1
|
Xie Y, Chen S, Alvarez MR, Sheng Y, Li Q, Maverakis E, Lebrilla CB. Protein oxidation of fucose environments (POFE) reveals fucose-protein interactions. Chem Sci 2024; 15:5256-5267. [PMID: 38577366 PMCID: PMC10988611 DOI: 10.1039/d3sc06432h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
Cell membrane glycoproteins are generally highly fucosylated and sialylated, and post-translational modifications play important roles in the proteins' functions of signaling, binding and cellular processing. For these reasons, methods for measuring sialic acid-mediated protein-protein interactions have been developed. However, determining the role of fucose in these interactions has been limited by technological barriers that have thus far hindered the ability to characterize and observe fucose-mediated protein-protein interactions. Herein, we describe a method to metabolically label mammalian cells with modified fucose, which incorporates a bioorthogonal group into cell membrane glycoproteins thereby enabling the characterization of cell-surface fucose interactome. Copper-catalyzed click chemistry was used to conjugate a proximity labeling probe, azido-FeBABE. Following the addition of hydrogen peroxide (H2O2), the fucose-azido-FeBABE catalyzed the formation of hydroxyl radicals, which in turn oxidized the amino acids in the proximity of the labeled fucose residue. The oxidized peptides were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Variations in degree of protein oxidation were obtained with different H2O2 reaction times yielding the acquisition of spatial information of the fucose-interacting proteins. In addition, specific glycoprotein-protein interactions were constructed for Galectin-3 (LEG3) and Galectin-3-binding protein (LG3BP) illustrating the further utility of the method. This method identifies new fucose binding partners thereby enhancing our understanding of the cell glycocalyx.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Chemistry, University of California, Davis Davis California USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine St. Louis Missouri 63110 USA
| | - Siyu Chen
- Department of Chemistry, University of California, Davis Davis California USA
| | | | - Ying Sheng
- Department of Chemistry, University of California, Davis Davis California USA
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis Davis California USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis Sacramento California USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis Davis California USA
- Department of Biochemistry, University of California, Davis Davis California USA
| |
Collapse
|
2
|
Zakopcanik M, Kavan D, Novak P, Loginov DS. Quantifying the Impact of the Peptide Identification Framework on the Results of Fast Photochemical Oxidation of Protein Analysis. J Proteome Res 2024; 23:609-617. [PMID: 38158558 PMCID: PMC10845142 DOI: 10.1021/acs.jproteome.3c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Fast Photochemical Oxidation of Proteins (FPOP) is a promising technique for studying protein structure and dynamics. The quality of insight provided by FPOP depends on the reliability of the determination of the modification site. This study investigates the performance of two search engines, Mascot and PEAKS, for the data processing of FPOP analyses. Comparison of Mascot and PEAKS of the hemoglobin--haptoglobin Bruker timsTOF data set (PXD021621) revealed greater consistency in the Mascot identification of modified peptides, with around 26% of the IDs being mutual for all three replicates, compared to approximately 22% for PEAKS. The intersection between Mascot and PEAKS results revealed a limited number (31%) of shared modified peptides. Principal Component Analysis (PCA) using the peptide-spectrum match (PSM) score, site probability, and peptide intensity was applied to evaluate the results, and the analyses revealed distinct clusters of modified peptides. Mascot showed the ability to assess confident site determination, even with lower PSM scores. However, high PSM scores from PEAKS did not guarantee a reliable determination of the modification site. Fragmentation coverage of the modification position played a crucial role in Mascot assignments, while the AScore localizations from PEAKS often become ambiguous because the software employs MS/MS merging.
Collapse
Affiliation(s)
- Marek Zakopcanik
- Institute
of Microbiology, The Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12820 Prague, Czech Republic
| | - Daniel Kavan
- Institute
of Microbiology, The Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Novak
- Institute
of Microbiology, The Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Dmitry S. Loginov
- Institute
of Microbiology, The Czech Academy of Sciences, 14220 Prague, Czech Republic
| |
Collapse
|
3
|
Polák M, Černý J, Novák P. Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis. Anal Chem 2024; 96:1478-1487. [PMID: 38226459 PMCID: PMC10831798 DOI: 10.1021/acs.analchem.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Protein radical labeling, like fast photochemical oxidation of proteins (FPOP), coupled to a top-down mass spectrometry (MS) analysis offers an alternative analytical method for probing protein structure or protein interaction with other biomolecules, for instance, proteins and DNA. However, with the increasing mass of studied analytes, the MS/MS spectra become complex and exhibit a low signal-to-noise ratio. Nevertheless, these difficulties may be overcome by protein isotope depletion. Thus, we aimed to use protein isotope depletion to analyze FPOP-oxidized samples by top-down MS analysis. For this purpose, we prepared isotopically natural (IN) and depleted (ID) forms of the FOXO4 DNA binding domain (FOXO4-DBD) and studied the protein-DNA interaction interface with double-stranded DNA, the insulin response element (IRE), after exposing the complex to hydroxyl radicals. As shown by comparing tandem mass spectra of natural and depleted proteins, the ID form increased the signal-to-noise ratio of useful fragment ions, thereby enhancing the sequence coverage by more than 19%. This improvement in the detection of fragment ions enabled us to detect 22 more oxidized residues in the ID samples than in the IN sample. Moreover, less common modifications were detected in the ID sample, including the formation of ketones and lysine carbonylation. Given the higher quality of ID top-down MSMS data set, these results provide more detailed information on the complex formation between transcription factors and DNA-response elements. Therefore, our study highlights the benefits of isotopic depletion for quantitative top-down proteomics. Data are available via ProteomeXchange with the identifier PXD044447.
Collapse
Affiliation(s)
- Marek Polák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| | - Jiří Černý
- Laboratory
of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Novák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| |
Collapse
|
4
|
Chapman J, Paukner M, Leser M, Teng KW, Koide S, Holder M, Armache KJ, Becker C, Ueberheide B, Brenowitz M. Systematic Fe(II)-EDTA Method of Dose-Dependent Hydroxyl Radical Generation for Protein Oxidative Footprinting. Anal Chem 2023; 95:18316-18325. [PMID: 38049117 PMCID: PMC10734636 DOI: 10.1021/acs.analchem.3c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
Collapse
Affiliation(s)
- Jessica
R. Chapman
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
| | - Max Paukner
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Micheal Leser
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Kai Wen Teng
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
| | - Shohei Koide
- Perlmutter
Cancer Center, NYU Langone Health, New York, New York 10016, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Marlene Holder
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Karim-Jean Armache
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
- Skirball
Institute of Biomolecular Medicine, NYU
School of Medicine, New York, New York 10013, United States
| | - Chris Becker
- Protein
Metrics Inc., Cupertino, California 95014, United States
| | - Beatrix Ueberheide
- The
Proteomics Laboratory, New York University
(NYU) School of Medicine, New York, New York 10013, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 430 East 29th Street, Suite 860, New York, New York 10013, United States
| | - Michael Brenowitz
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
5
|
Cornwell O, Ault JR. Fast photochemical oxidation of proteins coupled with mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140829. [PMID: 35933084 DOI: 10.1016/j.bbapap.2022.140829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a hydroxyl radical footprinting approach whereby radicals, produced by UV laser photolysis of hydrogen peroxide, induce oxidation of amino acid side-chains. Mass Spectrometry (MS) is employed to locate and quantify the resulting irreversible, covalent oxidations to use as a surrogate for side-chain solvent accessibility. Modulation of oxidation levels under different conditions allows for the characterisation of protein conformation, dynamics and binding epitopes. FPOP has been applied to structurally diverse and biopharmaceutically relevant systems from small, monomeric aggregation-prone proteins to proteome-wide analysis of whole organisms. This review evaluates the current state of FPOP, the progress needed to address data analysis bottlenecks, particularly for residue-level analysis, and highlights significant developments of the FPOP platform that have enabled its versatility and complementarity to other structural biology techniques.
