-iDEP) has emerged as a high-resolution separation technique capable of highly selective enrichment of cells, viruses, exosomes, and proteins. Specific evidence has been shown that pure homogeneous and concentrated fractions of cells and exosomes can be generated from complex mixtures. However, recovering those fractions for analysis has not been developed, limiting the technique to an analytical rather than a preparative one. Here, a finite element analysis was undertaken to identify geometries and operational parameters to efficiently remove the enriched fraction while retaining maximum concentration and providing total mass transfer. Geometric factors (e.g., side channel width and distance from the gradient-inducing gap) were studied, along with the addition of a second inlet side channel. Two flow-generating mechanisms-electroosmosis and hydrostatic pressure-were evaluated for semi-optimized device designs, including a comparison of the one- and two-inlet designs. Simulations indicate effectively one hundred percent mass transfer and a concentration increase by an order of magnitude for several device configurations and operational parameters.
Collapse
Affiliation(s)
| | - Sean L Seyler
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
13
|
Dong X, Mayes HB, Morreel K, Katahira R, Li Y, Ralph J, Black BA, Beckham GT. Energy-Resolved Mass Spectrometry as a Tool for Identification of Lignin Depolymerization Products. CHEMSUSCHEM 2023; 16:e202201441. [PMID: 36197743 DOI: 10.1002/cssc.202201441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Lignin is the largest source of bio-based aromatic compounds in nature, and its valorization is essential to the sustainability of lignocellulosic biorefining. Characterizing lignin-derived compounds remains challenging due to the heterogeneity of this biopolymer. Tandem mass spectrometry is a promising tool for lignin structural analytics, as fragmentation patterns of model compounds can be extrapolated to identify characteristic moieties in complex samples. This work extended previous resonance excitation-type collision-induced dissociation (CID) methods that identified lignin oligomers containing β-O-4, β-5, and β-β bonds, to also identify characteristics of 5-5, β-1, and 4-O-5 dimers, enabled by quadrupole time-of-flight (QTOF) CID with energy-resolved mass spectrometry (ERMS). Overall, QTOF-ERMS offers in-depth structural information and could ultimately contribute to tools for high-throughput lignin dimer identification.
Collapse
Affiliation(s)
- Xueming Dong
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Heather B Mayes
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Kris Morreel
- RIC Group, President Kennedypark 26, 8500, Kortrijk, Belgium
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Yanding Li
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
| | - John Ralph
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, 1552 University Ave., Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53706, USA
| | - Brenna A Black
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
14
|
Ma X. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules 2022; 27:6466. [PMID: 36235003 PMCID: PMC9572214 DOI: 10.3390/molecules27196466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS) has become the central technique that is extensively used for the analysis of molecular structures of unknown compounds in the gas phase. It manipulates the molecules by converting them into ions using various ionization sources. With high-resolution MS, accurate molecular weights (MW) of the intact molecular ions can be measured so that they can be assigned a molecular formula with high confidence. Furthermore, the application of tandem MS has enabled detailed structural characterization by breaking the intact molecular ions and protonated or deprotonated molecules into key fragment ions. This approach is not only used for the structural elucidation of small molecules (MW < 2000 Da), but also crucial biopolymers such as proteins and polypeptides; therefore, MS has been extensively used in multiomics studies for revealing the structures and functions of important biomolecules and their interactions with each other. The high sensitivity of MS has enabled the analysis of low-level analytes in complex matrices. It is also a versatile technique that can be coupled with separation techniques, including chromatography and ion mobility, and many other analytical instruments such as NMR. In this review, we aim to focus on the technical advances of MS-based structural elucidation methods over the past five years, and provide an overview of their applications in complex mixture analysis. We hope this review can be of interest for a wide range of audiences who may not have extensive experience in MS-based techniques.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Morgan EW, Perdew GH, Patterson AD. Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicol Sci 2022; 187:189-213. [PMID: 35285497 PMCID: PMC9154275 DOI: 10.1093/toxsci/kfac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microbial communities on and within the host contact environmental pollutants, toxic compounds, and other xenobiotic compounds. These communities of bacteria, fungi, viruses, and archaea possess diverse metabolic potential to catabolize compounds and produce new metabolites. Microbes alter chemical disposition thus making the microbiome a natural subject of interest for toxicology. Sequencing and metabolomics technologies permit the study of microbiomes altered by acute or long-term exposure to xenobiotics. These investigations have already contributed to and are helping to re-interpret traditional understandings of toxicology. The purpose of this review is to provide a survey of the current methods used to characterize microbes within the context of toxicology. This will include discussion of commonly used techniques for conducting omic-based experiments, their respective strengths and deficiencies, and how forward-looking techniques may address present shortcomings. Finally, a perspective will be provided regarding common assumptions that currently impede microbiome studies from producing causal explanations of toxicologic mechanisms.