Collapse
Affiliation(s)
- Owen Cornwell
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - James R Ault
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Polák M, Yassaghi G, Kavan D, Filandr F, Fiala J, Kukačka Z, Halada P, Loginov DS, Novák P. Utilization of Fast Photochemical Oxidation of Proteins and Both Bottom-up and Top-down Mass Spectrometry for Structural Characterization of a Transcription Factor-dsDNA Complex. Anal Chem 2022; 94:3203-3210. [PMID: 35134296 DOI: 10.1021/acs.analchem.1c04746] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A combination of covalent labeling techniques and mass spectrometry (MS) is currently a progressive approach for deriving insights related to the mapping of protein surfaces or protein-ligand interactions. In this study, we mapped an interaction interface between the DNA binding domain (DBD) of FOXO4 protein and the DNA binding element (DAF16) using fast photochemical oxidation of proteins (FPOP). Residues involved in protein-DNA interaction were identified using the bottom-up approach. To confirm the findings and avoid a misinterpretation of the obtained data, caused by possible multiple radical oxidations leading to the protein surface alteration and oxidation of deeply buried amino acid residues, a top-down approach was employed for the first time in FPOP analysis. An isolation of singly oxidized ions enabled their gas-phase separation from multiply oxidized species followed by CID and ECD fragmentation. Application of both fragmentation techniques allowed generation of complementary fragment sets, out of which the regions shielded in the presence of DNA were deduced. The findings obtained by bottom-up and top-down approaches were highly consistent. Finally, FPOP results were compared with those of the HDX study of the FOXO4-DBD·DAF16 complex. No contradictions were found between the methods. Moreover, their combination provides complementary information related to the structure and dynamics of the protein-DNA complex. Data are available via ProteomeXchange with identifier PXD027624.
Collapse
Affiliation(s)
- Marek Polák
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Faculty of Science, Charles University, Prague, 12843, Czech Republic
| | - Ghazaleh Yassaghi
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Faculty of Science, Charles University, Prague, 12843, Czech Republic
| | - František Filandr
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Faculty of Science, Charles University, Prague, 12843, Czech Republic
| | - Jan Fiala
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Faculty of Science, Charles University, Prague, 12843, Czech Republic
| | - Zdeněk Kukačka
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Petr Halada
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Dmitry S Loginov
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic.,Orekhovich Institute of Biomedical Chemistry, Moscow, 119191, Russia
| | - Petr Novák
- Institute of Microbiology, The Czech Academy of Sciences, Prague, 14220, Czech Republic
| |
Collapse
|
7
|
Schick AJ, Lundin V, Low J, Peng K, Vandlen R, Wecksler AT. Epitope mapping of anti-drug antibodies to a clinical candidate bispecific antibody. MAbs 2022; 14:2028337. [PMID: 35072596 PMCID: PMC8794239 DOI: 10.1080/19420862.2022.2028337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Anti-drug antibodies (ADA) can limit the efficacy and safety of therapeutic antibodies. However, determining the exact nature of ADA interactions with the target drug via epitope mapping is challenging due to the polyclonal nature of the IgG response. Here, we demonstrate successful proof-of-concept for the application of hydroxyl radical footprinting (HRF)-mass spectrometry for epitope mapping of ADAs obtained from goats that were administered a knob-into-hole bispecific antibody (BsAb1). Subsequently, we performed epitope mapping of ADAs obtained from cynomolgus (cyno) monkeys that were administered BsAb1 as we described in a recently published paper. Herein, we provide the first data to demonstrate the feasibility of using HRF for ADA epitope mapping, and show that both goat and cyno-derived ADAs specifically target the complementary-determining regions in both arms of BsAb1, suggesting that the ADA epitopes on BsAb1 may be species-independent.
Collapse
Affiliation(s)
- Arthur J Schick
- Protein Analytical Chemistry, Genentech Inc, South San Francisco, California, USA
| | - Victor Lundin
- Protein Analytical Chemistry, Genentech Inc, South San Francisco, California, USA
| | - Justin Low
- BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA
| | - Kun Peng
- BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA
| | - Richard Vandlen
- Protein Chemistry, Genentech Inc. South San Francisco, California, USA
| | - Aaron T Wecksler
- Protein Analytical Chemistry, Genentech Inc, South San Francisco, California, USA
| |
Collapse
|
8
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
9
|
Sun Y, Izadi S, Callahan M, Deperalta G, Wecksler AT. Antibody-receptor interactions mediate antibody-dependent cellular cytotoxicity. J Biol Chem 2021; 297:100826. [PMID: 34044019 PMCID: PMC8214220 DOI: 10.1016/j.jbc.2021.100826] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Binding of antibodies to their receptors is a core component of the innate immune system. Understanding the precise interactions between antibodies and their Fc receptors has led to the engineering of novel mAb biotherapeutics with tailored biological activities. One of the most significant findings is that afucosylated monoclonal antibodies demonstrate increased affinity toward the receptor FcγRIIIa, with a commensurate increase in antibody-dependent cellular cytotoxicity. Crystal structure analysis has led to the hypothesis that afucosylation in the Fc region results in reduced steric hindrance between antibody–receptor intermolecular glycan interactions, enhancing receptor affinity; however, solution-phase data have yet to corroborate this hypothesis. In addition, recent work has shown that the fragment antigen-binding (Fab) region may directly interact with Fc receptors; however, the biological consequences of these interactions remain unclear. By probing differences in solvent accessibility between native and afucosylated immunoglobulin G1 (IgG1) using hydroxyl radical footprinting–MS, we provide the first solution-phase evidence that an IgG1 bearing an afucosylated Fc region appears to require fewer conformational changes for FcγRIIIa binding. In addition, we performed extensive molecular dynamics (MD) simulations to understand the molecular mechanism behind the effects of afucosylation. The combination of these techniques provides molecular insight into the steric hindrance from the core Fc fucose in IgG1 and corroborates previously proposed Fab–receptor interactions. Furthermore, MD-guided rational mutagenesis enabled us to demonstrate that Fab–receptor interactions directly contribute to the modulation of antibody-dependent cellular cytotoxicity activity. This work demonstrates that in addition to Fc–polypeptide and glycan-mediated interactions, the Fab provides a third component that influences IgG–Fc receptor biology.