Collapse
Affiliation(s)
- Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
16
|
Fornelli L, Toby TK. Characterization of large intact protein ions by mass spectrometry: What directions should we follow? BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140758. [PMID: 35077914 DOI: 10.1016/j.bbapap.2022.140758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Theoretically, the gas-phase interrogation of whole proteoforms via mass spectrometry, known as top-down proteomics, bypasses the protein inference problem that afflicts peptide-centric proteomic approaches. Despite this obvious advantage, the application of top-down proteomics remains rare, mainly due to limited throughput and difficulty of analyzing proteins >30 kDa. Here we will discuss some of the problems encountered during the characterization of large proteoforms, and guided by a combination of theoretical background and experimental evidence we will describe some innovative data acquisition strategies and novel mass spectrometry technologies that can at least partially overcome such limitations.
Collapse
Affiliation(s)
- Luca Fornelli
- University of Oklahoma, Department of Biology, 730 Van Vleet oval, Norman, OK 73109, United States of America; University of Oklahoma, Department Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73109, United States of America.
| | - Timothy K Toby
- DiscernDx, 2478 Embarcadero Way, Palo Alto, CA 94303, United States of America
| |
Collapse
|
17
|
Banerjee R, Maheswarappa NB, Mohan K, Biswas S, Batabyal S. Proteomic Technologies and their Application for Ensuring Meat Quality,
Safety and Authenticity. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210114113306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Proteomic tools were extensively used to understand the relationship between muscle
proteome and conversion of muscle to meat, post-mortem proteolysis, meat texture, and variation
in meat color. Developments in proteomic tools have also resulted in their application for addressing
the safety and authenticity issues including meat species identification, detection of animal byproducts,
non-meat ingredients and tissues in meat products, traceability, identification of genetically
modified ingredients, chemical residues and other harmful substances. Proteomic tools are also
being used in some of the potential areas like understanding the effect of animal transportation,
stunning, slaughter stress, halal authentication and issues related to animal welfare. Emerging advances
in proteomic and peptidomic technologies and their application in traceability, meat microbiology,
safety and authentication are taking a major stride as an interesting and complementary alternative
to DNA-based methods currently in use. Future research in meat science need to be
linked to emerging metabolomic, lipidomic and other omic technologies for ensuring integrated
meat quality and safety management. In this paper, a comprehensive overview of the use of proteomics
for the assessment of quality and safety in the meat value chain and their potential application
is discussed.
Collapse
Affiliation(s)
- Rituparna Banerjee
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, 500092, India
| | | | - Kiran Mohan
- Department of Livestock Products
Technology, Veterinary College, KVAFSU, Bidar, Karnataka 585401, India
| | - Subhasish Biswas
- Department of Livestock Products
Technology, West Bengal University of Animal and Fishery Sciences, Kolkata700037, India
| | - Subhasish Batabyal
- Department of Veterinary
Biochemistry, West Bengal University of Animal and Fishery Sciences, Kolkata700037, India
| |
Collapse
|
18
|
Liu C, Zuo Z, Xu F, Wang Y. Authentication of Herbal Medicines Based on Modern Analytical Technology Combined with Chemometrics Approach: A Review. Crit Rev Anal Chem 2022; 53:1393-1418. [PMID: 34991387 DOI: 10.1080/10408347.2021.2023460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Since ancient times, herbal medicines (HMs) have been widely popular with consumers as a "natural" drug for health care and disease treatment. With the emergence of problems, such as increasing demand for HMs and shortage of resources, it often occurs the phenomenon of shoddy exceed and mixing the false with the genuine in the market. There is an urgent need to evaluate the quality of HMs to ensure their important role in health care and disease treatment, and to reduce the possibility of threat to human health. Modern analytical technology is can be analyzed for analyzing chemical components of HMs or their preparations. Reflecting complex chemical components' characteristic curves in the analysis sample, and the comprehensive effect of active ingredients of HMs. In this review, modern analytical technology (chromatography, spectroscopy, mass spectrometry), chemometrics methods (unsupervised, supervised) and their advantages, disadvantages, and applicability were introduced and summarized. In addition, the authentication application of modern analytical technology combined with chemometrics methods in four aspects, including origin, processing methods, cultivation methods, and adulteration of HMs have also been discussed and illustrated by a few typical studies. This article offers a general workflow of analytical methods that have been applied for HMs authentication and explains that the accuracy of authentication in favor of the quality assurance of HMs. It was provided reference value for the development and application of modern HMs.
Collapse
Affiliation(s)
- Chunlu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
19
|
Shan L, Jones B. Nano liquid chromatography, an updated review. Biomed Chromatogr 2022; 36:e5317. [PMID: 34981550 DOI: 10.1002/bmc.5317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
Low flow chromatography has a rich history of innovation but has yet to reach widespread implementation in bioanalytical applications. Improvements in pump technology, microfluidic connections, and nano-electrospray sources for mass spectrometry have laid the groundwork for broader application, and innovation in this space has accelerated in recent years. This article reviews the instrumentation used for nano-flow liquid chromatography , the types of columns employed, and strategies for multi-dimensionality of separations, which is key to the future state of the technique to the high-throughput needs of modern bioanalysis. An update of the current applications where nano-LC is widely used, such as proteomics and metabolomics, is discussed. But the trend towards biopharmaceutical development of increasingly complex, targeted, and potent therapeutics for the safe treatment of disease drives the need for ultimate selectivity and sensitivity of our analytical platforms for targeted quantitation in a regulated space. The selectivity needs are best addressed by mass spectrometric detection, especially at high resolutions, and exquisite sensitivity is provided by nano-electrospray ionization as the technology continues to evolve into an accessible, robust, and easy to use platform.