Collapse
Affiliation(s)
- Yue Sun
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Saeed Izadi
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, California, USA
| | - Matthew Callahan
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Galahad Deperalta
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Aaron T Wecksler
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA.
| |
Collapse
|
10
|
Tadi S, Misra SK, Sharp JS. Inline Liquid Chromatography-Fast Photochemical Oxidation of Proteins for Targeted Structural Analysis of Conformationally Heterogeneous Mixtures. Anal Chem 2021; 93:3510-3516. [PMID: 33560821 DOI: 10.1021/acs.analchem.0c04872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structural analysis of proteins in a conformationally heterogeneous mixture has long been a difficult problem in structural biology. In structural analysis by covalent labeling mass spectrometry, conformational heterogeneity results in data reflecting a weighted average of all conformers, complicating data analysis and potentially causing misinterpretation of results. Here, we describe a method coupling size-exclusion chromatography (SEC) with hydroxyl radical protein footprinting using inline fast photochemical oxidation of proteins (FPOP). Using a controlled synthetic mixture of holomyoglobin and apomyoglobin, we validate that we can achieve accurate footprints of each conformer using LC-FPOP when compared to offline FPOP of each pure conformer. We then applied LC-FPOP to analyze the adalimumab heat-shock aggregation process. We found that the LC-FPOP footprint of unaggregated adalimumab was consistent with a previously published footprint of the native IgG. The LC-FPOP footprint of the aggregation product indicated that heat-shock aggregation primarily protected the hinge region, suggesting that this region is involved with the heat-shock aggregation process of this molecule. LC-FPOP offers a new method to probe dynamic conformationally heterogeneous mixtures that can be separated by SEC such as biopharmaceutical aggregates and to obtain accurate information on the topography of each conformer.
Collapse
Affiliation(s)
| | | | - Joshua S Sharp
- GenNext Technologies, Inc., Half Moon Bay, California 94037, United States
| |
Collapse
|
11
|
Misra SK, Sharp JS. Enabling Real-Time Compensation in Fast Photochemical Oxidations of Proteins for the Determination of Protein Topography Changes. J Vis Exp 2020. [PMID: 32955502 DOI: 10.3791/61580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fast photochemical oxidation of proteins (FPOP) is a mass spectrometry-based structural biology technique that probes the solvent-accessible surface area of proteins. This technique relies on the reaction of amino acid side chains with hydroxyl radicals freely diffusing in solution. FPOP generates these radicals in situ by laser photolysis of hydrogen peroxide, creating a burst of hydroxyl radicals that is depleted on the order of a microsecond. When these hydroxyl radicals react with a solvent-accessible amino acid side chain, the reaction products exhibit a mass shift that can be measured and quantified by mass spectrometry. Since the rate of reaction of an amino acid depends in part on the average solvent accessible surface of that amino acid, measured changes in the amount of oxidation of a given region of a protein can be directly correlated to changes in the solvent accessibility of that region between different conformations (e.g., ligand-bound versus ligand-free, monomer vs. aggregate, etc.) FPOP has been applied in a number of problems in biology, including protein-protein interactions, protein conformational changes, and protein-ligand binding. As the available concentration of hydroxyl radicals varies based on many experimental conditions in the FPOP experiment, it is important to monitor the effective radical dose to which the protein analyte is exposed. This monitoring is efficiently achieved by incorporating an inline dosimeter to measure the signal from the FPOP reaction, with laser fluence adjusted in real-time to achieve the desired amount of oxidation. With this compensation, changes in protein topography reflecting conformational changes, ligand-binding surfaces, and/or protein-protein interaction interfaces can be determined in heterogeneous samples using relatively low sample amounts.
Collapse
Affiliation(s)
- Sandeep K Misra
- Department of Biomolecular Sciences, University of Mississippi
| | - Joshua S Sharp
- Department of Biomolecular Sciences, University of Mississippi; Department of Chemistry and Biochemistry, University of Mississippi; GenNext Technologies, Inc.;
| |
Collapse
|
12
|
Ziemianowicz DS, MacCallum JL, Schriemer DC. Correlation between Labeling Yield and Surface Accessibility in Covalent Labeling Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:207-216. [PMID: 32031402 DOI: 10.1021/jasms.9b00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The functional properties of a protein are strongly influenced by its topography, or the solvent-facing contour map of its surface. Together with crosslinking, covalent labeling mass spectrometry (CL-MS) has the potential to contribute topographical data through the measurement of surface accessibility. However, recent efforts to correlate measures of surface accessibility with labeling yield have been met with mixed success. Most applications of CL-MS involve differential analysis of protein interactions (i.e., footprinting experiments) where such inconsistencies have limited effect. Extending CL-MS into structural analysis requires an improved evaluation of the relationship between labeling and surface exposure. In this study, we applied recently developed diazirine reagents to obtain deep coverage of the large motor domain of Eg5 (a mitotic kinesin), and together with computational methods we correlated labeling yields with accessibility data in a number of ways. We observe that correlations can indeed be seen at a local structural level, but these correlations do not extend across the structure. The lack of correlation arises from the influence of protein dynamics and chemical composition on reagent partitioning and, thus, also on labeling yield. We conclude that our use of CL-MS data should be considered in light of "chemical accessibility" rather than "solvent accessibility" and suggest that CL-MS data would be a useful tool in the fundamental study of protein-solute interactions.
Collapse
Affiliation(s)
- Daniel S Ziemianowicz
- Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada T2N 4N1
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Justin L MacCallum
- Department of Chemistry , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada T2N 4N1
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute , University of Calgary , Calgary , Alberta , Canada T2N 4N1
- Department of Chemistry , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| |
Collapse
|
13
|
Misra SK, Orlando R, Weinberger SR, Sharp JS. Compensated Hydroxyl Radical Protein Footprinting Measures Buffer and Excipient Effects on Conformation and Aggregation in an Adalimumab Biosimilar. AAPS JOURNAL 2019; 21:87. [PMID: 31297623 DOI: 10.1208/s12248-019-0358-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 01/02/2023]
Abstract
Unlike small molecule drugs, therapeutic proteins must maintain the proper higher-order structure (HOS) in order to maintain safety and efficacy. Due to the sensitivity of many protein systems, even small changes due to differences in protein expression or formulation can alter HOS. Previous work has demonstrated how hydroxyl radical protein footprinting (HRPF) can sensitively detect changes in protein HOS by measuring the average topography of the protein monomers, as well as identify specific regions of the therapeutic protein impacted by the conformational changes. However, HRPF is very sensitive to the radical scavenging capacity of the buffer; addition of organic buffers and/or excipients can dramatically alter the HRPF footprint without affecting protein HOS. By compensating for the radical scavenging effects of different adalimumab biosimilar formulations using real-time adenine dosimetry, we identify that sodium citrate buffer causes a modest decrease in average solvent accessibility compared to sodium phosphate buffer at the same pH. We find that the addition of polysorbate 80 does not alter the conformation of the biosimilar in either buffer, but it does provide substantial protection from protein conformational perturbation during short periods of exposure to high temperature. Compensated HRPF measurements are validated and contextualized by dynamic light scattering (DLS), which suggests that changes in adalimumab biosimilar aggregation are major drivers in measured changes in protein topography. Overall, compensated HRPF accurately measured conformational changes in adalimumab biosimilar that occurred during formulation changes and identified the effect of formulation changes on protection of HOS from temperature extremes.