Collapse
|
20
|
Forgrave LM, Wang M, Yang D, DeMarco ML. Proteoforms and their expanding role in laboratory medicine. Pract Lab Med 2022; 28:e00260. [PMID: 34950758 PMCID: PMC8672040 DOI: 10.1016/j.plabm.2021.e00260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The term “proteoforms” describes the range of different structures of a protein product of a single gene, including variations in amino acid sequence and post-translational modifications. This diversity in protein structure contributes to the biological complexity observed in living organisms. As the concentration of a particular proteoform may increase or decrease in abnormal physiological states, proteoforms have long been used in medicine as biomarkers of health and disease. Notably, the analytical approaches used to analyze proteoforms have evolved considerably over the years. While ligand binding methods continue to play a large role in proteoform measurement in the clinical laboratory, unanticipated or unknown post-translational modifications and sequence variants can upend even extensively tested and vetted assays that have successfully made it through the medical regulatory process. As an alternate approach, mass spectrometry—with its high molecular selectivity—has become an essential tool in detection, characterization, and quantification of proteoforms in biological fluids and tissues. This review explores the analytical techniques used for proteoform detection and quantification, with an emphasis on mass spectrometry and its various applications in clinical research and patient care including, revealing new biomarker targets, helping improve the design of contemporary ligand binding in vitro diagnostics, and as mass spectrometric laboratory developed tests used in routine patient care.
Collapse
Affiliation(s)
- Lauren M. Forgrave
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Meng Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - David Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, 1081 Burrard St, Vancouver, V6Z 1Y6, Canada
- Corresponding author. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
21
|
Tian Z, Liu F, Li D, Fernie AR, Chen W. Strategies for structure elucidation of small molecules based on LC–MS/MS data from complex biological samples. Comput Struct Biotechnol J 2022; 20:5085-5097. [PMID: 36187931 PMCID: PMC9489805 DOI: 10.1016/j.csbj.2022.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022] Open
Abstract
LC–MS/MS is a major analytical platform for metabolomics, which has become a recent hotspot in the research fields of life and environmental sciences. By contrast, structure elucidation of small molecules based on LC–MS/MS data remains a major challenge in the chemical and biological interpretation of untargeted metabolomics datasets. In recent years, several strategies for structure elucidation using LC–MS/MS data from complex biological samples have been proposed, these strategies can be simply categorized into two types, one based on structure annotation of mass spectra and for the other on retention time prediction. These strategies have helped many scientists conduct research in metabolite-related fields and are indispensable for the development of future tools. Here, we summarized the characteristics of the current tools and strategies for structure elucidation of small molecules based on LC–MS/MS data, and further discussed the directions and perspectives to improve the power of the tools or strategies for structure elucidation.
Collapse
|
22
|
López-Yerena A, Domínguez-López I, Vallverdú-Queralt A, Pérez M, Jáuregui O, Escribano-Ferrer E, Lamuela-Raventós RM. Metabolomics Technologies for the Identification and Quantification of Dietary Phenolic Compound Metabolites: An Overview. Antioxidants (Basel) 2021; 10:846. [PMID: 34070614 PMCID: PMC8229076 DOI: 10.3390/antiox10060846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
In the search for natural products with properties that may protect against or slow down chronic and degenerative diseases (e.g., cancer, and cardiovascular and neurodegenerative conditions), phenolic compounds (PC) with benefits for human health have been identified. The biological effects of PC in vivo depend on their bioavailability, intestinal absorption, metabolism, and interaction with target tissues. The identification of phenolic compounds metabolites (PCM), in biological samples, after food ingestion rich in PC is a first step to understand the overall effect on human health. However, their wide range of physicochemical properties, levels of abundance, and lack of reference standards, renders its identification and quantification a challenging task for existing analytical platforms. The most frequent approaches to metabolomics analysis combine mass spectrometry and NMR, parallel technologies that provide an overview of the metabolome and high-power compound elucidation. In this scenario, the aim of this review is to summarize the pre-analytical separation processes for plasma and urine samples and the technologies applied in quantitative and qualitative analysis of PCM. Additionally, a comparison of targeted and non-targeted approaches is presented, not available in previous reviews, which may be useful for future metabolomics studies of PCM.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Inés Domínguez-López
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Olga Jáuregui
- Scientific and Technological Center (CCiTUB), University of Barcelona, 08028 Barcelona, Spain;
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Gathungu RM, Kautz R, Kristal BS, Bird SS, Vouros P. The integration of LC-MS and NMR for the analysis of low molecular weight trace analytes in complex matrices. MASS SPECTROMETRY REVIEWS 2020; 39:35-54. [PMID: 30024655 PMCID: PMC6339611 DOI: 10.1002/mas.21575] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/28/2018] [Indexed: 05/12/2023]
Abstract
This review discusses the integration of liquid chromatography (LC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) in the comprehensive analysis of small molecules from complex matrices. We first discuss the steps taken toward making the three technologies compatible, so as to create an efficient analytical platform. The development of online LC-MS-NMR, highlighted by successful applications in the profiling of highly concentrated analytes (LODs 10 μg) is discussed next. This is followed by a detailed overview of the alternative approaches that have been developed to overcome the challenges associated with online LC-MS-NMR that primarily stem from the inherently low sensitivity of NMR. These alternative approaches include the use of stop-flow LC-MS-NMR, loop collection of LC peaks, LC-MS-SPE-NMR, and offline NMR. The potential and limitations of all these approaches is discussed in the context of applications in various fields, including metabolomics and natural product discovery.