Collapse
Affiliation(s)
- Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, Oxford, Mississippi, 38677-1848, USA
| | - Ron Orlando
- GenNext Technologies, Inc., Montara, California, 94037, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602, USA.,GlycoScientific, Athens, Georgia, 30602, USA
| | | | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, Oxford, Mississippi, 38677-1848, USA. .,GenNext Technologies, Inc., Montara, California, 94037, USA.
| |
Collapse
|
14
|
Chen Y, Doud E, Stone T, Xin L, Hong W, Li Y. Rapid global characterization of immunoglobulin G1 following oxidative stress. MAbs 2019; 11:1089-1100. [PMID: 31156028 PMCID: PMC6748588 DOI: 10.1080/19420862.2019.1625676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although peroxide and leachable metal-induced chemical modifications are among the most important quality attributes in bioprocess development, there is no mainstream characterization method covering all common modifications theoretically possible on therapeutic proteins that also gives consistent results quickly. Here, we describe a method for rapid and consistent global characterization of leachable metals- or peroxide-stressed immunoglobulin (Ig) G1 monoclonal antibodies (mAbs). Using two independent protease digestions, data-independent acquisition and data-dependent acquisition liquid chromatography high-resolution mass spectrometry, we monitored 55 potential chemical modifications on trastuzumab, a humanized IgG1 mAb. Processing templates including all observed peptides were developed on Skyline to consistently monitor all modifications throughout the stress conditions for both enzymatic digestions. The Global Characterization Data Processing Site, a universal automated data processing application, was created to batch process data, plot modification trends for peptides, generate sortable and downloadable modification tables, and produce Jmol code for three-dimensional structural models of the analyzed protein. In total, 53 sites on the mAb were found to be modified. Oxidation rates generally increased with the peroxide concentration, while leachable metals alone resulted in lower rates of modifications but more oxidative degradants. Multiple chemical modifications were found on IgG1 surfaces known to interact with FcɣRIII, complement protein C1q, and FcRn, potentially affecting activity. The combination of Skyline templates and the Global Characterization Data Processing Site results in a universally applicable assay allowing users to batch process numerous modifications. Applying this new method to stability studies will promote a broader and deeper understanding of stress modifications on therapeutic proteins.
Collapse
Affiliation(s)
- Yao Chen
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Emma Doud
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Todd Stone
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Lun Xin
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Wei Hong
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| | - Yunsong Li
- a Process Development, Catalent Pharma Solutions, Inc , Bloomington , IN , USA
| |
Collapse
|
15
|
Garcia NK, Deperalta G, Wecksler AT. Current Trends in Biotherapeutic Higher Order Structure Characterization by Irreversible Covalent Footprinting Mass Spectrometry. Protein Pept Lett 2019; 26:35-43. [PMID: 30484396 DOI: 10.2174/0929866526666181128141953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Biotherapeutics, particularly monoclonal antibodies (mAbs), are a maturing class of drugs capable of treating a wide range of diseases. Therapeutic function and solutionstability are linked to the proper three-dimensional organization of the primary sequence into Higher Order Structure (HOS) as well as the timescales of protein motions (dynamics). Methods that directly monitor protein HOS and dynamics are important for mapping therapeutically relevant protein-protein interactions and assessing properly folded structures. Irreversible covalent protein footprinting Mass Spectrometry (MS) tools, such as site-specific amino acid labeling and hydroxyl radical footprinting are analytical techniques capable of monitoring the side chain solvent accessibility influenced by tertiary and quaternary structure. Here we discuss the methodology, examples of biotherapeutic applications, and the future directions of irreversible covalent protein footprinting MS in biotherapeutic research and development. CONCLUSION Bottom-up mass spectrometry using irreversible labeling techniques provide valuable information for characterizing solution-phase protein structure. Examples range from epitope mapping and protein-ligand interactions, to probing challenging structures of membrane proteins. By paring these techniques with hydrogen-deuterium exchange, spectroscopic analysis, or static-phase structural data such as crystallography or electron microscopy, a comprehensive understanding of protein structure can be obtained.
Collapse
Affiliation(s)
- Natalie K Garcia
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Galahad Deperalta
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| | - Aaron T Wecksler
- Department of Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA 94080, United States
| |
Collapse
|
16
|
Riaz M, Misra SK, Sharp JS. Towards high-throughput fast photochemical oxidation of proteins: Quantifying exposure in high fluence microtiter plate photolysis. Anal Biochem 2018; 561-562:32-36. [PMID: 30240591 PMCID: PMC6186496 DOI: 10.1016/j.ab.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
Protein structural analysis by mass spectrometry has gained significant popularity in recent years, including high-resolution protein topographical mapping by fast photochemical oxidation of proteins (FPOP). The ability to provide protein topographical information at moderate spatial resolution makes FPOP an attractive technology for the protein pharmaceutical discovery and development processes. However, current technology limits the throughput and requires significant manual sample manipulation. Similarly, as FPOP is being used on larger samples, sample flow through the capillary becomes challenging. No systematic comparison of the performance of static flash photolysis with traditional flow FPOP has been reported. Here, we evaluate a 96-well microtiter-based laser flash photolysis method for the topographical probing of proteins, which subsequently could be used to analyze higher order structure of the protein in a high-throughput fashion with minimal manual sample manipulation. We used multiple metrics to compare microtiter FPOP performance with that of traditional flow FPOP: adenine-based hydroxyl radical dosimetry, oxidation efficiency of a model peptide, and hydroxyl radical protein footprint of myoglobin. In all cases, microtiter plate FPOP performed comparably with traditional flow FPOP, requiring a small fraction of the time for exposure. This greatly reduced sample exposure time, coupled with automated sample handling in 96-well microtiter plates, makes microtiter-based FPOP an important step in achieving the throughput required to adapt hydroxyl radical protein footprinting for screening purposes.
Collapse
Affiliation(s)
- Mohammad Riaz
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
17
|
Abolhasani Khaje N, Mobley CK, Misra SK, Miller L, Li Z, Nudler E, Sharp JS. Variation in FPOP Measurements Is Primarily Caused by Poor Peptide Signal Intensity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1901-1907. [PMID: 29943081 PMCID: PMC6087495 DOI: 10.1007/s13361-018-1994-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 05/27/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) may be used to characterize changes in protein structure by measuring differences in the apparent rate of peptide oxidation by hydroxyl radicals. The variability between replicates is high for some peptides and limits the statistical power of the technique, even using modern methods controlling variability in radical dose and quenching. Currently, the root cause of this variability has not been systematically explored, and it is unknown if the major source(s) of variability are structural heterogeneity in samples, remaining irreproducibility in FPOP oxidation, or errors in LC-MS quantification of oxidation. In this work, we demonstrate that coefficient of variation of FPOP measurements varies widely at low peptide signal intensity, but stabilizes to ≈ 0.13 at higher peptide signal intensity. We dramatically reduced FPOP variability by increasing the total sample loaded onto the LC column, indicating that the major source of variability in FPOP measurements is the difficulties in quantifying oxidation at low peptide signal intensities. This simple method greatly increases the sensitivity of FPOP structural comparisons, an important step in applying the technique to study subtle conformational changes and protein-ligand interactions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Niloofar Abolhasani Khaje
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Charles K Mobley
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Lindsey Miller
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA
| | - Zixuan Li
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38655, USA.