Collapse
Affiliation(s)
- Rose M. Gathungu
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Department of Medicine, Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Roger Kautz
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Bruce S. Kristal
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Department of Medicine, Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Paul Vouros
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| |
Collapse
|
24
|
Noor Z, Ahn SB, Baker MS, Ranganathan S, Mohamedali A. Mass spectrometry-based protein identification in proteomics-a review. Brief Bioinform 2020; 22:1620-1638. [PMID: 32047889 DOI: 10.1093/bib/bbz163] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Statistically, accurate protein identification is a fundamental cornerstone of proteomics and underpins the understanding and application of this technology across all elements of medicine and biology. Proteomics, as a branch of biochemistry, has in recent years played a pivotal role in extending and developing the science of accurately identifying the biology and interactions of groups of proteins or proteomes. Proteomics has primarily used mass spectrometry (MS)-based techniques for identifying proteins, although other techniques including affinity-based identifications still play significant roles. Here, we outline the basics of MS to understand how data are generated and parameters used to inform computational tools used in protein identification. We then outline a comprehensive analysis of the bioinformatics and computational methodologies used in protein identification in proteomics including discussing the most current communally acceptable metrics to validate any identification.
Collapse
|
25
|
Chevalier M, Ricart E, Hanozin E, Pupin M, Jacques P, Smargiasso N, De Pauw E, Lisacek F, Leclère V, Flahaut C. Kendrick Mass Defect Approach Combined to NORINE Database for Molecular Formula Assignment of Nonribosomal Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2608-2616. [PMID: 31659720 DOI: 10.1007/s13361-019-02314-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/03/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The identification of known (dereplication) or unknown nonribosomal peptides (NRPs) produced by microorganisms is a time consuming, expensive, and challenging task where mass spectrometry and nuclear magnetic resonance play a key role. The first step of the identification process always involves the establishment of a molecular formula. Unfortunately, the number of potential molecular formulae increases significantly with higher molecular masses and the lower precision of their measurements. In the present article, we demonstrate that molecular formula assignment can be achieved by a combined approach using the regular Kendrick mass defect (RKMD) and NORINE, the reference curated database of NRPs. We observed that irrespective of the molecular formula, the addition and subtraction of a given atom or atom group always leads to the same RKMD variation and nominal Kendrick mass (NKM). Graphically, these variations translated into a vector mesh can be used to connect an unknown molecule to a known NRP of the NORINE database and establish its molecular formula. We explain and illustrate this concept through the high-resolution mass spectrometry analysis of a commercially available mixture composed of four surfactins. The Kendrick approach enriched with the NORINE database content is a fast, useful, and easy-to-use tool for molecular mass assignment of known and unknown NRP structures.
Collapse
Affiliation(s)
- Mickaël Chevalier
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-Institut Charles Viollette (ICV), F-59000, Lille, France
| | - Emma Ricart
- Proteome informatics Group, SIB Swiss Institute of Bioinformatics (SIB), and Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Emeline Hanozin
- Mass Spectrometry Laboratory, Molecular Systems - MolSys Research Unit, University of Liège, Liège, Belgium
| | - Maude Pupin
- Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000, Lille, France
- Inria-Lille Nord Europe, Bonsai team, F-59655, Villeneuve d'Ascq Cedex, France
| | - Philippe Jacques
- TERRA Research Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech University of Liège, B-5030, Gembloux, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, Molecular Systems - MolSys Research Unit, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Molecular Systems - MolSys Research Unit, University of Liège, Liège, Belgium
| | - Frédérique Lisacek
- Proteome informatics Group, SIB Swiss Institute of Bioinformatics (SIB), and Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-Institut Charles Viollette (ICV), F-59000, Lille, France
| | - Christophe Flahaut
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-Institut Charles Viollette (ICV), F-59000, Lille, France.
| |
Collapse
|
26
|
Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. Clin Biochem Rev 2019; 40:135-146. [PMID: 31530964 DOI: 10.33176/aacb-19-00023] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The screening of biological samples for the presence of illicit or legal substances is an important frontline tool in both clinical and forensic toxicology. In the clinical setting, drug screening is a useful tool for the clinician in improving patient care and guiding treatment. Analytical approaches for the screening of drugs in biological samples are extensive and well documented, though many rapid screening techniques often lack appropriate sensitivity and specificity, requiring careful clinical interpretation. The continuous emergence of new psychoactive substances presents a considerable analytical challenge in maintaining up-to-date methods for the detection of relevant drugs. Adapting and validating methods for the detection of new substances can be a complicated and costly undertaking. There is also a considerable lag time between the emergence of new drugs and the release of commercial assays for detection. Quadrupole time-of-flight mass spectrometry (Q-TOF-MS) has gained considerable attention over the last decade as an analytical technique that is capable of meeting the challenges of a rapidly changing drug landscape. Exhibiting both high sensitivity and specificity in drug detection, Q-TOF-MS also allows methods to be rapidly updated for newly emerging psychoactive agents. The coupling of Q-TOF-MS with techniques such as liquid or gas chromatography can provide both rapid and comprehensive screening solutions that are gaining popularity in the clinical laboratory setting.
Collapse
|
27
|
Li J, Yang H, Lu Q, Chen D, Zhou M, Kuang Y, Ying S, Song J. Proteomics and N‐glycoproteomics analysis of an extracellular matrix‐based scaffold‐human treated dentin matrix. J Tissue Eng Regen Med 2019; 13:1164-1177. [DOI: 10.1002/term.2866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Li
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Hefeng Yang
- Department of Dental ResearchThe Affiliated Stomatological Hospital of Kunming Medical University Kunming China
| | - Qi Lu
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Duanjing Chen
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Mengjiao Zhou
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Yunchun Kuang
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Siqi Ying
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| | - Jinlin Song
- College of StomatologyChongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Medical University Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing China
| |
Collapse
|
28
|
Cui L, Lu H, Lee YH. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. MASS SPECTROMETRY REVIEWS 2018; 37:772-792. [PMID: 29486047 DOI: 10.1002/mas.21562] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 02/02/2018] [Indexed: 05/03/2023]
Abstract
In the past decade, advances in liquid chromatography-mass spectrometry (LC-MS) have revolutionized untargeted metabolomics analyses. By mining metabolomes more deeply, researchers are now primed to uncover key metabolites and their associations with diseases. The employment of untargeted metabolomics has led to new biomarker discoveries and a better mechanistic understanding of diseases with applications in precision medicine. However, many major pertinent challenges remain. First, compound identification has been poor, and left an overwhelming number of unidentified peaks. Second, partial, incomplete metabolomes persist due to factors such as limitations in mass spectrometry data acquisition speeds, wide-range of metabolites concentrations, and cellular/tissue/temporal-specific expression changes that confound our understanding of metabolite perturbations. Third, to contextualize metabolites in pathways and biology is difficult because many metabolites partake in multiple pathways, have yet to be described species specificity, or possess unannotated or more-complex functions that are not easily characterized through metabolomics analyses. From a translational perspective, information related to novel metabolite biomarkers, metabolic pathways, and drug targets might be sparser than they should be. Thankfully, significant progress has been made and novel solutions are emerging, achieved through sustained academic and industrial community efforts in terms of hardware, computational, and experimental approaches. Given the rapidly growing utility of metabolomics, this review will offer new perspectives, increase awareness of the major challenges in LC-MS metabolomics that will significantly benefit the metabolomics community and also the broader the biomedical community metabolomics aspire to serve.
Collapse
Affiliation(s)
- Liang Cui
- Translational 'Omics and Biomarkers Group, KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
- Infectious Diseases-Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Haitao Lu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yie Hou Lee
- Translational 'Omics and Biomarkers Group, KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
- OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
29
|
Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M, Fiehn O. Identification of small molecules using accurate mass MS/MS search. MASS SPECTROMETRY REVIEWS 2018; 37:513-532. [PMID: 28436590 PMCID: PMC8106966 DOI: 10.1002/mas.21535] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
Tandem mass spectral library search (MS/MS) is the fastest way to correctly annotate MS/MS spectra from screening small molecules in fields such as environmental analysis, drug screening, lipid analysis, and metabolomics. The confidence in MS/MS-based annotation of chemical structures is impacted by instrumental settings and requirements, data acquisition modes including data-dependent and data-independent methods, library scoring algorithms, as well as post-curation steps. We critically discuss parameters that influence search results, such as mass accuracy, precursor ion isolation width, intensity thresholds, centroiding algorithms, and acquisition speed. A range of publicly and commercially available MS/MS databases such as NIST, MassBank, MoNA, LipidBlast, Wiley MSforID, and METLIN are surveyed. In addition, software tools including NIST MS Search, MS-DIAL, Mass Frontier, SmileMS, Mass++, and XCMS2 to perform fast MS/MS search are discussed. MS/MS scoring algorithms and challenges during compound annotation are reviewed. Advanced methods such as the in silico generation of tandem mass spectra using quantum chemistry and machine learning methods are covered. Community efforts for curation and sharing of tandem mass spectra that will allow for faster distribution of scientific discoveries are discussed.