| |
Collapse
|
18
|
Limpikirati P, Liu T, Vachet RW. Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods 2018; 144:79-93. [PMID: 29630925 PMCID: PMC6051898 DOI: 10.1016/j.ymeth.2018.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein's structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for the structural analysis of proteins and protein complexes, particularly for systems that are difficult to study by other more traditional biochemical techniques. This review provides an overview of the non-specific CL approaches that have been combined with MS with a particular emphasis on the reagents that are commonly used, including hydroxyl radicals, carbenes, and diethylpyrocarbonate. We describe the reagent and protein factors that affect the reactivity of amino acid side chains. We also include details about experimental design and workflow, data analysis, recent applications, and some future prospects of CL-MS methods.
Collapse
Affiliation(s)
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States.
| |
Collapse
|
19
|
Implementing fast photochemical oxidation of proteins (FPOP) as a footprinting approach to solve diverse problems in structural biology. Methods 2018; 144:94-103. [PMID: 29800613 DOI: 10.1016/j.ymeth.2018.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 11/24/2022] Open
Abstract
Fast photochemical oxidation of proteins (FPOP) is a footprinting technique used in mass spectrometry-based structural proteomics. It has been applied to solve a variety of problems in different areas of biology. A FPOP platform requires a laser, optics, and sample flow path properly assembled to enable fast footprinting. Sample preparation, buffer conditions, and reagent concentrations are essential to obtain reasonable oxidations on proteins. FPOP samples can be analyzed by LC-MS methods to measure the modification extent, which is a function of the solvent-accessible surface area of the protein. The platform can be expanded to accommodate several new approaches, including dose-response studies, new footprinting reagents, and two-laser pump-probe experiments. Here, we briefly review FPOP applications and in a detailed manner describe the procedures to set up an FPOP protein footprinting platform.
Collapse
|
20
|
Li KS, Chen G, Mo J, Huang RYC, Deyanova EG, Beno BR, O’Neil SR, Tymiak AA, Gross ML. Orthogonal Mass Spectrometry-Based Footprinting for Epitope Mapping and Structural Characterization: The IL-6 Receptor upon Binding of Protein Therapeutics. Anal Chem 2017; 89:7742-7749. [PMID: 28621526 PMCID: PMC5549780 DOI: 10.1021/acs.analchem.7b01748] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Higher-order structure (HOS) is a crucial determinant for the biological functions and quality attributes of protein therapeutics. Mass spectrometry (MS)-based protein footprinting approaches play an important role in elucidating the relationship between protein biophysical properties and structure. Here, we describe the use of a combined method including hydrogen-deuterium exchange (HDX), fast photochemical oxidation of proteins (FPOP), and site-specific carboxyl group footprinting to investigate the HOS of protein and protein complexes. The work focuses on implementing complementary solution-phase footprinting approaches that differ in time scale, specificity for protein residue side chains vs backbone as well as selectivity for different residue types to map integratively the epitope of human interleukin-6 receptor (IL-6R) for two adnectins with distinct affinities (Kd, Adnectin1 ∼ 6.2 pM vs Kd, Adnectin2 ∼ 46 nM). Furthermore, the study evaluates the resultant conformation/dynamic change of IL-6R. The suggested epitope, which is conserved for adnectin1 and adnectin2 binding, is a flexible loop that connects two β-strands in the cytokine-binding domain (DII) of IL-6R. We also found that adnectin1, the more strongly binding ligand, induces structural perturbations on two unstructured loops that are distally located beyond the epitope. Those changes are either attenuated or not detected for the case of adnectin2 binding. In addition to providing credibility in epitope determination, utilization of those combined approaches reveals the structural effects that can differentiate protein therapeutics with apparently similar biophysical properties.
Collapse
Affiliation(s)
- Ke Sherry Li
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ 08540, USA
| | - Jingjie Mo
- Bioanalytical and Discovery Analytical Sciences, Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ 08540, USA
| | - Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ 08540, USA
| | - Ekaterina G. Deyanova
- Bioanalytical and Discovery Analytical Sciences, Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ 08540, USA
| | - Brett R. Beno
- Molecular Discovery Technologies, Research and Development, Bristol-Myers Squibb, Wallingford, CT 06492, and Waltham, MA 02453, USA
| | - Steve R. O’Neil
- Molecular Discovery Technologies, Research and Development, Bristol-Myers Squibb, Wallingford, CT 06492, and Waltham, MA 02453, USA
| | - Adrienne A. Tymiak
- Bioanalytical and Discovery Analytical Sciences, Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ 08540, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
21
|
Quantitative Protein Topography Measurements by High Resolution Hydroxyl Radical Protein Footprinting Enable Accurate Molecular Model Selection. Sci Rep 2017; 7:4552. [PMID: 28674401 PMCID: PMC5495787 DOI: 10.1038/s41598-017-04689-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/18/2017] [Indexed: 11/23/2022] Open
Abstract
We report an integrated workflow that allows mass spectrometry-based high-resolution hydroxyl radical protein footprinting (HR-HRPF) measurements to accurately measure the absolute average solvent accessible surface area (<SASA>) of amino acid side chains. This approach is based on application of multi-point HR-HRPF, electron-transfer dissociation (ETD) tandem MS (MS/MS) acquisition, measurement of effective radical doses by radical dosimetry, and proper normalization of the inherent reactivity of the amino acids. The accuracy of the resulting <SASA> measurements was tested by using well-characterized protein models. Moreover, we demonstrated the ability to use <SASA> measurements from HR-HRPF to differentiate molecular models of high accuracy (<3 Å backbone RMSD) from models of lower accuracy (>4 Å backbone RMSD). The ability of <SASA> data from HR-HRPF to differentiate molecular model quality was found to be comparable to that of <SASA> data obtained from X-ray crystal structures, indicating the accuracy and utility of HR-HRPF for evaluating the accuracy of computational models.
Collapse
|
22
|
Li X, Grant OC, Ito K, Wallace A, Wang S, Zhao P, Wells L, Lu S, Woods RJ, Sharp JS. Structural Analysis of the Glycosylated Intact HIV-1 gp120-b12 Antibody Complex Using Hydroxyl Radical Protein Footprinting. Biochemistry 2017; 56:957-970. [PMID: 28102671 PMCID: PMC5319886 DOI: 10.1021/acs.biochem.6b00888] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Glycoprotein gp120
is a surface antigen and virulence factor of
human immunodeficiency virus 1. Broadly neutralizing antibodies (bNAbs)
that react to gp120 from a variety of HIV isolates offer hope for
the development of broadly effective immunogens for vaccination purposes,
if the interactions between gp120 and bNAbs can be understood. From
a structural perspective, gp120 is a particularly difficult system
because of its size, the presence of multiple flexible regions, and
the large amount of glycosylation, all of which are important in gp120–bNAb
interactions. Here, the interaction of full-length, glycosylated gp120
with bNAb b12 is probed using high-resolution hydroxyl radical protein
footprinting (HR-HRPF) by fast photochemical oxidation of proteins.