Collapse
Affiliation(s)
- Tobias Kind
- Genome Center, Metabolomics, UC Davis, Davis, California
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Tomas Cajka
- Genome Center, Metabolomics, UC Davis, Davis, California
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, People’s Republic of China
| | - Zijuan Lai
- Genome Center, Metabolomics, UC Davis, Davis, California
| | | | | | | | | | - Masanori Arita
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Oliver Fiehn
- Genome Center, Metabolomics, UC Davis, Davis, California
- Faculty of Sciences, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Abstract
Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
Collapse
|
31
|
Some Applications of Liquid Chromatography-Mass Spectrometry in the Biomedical Field. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/bs.coac.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
32
|
Pandey R, Caflisch L, Lodi A, Brenner AJ, Tiziani S. Metabolomic signature of brain cancer. Mol Carcinog 2017; 56:2355-2371. [PMID: 28618012 DOI: 10.1002/mc.22694] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022]
Abstract
Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed.
Collapse
Affiliation(s)
- Renu Pandey
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas
| | - Laura Caflisch
- Department of Hematology and Medical oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas
| | - Andrew J Brenner
- Department of Hematology and Medical oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas.,Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
33
|
Dickel T, Plaß WR, Lippert W, Lang J, Yavor MI, Geissel H, Scheidenberger C. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1079-1090. [PMID: 28299713 DOI: 10.1007/s13361-017-1617-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Timo Dickel
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany
| | - Wolfgang R Plaß
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany.
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany.
| | - Wayne Lippert
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Johannes Lang
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Mikhail I Yavor
- Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103, St. Petersburg, Russia
| | - Hans Geissel
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany
| | - Christoph Scheidenberger
- II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany
| |
Collapse
|
34
|
Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2017. [DOI: 10.1007/978-3-319-54398-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
35
|
The Applications and Features of Liquid Chromatography-Mass Spectrometry in the Analysis of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3837270. [PMID: 27956918 PMCID: PMC5121459 DOI: 10.1155/2016/3837270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/12/2016] [Indexed: 01/20/2023]
Abstract
With increasingly improved separation of complex samples and detection of unknown material capabilities, liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used in traditional Chinese medicine (TCM) research. This article describes the principles of liquid chromatography (LC) and mass spectrometry (MS) and their advantages and disadvantages in qualitative and quantitative analysis of TCM. We retrieved research literatures about the application of LC-MS in TCM published during the past five years at home and abroad. To better guide the analysis of TCM, this review mainly focuses on the applications category of LC-MS, how often different kinds of LC-MS are used, and the qualitative and quantitative ability of various LC-MS in the study of TCM.
Collapse
|
36
|
He XR, Li CG, Zhu XS, Li YQ, Jarouche M, Bensoussan A, Li PP. High-performance liquid chromatography coupled with tandem mass spectrometry technology in the analysis of Chinese Medicine Formulas: A bibliometric analysis (1997-2015). J Sep Sci 2016; 40:81-92. [PMID: 27731929 DOI: 10.1002/jssc.201600784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 12/23/2022]
Abstract
There is a recognized challenge in analyzing traditional Chinese medicine formulas because of their complex chemical compositions. The application of modern analytical techniques such as high-performance liquid chromatography coupled with a tandem mass spectrometry has improved the characterization of various compounds from traditional Chinese medicine formulas significantly. This study aims to conduct a bibliometric analysis to recognize the overall trend of high-performance liquid chromatography coupled with tandem mass spectrometry approaches in the analysis of traditional Chinese medicine formulas, its significance and possible underlying interactions between individual herbs in these formulas. Electronic databases were searched systematically, and the identified studies were collected and analyzed using Microsoft Access 2010, Graph Pad 5.0 software and Ucinet software package. 338 publications between 1997 and 2015 were identified, and analyzed in terms of annual growth and accumulated publications, top journals, forms of traditional Chinese medicine preparations and highly studied formulas and single herbs, as well as social network analysis of single herbs. There is a significant increase trend in using high-performance liquid chromatography coupled with tandem mass spectrometry related techniques in analysis of commonly used forms of traditional Chinese medicine formulas in the last 3 years. Stringent quality control is of great significance for the modernization and globalization of traditional Chinese medicine, and this bibliometric analysis provided the first and comprehensive summary within this field.