HR-HRPF allows for the measurement of changes in the average solvent
accessible surface area of multiple amino acids without the need for
measures that might alter the protein conformation, such as mutagenesis.
HR-HRPF of the gp120–b12 complex coupled with computational
modeling shows a novel extensive interaction of the V1/V2 domain,
probably with the light chain of b12. Our data also reveal HR-HRPF
protection in the C3 domain caused by interaction of the N330 glycan
with the b12 light chain. In addition to providing information about
the interactions of full-length, glycosylated gp120 with b12, this
work serves as a template for the structural interrogation of full-length
glycosylated gp120 with other bNAbs to better characterize the interactions
that drive the broad specificity of the bNAb.
Collapse
Affiliation(s)
- Xiaoyan Li
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Keigo Ito
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Aaron Wallace
- Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi , University, Mississippi 38677, United States
| |
Collapse
|
23
|
Kathiresan M, English AM. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H 2O 2. Chem Sci 2017; 8:1152-1162. [PMID: 28451256 PMCID: PMC5369544 DOI: 10.1039/c6sc03125k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
We recently reported that cytochrome c peroxidase (Ccp1) functions as a H2O2 sensor protein when H2O2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (CycII), determines whether Ccp1 acts as a H2O2 sensor or peroxidase. For H2O2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H2O2 in the absence of CycII to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H2O2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H2O2 shuts down heterolytic cleavage of H2O2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H2O2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O2 reactivity.
Collapse
Affiliation(s)
- Meena Kathiresan
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| | - Ann M English
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| |
Collapse
|
24
|
Xie B, Sharp JS. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1322-1327. [PMID: 27075875 PMCID: PMC4945384 DOI: 10.1007/s13361-016-1403-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Boer Xie
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Joshua S Sharp
- Department of Biomolecular Sciences, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
25
|
Vahidi S, Konermann L. Probing the Time Scale of FPOP (Fast Photochemical Oxidation of Proteins): Radical Reactions Extend Over Tens of Milliseconds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1156-64. [PMID: 27067899 DOI: 10.1007/s13361-016-1389-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 05/11/2023]
Abstract
Hydroxyl radical (⋅OH) labeling with mass spectrometry detection reports on protein conformations and interactions. Fast photochemical oxidation of proteins (FPOP) involves ⋅OH production via H2O2 photolysis by UV laser pulses inside a flow tube. The experiments are conducted in the presence of a scavenger (usually glutamine) that shortens the ⋅OH lifetime. The literature claims that FPOP takes place within 1 μs. This ultrafast time scale implies that FPOP should be immune to labeling-induced artifacts that may be encountered with other techniques. Surprisingly, the FPOP time scale has never been validated in direct kinetic measurements. Here we employ flash photolysis for probing oxidation processes under typical FPOP conditions. Bleaching of the reporter dye cyanine-5 (Cy5) served as readout of the time-dependent radical milieu. Surprisingly, Cy5 oxidation extends over tens of milliseconds. This time range is four orders of magnitude longer than expected from the FPOP literature. We demonstrate that the glutamine scavenger generates metastable secondary radicals in the FPOP solution, and that these radicals lengthen the time frame of Cy5 oxidation. Cy5 and similar dyes are widely used for monitoring the radical dose experienced by proteins in solution. The measured Cy5 kinetics thus strongly suggest that protein oxidation in FPOP extends over a much longer time window than previously thought (i.e., many milliseconds instead of one microsecond). The optical approach developed here should be suitable for assessing the performance of future FPOP-like techniques with improved temporal labeling characteristics. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
26
|
Rinas A, Espino JA, Jones LM. An efficient quantitation strategy for hydroxyl radical-mediated protein footprinting using Proteome Discoverer. Anal Bioanal Chem 2016; 408:3021-31. [PMID: 26873216 DOI: 10.1007/s00216-016-9369-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/17/2016] [Accepted: 01/27/2016] [Indexed: 01/12/2023]
Abstract
Hydroxyl radical protein footprinting coupled with mass spectrometry has become an invaluable technique for protein structural characterization. In this method, hydroxyl radicals react with solvent exposed amino acid side chains producing stable, covalently attached labels. Although this technique yields beneficial information, the extensive list of known oxidation products produced make the identification and quantitation process considerably complex. Currently, the methods available for analysis either involve manual analysis steps, or limit the amount of searchable modifications or the size of sequence database. This creates a bottleneck which can result in a long and arduous analysis process, which is further compounded in a complex sample. Here, we report the use of a new footprinting analysis method for both peptide and residue-level analysis, demonstrated on the GCaMP2 synthetic construct in calcium free and calcium bound states. This method utilizes a customized multi-search node workflow developed for an on-market search platform in conjunction with a quantitation platform developed using a free Excel add-in. Moreover, the method expedites the analysis process, requiring only two post-search hours to complete quantitation, regardless of the size of the experiment or the sample complexity.
Collapse
Affiliation(s)
- Aimee Rinas
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St LD326, Indianapolis, IN, 46202, USA
| | - Jessica A Espino
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St LD326, Indianapolis, IN, 46202, USA
| | - Lisa M Jones
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St LD326, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Calabrese AN, Ault JR, Radford SE, Ashcroft AE. Using hydroxyl radical footprinting to explore the free energy landscape of protein folding. Methods 2015; 89:38-44. [PMID: 25746386 PMCID: PMC4651025 DOI: 10.1016/j.ymeth.2015.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 01/26/2023] Open
Abstract
Characterisation of the conformational states adopted during protein folding, including globally unfolded/disordered structures and partially folded intermediate species, is vital to gain fundamental insights into how a protein folds. In this work we employ fast photochemical oxidation of proteins (FPOP) to map the structural changes that occur in the folding of the four-helical bacterial immunity protein, Im7. Oxidative footprinting coupled with mass spectrometry (MS) is used to probe changes in the solvent accessibility of amino acid side-chains concurrent with the folding process, by quantifying the degree of oxidation experienced by the wild-type protein relative to a kinetically trapped, three-helical folding intermediate and an unfolded variant that lacks secondary structure. Analysis of the unfolded variant by FPOP-MS shows oxidative modifications consistent with the species adopting a solution conformation with a high degree of solvent accessibility. The folding intermediate, by contrast, experiences increased levels of oxidation relative to the wild-type, native protein only in regions destabilised by the amino acid substitutions introduced. The results demonstrate the utility of FPOP-MS to characterise protein variants in different conformational states and to provide insights into protein folding mechanisms that are complementary to measurements such as hydrogen/deuterium exchange labelling and Φ-value analysis.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - James R Ault
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Alison E Ashcroft
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
28
|
Quantitative mapping of protein structure by hydroxyl radical footprinting-mediated structural mass spectrometry: a protection factor analysis. Biophys J 2015; 108:107-15. [PMID: 25564857 DOI: 10.1016/j.bpj.2014.11.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 11/23/2022] Open
Abstract
Measurements from hydroxyl radical footprinting (HRF) provide rich information about the solvent accessibility of amino acid side chains of a protein. Traditional HRF data analyses focus on comparing the difference in the modification/footprinting rate of a specific site to infer structural changes across two protein states, e.g., between a free and ligand-bound state. However, the rate information itself is not fully used for the purpose of comparing different protein sites within a protein on an absolute scale. To provide such a cross-site comparison, we present a new, to our knowledge, data analysis algorithm to convert the measured footprinting rate constant to a protection factor (PF) by taking into account the known intrinsic reactivity of amino acid side chain. To examine the extent to which PFs can be used for structural interpretation, this PF analysis is applied to three model systems where radiolytic footprinting data are reported in the literature. By visualizing structures colored with the PF values for individual peptides, a rational view of the structural features of various protein sites regarding their solvent accessibility is revealed, where high-PF regions are buried and low-PF regions are more exposed to the solvent. Furthermore, a detailed analysis correlating solvent accessibility and local structural contacts for gelsolin shows a statistically significant agreement between PF values and various structure measures, demonstrating that the PFs derived from this PF analysis readily explain fundamental HRF rate measurements. We also tested this PF analysis on alternative, chemical-based HRF data, showing improved correlations of structural properties of a model protein barstar compared to examining HRF rate data alone. Together, this PF analysis not only permits a novel, to our knowledge, approach of mapping protein structures by using footprinting data, but also elevates the use of HRF measurements from a qualitative, cross-state comparison to a quantitative, cross-site assessment of protein structures in the context of individual conformational states of interest.