Collapse
Affiliation(s)
- Xi-Ran He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Traditional Chinese and Western Medicine, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chun-Guang Li
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Xiao-Shu Zhu
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yuan-Qing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Traditional Chinese and Western Medicine, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mariam Jarouche
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Alan Bensoussan
- National Institute of Complementary Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Traditional Chinese and Western Medicine, Peking University School of Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
37
|
Hemeryck LY, Moore SA, Vanhaecke L. Mass Spectrometric Mapping of the DNA Adductome as a Means to Study Genotoxin Exposure, Metabolism, and Effect. Anal Chem 2016; 88:7436-46. [DOI: 10.1021/acs.analchem.6b00863] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis, Department
of Veterinary Public Health and Food Safety, Faculty of Veterinary
Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - Sharon A. Moore
- School of Pharmacy and Biomolecular Sciences, Faculty
of Science, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department
of Veterinary Public Health and Food Safety, Faculty of Veterinary
Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| |
Collapse
|
38
|
Blein-Nicolas M, Zivy M. Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:883-95. [PMID: 26947242 DOI: 10.1016/j.bbapap.2016.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 11/18/2022]
Abstract
How to process and analyze MS data to quantify and statistically compare protein abundances in bottom-up proteomics has been an open debate for nearly fifteen years. Two main approaches are generally used: the first is based on spectral data generated during the process of identification (e.g. peptide counting, spectral counting), while the second makes use of extracted ion currents to quantify chromatographic peaks and infer protein abundances based on peptide quantification. These two approaches actually refer to multiple methods which have been developed during the last decade, but were submitted to deep evaluations only recently. In this paper, we compiled these different methods as exhaustively as possible. We also summarized the way they address the different problems raised by bottom-up protein quantification such as normalization, the presence of shared peptides, unequal peptide measurability and missing data. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Mélisande Blein-Nicolas
- GQE-Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Michel Zivy
- GQE-Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| |
Collapse
|
39
|
Ryumin P, Brown J, Morris M, Cramer R. Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS. Methods 2016; 104:11-20. [PMID: 26827934 DOI: 10.1016/j.ymeth.2016.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022] Open
Abstract
Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-to-vacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental set-up and optimization strategy is described for liquid AP-MALDI MS which improves the ionization efficiency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2fmol/μL (0.5μL, i.e. 1fmol, deposited on the target) with very low sample consumption in the low nL-range.
Collapse
Affiliation(s)
- Pavel Ryumin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Jeffery Brown
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK; Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, UK
| | - Michael Morris
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, UK
| | - Rainer Cramer
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| |
Collapse
|
40
|
Patrie SM. Top-Down Mass Spectrometry: Proteomics to Proteoforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:171-200. [PMID: 27975217 DOI: 10.1007/978-3-319-41448-5_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter highlights many of the fundamental concepts and technologies in the field of top-down mass spectrometry (TDMS), and provides numerous examples of contributions that TD is making in biology, biophysics, and clinical investigations. TD workflows include variegated steps that may include non-specific or targeted preparative strategies, orthogonal liquid chromatography techniques, analyte ionization, mass analysis, tandem mass spectrometry (MS/MS) and informatics procedures. This diversity of experimental designs has evolved to manage the large dynamic range of protein expression and diverse physiochemical properties of proteins in proteome investigations, tackle proteoform microheterogeneity, as well as determine structure and composition of gas-phase proteins and protein assemblies.
Collapse
Affiliation(s)
- Steven M Patrie
- Computational and Systems Biology & Biomedical Engineering Graduate Programs, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
41
|
|
42
|
Vanyushkina AA, Kamashev DE, Altukhov IA, Govorun VM. Identification of intracellular Spiroplasma melliferum metabolites by the HPLC-MS method. BIOCHEMISTRY (MOSCOW) 2013; 77:864-77. [PMID: 22860908 DOI: 10.1134/s000629791208007x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In contrast to the abundance of systems-oriented approaches describing changes on the transcriptome or proteome level, relatively few studies have employed the metabolome. The goal of the presented research was to identify as many intracellular metabolites as possible in a Spiroplasma melliferum extract by flow injection time-of-flight mass spectrometry. The Mollicutes class bacterium S. melliferum is a member of a unique category of bacteria that have in common the absence of a cell wall, a reduced genome, and simplified metabolic pathways. Metabolite identification was confirmed by fragmentation of previously detected ions by target mass spectrometry. The selected liquid chromatography approach, hydrophilic interaction chromatography with amino and silica columns, effectively separates highly polar cellular metabolites prior to their detection on a high accuracy mass spectrometer in positive and negative acquisition mode for each column. Here we present reliable measurement of 76 metabolites, including components of sugar, amino acid, and nucleotide metabolism. We have identified about a third of the possible intracellular S. melliferum metabolites predicted by genome annotation.
Collapse
Affiliation(s)
- A A Vanyushkina
- Russian Research Center Kurchatov Institute, pl. Akademika Kurchatova 1, 123182 Moscow, Russia.
| | | | | | | |
Collapse
|
43
|
Experimental Evidence for Ion Accumulation Time Affecting Qualitative and Quantitative Analysis of Ophiopogons in Ophiopogon Extract by Hybrid Ion Trap Time-of-Flight Mass Spectrometry. Chromatographia 2013. [DOI: 10.1007/s10337-013-2483-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Abstract
This document contains recommendations for terminology in mass spectrometry.