Collapse
|
29
|
Li X, Li Z, Xie B, Sharp JS. Supercharging by m-NBA Improves ETD-Based Quantification of Hydroxyl Radical Protein Footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1424-1427. [PMID: 25916598 PMCID: PMC4598181 DOI: 10.1007/s13361-015-1129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Hydroxyl radical protein footprinting (HRPF) is an MS-based technique for analyzing protein structure based on measuring the oxidation of amino acid side chains by hydroxyl radicals diffusing in solution. Spatial resolution of HRPF is limited by the smallest portion of the protein for which oxidation amounts can be accurately quantitated. Previous work has shown electron transfer dissociation (ETD) to be the most reliable method for quantifying the amount of oxidation of each amino acid side chain in a mixture of peptide oxidation isomers, but efficient ETD requires high peptide charge states, which limits its applicability for HRPF. Supercharging reagents have been used to enhance peptide charge state for ETD analysis, but previous work has shown supercharging reagents to enhance charge state differently for different peptides sequences; it is currently unknown if different oxidation isomers will experience different charge enhancement effects. Here, we report the effect of m-nitrobenzyl alcohol (m-NBA) on the ETD-based quantification of peptide oxidation. The addition of m-NBA to both a defined mixture of synthetic isomeric oxidized peptides and Robo-1 protein subjected to HRPF increased the abundance of higher charge state ions, improving our ability to perform efficient ETD of the mixture. No differences in the reported quantitation by ETD were noted in the presence or absence of m-NBA, indicating that all oxidation isomers were charge-enhanced to a similar extent. These results indicate the utility of m-NBA for residue-level quantification of peptide oxidation in HRPF and other applications.
Collapse
Affiliation(s)
- Xiaoyan Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | | | | |
Collapse
|
30
|
Cordeiro RM. Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins. Biochim Biophys Acta Gen Subj 2015; 1850:1786-94. [PMID: 25982446 DOI: 10.1016/j.bbagen.2015.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aquaporins are responsible for water transport across lipid membranes. They are also able to transport reactive oxygen species, playing an important role in redox signaling. Certain plant aquaporins have even the ability to be regulated by oxidative stress. However, the underlying mechanisms are still not fully understood. METHODS Here, molecular dynamics simulations were employed to determine the activation free energies related to the transport of reactive oxygen species through both mammalian and plant aquaporin models. RESULTS AND CONCLUSIONS Both aquaporins may transport hydrogen peroxide (H2O2) and the protonated form of superoxide radicals (HO2). The solution-to-pore transfer free energies were low for small oxy-radicals, suggesting that even highly reactive hydroxyl radicals (HO) might have access to the pore interior and oxidize amino acids responsible for channel selectivity. In the plant aquaporin, no significant change in water permeability was observed upon oxidation of the solvent-exposed disulfide bonds at the extracellular region. During the simulated time scale, the existence of a direct oxidative gating mechanism involving these disulfide bonds could not be demonstrated. GENERAL SIGNIFICANCE Simulation results may improve the understanding of redox signaling mechanisms and help in the interpretation of protein oxidative labeling experiments.
Collapse
Affiliation(s)
- Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
31
|
Li Z, Moniz H, Wang S, Ramiah A, Zhang F, Moremen KW, Linhardt RJ, Sharp JS. High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J Biol Chem 2015; 290:10729-40. [PMID: 25752613 PMCID: PMC4409239 DOI: 10.1074/jbc.m115.648410] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/05/2015] [Indexed: 11/06/2022] Open
Abstract
Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes.
Collapse
Affiliation(s)
- Zixuan Li
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Heather Moniz
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Shuo Wang
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Annapoorani Ramiah
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Fuming Zhang
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Kelley W Moremen
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Robert J Linhardt
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Joshua S Sharp
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
32
|
Kaur P, Kiselar J, Yang S, Chance MR. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion mass spectrometry (MS). Mol Cell Proteomics 2015; 14:1159-68. [PMID: 25687570 DOI: 10.1074/mcp.o114.044362] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca(+2)-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes.
Collapse
Affiliation(s)
- Parminder Kaur
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Janna Kiselar
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Sichun Yang
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| | - Mark R Chance
- From the ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10009 Euclid Ave, Cleveland, Ohio, 44109
| |
Collapse
|
33
|
French KC, Roan NR, Makhatadze GI. Structural characterization of semen coagulum-derived SEM1(86-107) amyloid fibrils that enhance HIV-1 infection. Biochemistry 2014; 53:3267-77. [PMID: 24811874 PMCID: PMC4039337 DOI: 10.1021/bi500427r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
SEM1(86–107)
is a 22-residue peptide corresponding to residues
86–107 in the semenogelin I protein. SEM1(86–107) is
an abundant component of freshly liquefied semen and forms amyloid
fibrils capable of enhancing HIV infection. To probe the factors affecting
fibril formation and gain a better understanding of how differences
in pH between semen and vaginal fluid affect fibril stability, this
study determined the effect of pH on SEM1(86–107) fibril formation
and dissociation. The SEM1(86–107) fibril structure (i.e.,
residues that comprise the fibrillar core) was also probed using hydrogen–deuterium
exchange mass spectrometry (HDXMS) and hydroxyl radical-mediated protein
modification. The average percent exposure to hydroxyl radical-mediated
modification in the SEM1(86–107) fibrils was determined without
requiring tandem mass spectrometry spectral acquisition or complete
separation of modified peptides. It was found that the residue exposures
calculated from HDXMS and hydroxyl radical-mediated modification were
similar. These techniques demonstrated that three regions of SEM1(86–107)
comprise the amyloid fibril core and that positively charged residues
are exposed, suggesting that electrostatic interactions between SEM1(86–107)
and HIV or the cell surface may be responsible for mediating HIV infection
enhancement by the SEM1(86–107) fibrils.