Development of standard terms dates back to 1974 when the IUPAC Commission on
Analytical Nomenclature issued recommendations on mass spectrometry terms and
definitions. In 1978, the IUPAC Commission on Molecular Structure and
Spectroscopy updated and extended the recommendations and made further
recommendations regarding symbols, acronyms, and abbreviations. The IUPAC
Physical Chemistry Division Commission on Molecular Structure and Spectroscopy’s
Subcommittee on Mass Spectroscopy revised the recommended terms in 1991 and
appended terms relating to vacuum technology. Some additional terms related to
tandem mass spectrometry were added in 1993 and accelerator mass spectrometry in
1994. Owing to the rapid expansion of the field in the intervening years,
particularly in mass spectrometry of biomolecules, a further revision of the
recommendations has become necessary. This document contains a comprehensive
revision of mass spectrometry terminology that represents the current consensus
of the mass spectrometry community.
Collapse
|
45
|
Lothrop AP, Torres MP, Fuchs SM. Deciphering post-translational modification codes. FEBS Lett 2013; 587:1247-57. [PMID: 23402885 DOI: 10.1016/j.febslet.2013.01.047] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/20/2013] [Accepted: 01/23/2013] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) occur on nearly all proteins. Many domains within proteins are modified on multiple amino acid sidechains by diverse enzymes to create a myriad of possible protein species. How these combinations of PTMs lead to distinct biological outcomes is only beginning to be understood. This manuscript highlights several examples of combinatorial PTMs in proteins, and describes recent technological developments, which are driving our ability to understand how PTM patterns may "code" for biological outcomes.
Collapse
Affiliation(s)
- Adam P Lothrop
- Department of Biology, Tufts University, 200 Boston Ave. Suite 4700, Medford, MA 02155, USA
| | | | | |
Collapse
|
46
|
Cramer R, Pirkl A, Hillenkamp F, Dreisewerd K. AP-UV-MALDI mit flüssigen Matrizes: stabile Ionenausbeuten von mehrfach geladenen Peptid- und Proteinionen für die empfindliche Massenspektrometrie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Cramer R, Pirkl A, Hillenkamp F, Dreisewerd K. Liquid AP-UV-MALDI enables stable ion yields of multiply charged peptide and protein ions for sensitive analysis by mass spectrometry. Angew Chem Int Ed Engl 2013; 52:2364-7. [PMID: 23341077 PMCID: PMC3592991 DOI: 10.1002/anie.201208628] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Indexed: 01/05/2023]
Affiliation(s)
- Rainer Cramer
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | | | | | | |
Collapse
|
48
|
Bhattacharya SK. Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr Eye Res 2013; 38:417-27. [PMID: 23330842 DOI: 10.3109/02713683.2012.760742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the past decade, mass spectrometry (MS) has made tremendous advances toward the profiling and identification of lipids from biological samples. MS is attractive for the simplicity it offers toward total profiling of lipids, the identification and characterization of individual entities directly after extraction from complex biological mixtures utilizing an infusion mode. Fundamentally, two types of mass analyzers exist, depending upon whether the fragment ion resolution and analysis occurs in space domain or in time domain within the mass spectrometer. Compared to MS, chromatographic methods are cumbersome. Nuclear magnetic resonance, which provides unequivocal elucidation of structures, necessitates much higher absolute amount and demands purity of lipids. We present here an account of recent developments in class-specific lipid identification strategies, targeted and untargeted lipid analyses, identification and de novo structure elucidation using mass spectrometric and combinatorial chemical derivatization and MS. We have reviewed the strategies with emphasis for spatial domain fragment resolution mass analyzers enabling analysis of lipids in a class-specific manner. We also provide a brief account of database and bioinformatic tools that have been recently developed toward profiling, identification and quantification of lipids in complex biological mixtures.
Collapse
|
49
|
Wu H, Guo J, Chen S, Liu X, Zhou Y, Zhang X, Xu X. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography–mass spectrometry. J Pharm Biomed Anal 2013; 72:267-91. [DOI: 10.1016/j.jpba.2012.09.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 12/14/2022]
|
50
|
Hartler J, Tharakan R, Köfeler HC, Graham DR, Thallinger GG. Bioinformatics tools and challenges in structural analysis of lipidomics MS/MS data. Brief Bioinform 2012; 14:375-90. [PMID: 22764120 DOI: 10.1093/bib/bbs030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lipidomics, the systematic study of the lipid composition of a cell or tissue, is an invaluable complement to knowledge gained by genomics and proteomics research. Mass spectrometry provides a means to detect hundreds of lipids in parallel, and this includes low abundance species of lipids. Nevertheless, frequently occurring isobaric and isomeric lipid species complicate lipidomics analyses from an analytical and bioinformatics perspective. Various MS/MS strategies have evolved to resolve ambiguous identifications of lipid species, and these strategies have been supported by corresponding bioinformatics analysis tools. This review intends to familiarize readers with available bioinformatics MS/MS analysis tools and databases, the structural information obtainable from these, and their applicability to different MS/MS strategies. Finally, future challenges in detecting double bond positions are investigated from a bioinformatics perspective.
Collapse
|