Collapse
Affiliation(s)
- Kinsley C French
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | |
Collapse
|
34
|
Salanga CL, Dyer DP, Kiselar JG, Gupta S, Chance MR, Handel TM. Multiple glycosaminoglycan-binding epitopes of monocyte chemoattractant protein-3/CCL7 enable it to function as a non-oligomerizing chemokine. J Biol Chem 2014; 289:14896-912. [PMID: 24727473 DOI: 10.1074/jbc.m114.547737] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interaction of chemokines with glycosaminoglycans (GAGs) facilitates the formation of localized chemokine gradients that provide directional signals for migrating cells. In this study, we set out to understand the structural basis and impact of the differing oligomerization propensities of the chemokines monocyte chemoattractant protein (MCP)-1/CCL2 and MCP-3/CCL7 on their ability to bind GAGs. These chemokines provide a unique comparison set because CCL2 oligomerizes and oligomerization is required for its full in vivo activity, whereas CCL7 functions as a monomer. To identify the GAG-binding determinants of CCL7, an unbiased hydroxyl radical footprinting approach was employed, followed by a focused mutagenesis study. Compared with the size of the previously defined GAG-binding epitope of CCL2, CCL7 has a larger binding site, consisting of multiple epitopes distributed along its surface. Furthermore, surface plasmon resonance (SPR) studies indicate that CCL7 is able to bind GAGs with an affinity similar to CCL2 but higher than the non-oligomerizing variant, CCL2(P8A), suggesting that, in contrast to CCL2, the large cluster of GAG-binding residues in CCL7 renders oligomerization unnecessary for high affinity binding. However, the affinity of CCL7 is more sensitive than CCL2 to the density of heparan sulfate on the SPR surfaces; this is likely due to the inability of CCL7 to oligomerize because CCL2(P8A) also binds significantly less tightly to low than high density heparan sulfate surfaces compared with CCL2. Together, the data suggest that CCL7 and CCL2 are non-redundant chemokines and that GAG chain density may provide a mechanism for regulating the accumulation of chemokines on cell surfaces.
Collapse
Affiliation(s)
- Catherina L Salanga
- From the Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California 92093-0684 and
| | - Douglas P Dyer
- From the Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California 92093-0684 and
| | | | - Sayan Gupta
- the Center for Proteomics and Bioinformatics and Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Mark R Chance
- the Center for Proteomics and Bioinformatics and Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tracy M Handel
- From the Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California 92093-0684 and
| |
Collapse
|
35
|
Li X, Li Z, Xie B, Sharp JS. Improved identification and relative quantification of sites of peptide and protein oxidation for hydroxyl radical footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1767-76. [PMID: 24014150 PMCID: PMC3814024 DOI: 10.1007/s13361-013-0719-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 05/08/2023]
Abstract
Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.
Collapse
Affiliation(s)
- Xiaoyan Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | | | | | | |
Collapse
|
36
|
Christian H, Hofele RV, Urlaub H, Ficner R. Insights into the activation of the helicase Prp43 by biochemical studies and structural mass spectrometry. Nucleic Acids Res 2013; 42:1162-79. [PMID: 24165877 PMCID: PMC3902948 DOI: 10.1093/nar/gkt985] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Splicing of precursor messenger RNA is a hallmark of eukaryotic cells, which is carried out by the spliceosome, a multi-megadalton ribonucleoprotein machinery. The splicing reaction removes non-coding regions (introns) and ligates coding regions (exons). The spliceosome is a highly dynamic ribonucleoprotein complex that undergoes dramatic structural changes during its assembly, the catalysis and its disassembly. The transitions between the different steps during the splicing cycle are promoted by eight conserved DExD/H box ATPases. The DEAH-box protein Prp43 is responsible for the disassembly of the intron-lariat spliceosome and its helicase activity is activated by the G-patch protein Ntr1. Here, we investigate the activation of Prp43 by Ntr1 in the presence and absence of RNA substrate by functional assays and structural proteomics. Residues 51–110 of Ntr1 were identified to be the minimal fragment that induces full activation. We found protein–protein cross-links that indicate that Prp43 interacts with the G-patch motif of Ntr1 through its C-terminal domains. Additionally, we report on functionally important RNA binding residues in both proteins and propose a model for the activation of the helicase.
Collapse
Affiliation(s)
- Henning Christian
- Department for Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, D-37077 Göttingen, Germany, Bioanalytical Mass Spectrometry Group, Max-Planck-Institute of Biophysical Chemistry, D-37077 Göttingen, Germany and Bioanalytics, Department of Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | | | | | | |
Collapse
|
37
|
Mass spectrometry coupled experiments and protein structure modeling methods. Int J Mol Sci 2013; 14:20635-57. [PMID: 24132151 PMCID: PMC3821635 DOI: 10.3390/ijms141020635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/02/2023] Open
Abstract
With the accumulation of next generation sequencing data, there is increasing interest in the study of intra-species difference in molecular biology, especially in relation to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical factor in its function. Although accuracy of protein structure prediction methods is high, provided there are structural templates, most methods are still insensitive to amino-acid differences at critical points that may change the overall structure. Also, predicted structures are inherently static and do not provide information about structural change over time. It is challenging to address the sensitivity and the dynamics by computational structure predictions alone. However, with the fast development of diverse mass spectrometry coupled experiments, low-resolution but fast and sensitive structural information can be obtained. This information can then be integrated into the structure prediction process to further improve the sensitivity and address the dynamics of the protein structures. For this purpose, this article focuses on reviewing two aspects: the types of mass spectrometry coupled experiments and structural data that are obtainable through those experiments; and the structure prediction methods that can utilize these data as constraints. Also, short review of current efforts in integrating experimental data in the structural modeling is provided.
Collapse
|
38
|
McClintock CS, Parks JM, Bern M, Ghattyvenkatakrishna PK, Hettich RL. Comparative informatics analysis to evaluate site-specific protein oxidation in multidimensional LC-MS/MS data. J Proteome Res 2013; 12:3307-16. [PMID: 23827042 DOI: 10.1021/pr400141p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Redox proteomics has yielded molecular insight into diseases of protein dysfunction attributable to oxidative stress, underscoring the need for robust detection of protein oxidation products. Additionally, oxidative protein surface mapping techniques utilize hydroxyl radicals to gain structural insight about solvent exposure. Interpretation of tandem mass spectral data is a critical challenge for such investigations, because reactive oxygen species target a wide breadth of amino acids. Additionally, oxidized peptides may be generated in a wide range of abundances since the reactivity of hydroxyl radicals with different amino acids spans 3 orders of magnitude. Taken together, these attributes of oxidative footprinting pose both experimental and computational challenges to detecting oxidized peptides that are naturally less abundant than their unoxidized counterparts. In this study, model proteins were oxidized electrochemically and analyzed at both the intact protein and peptide levels. A multidimensional chromatographic strategy was utilized to expand the dynamic range of oxidized peptide measurements. Peptide mass spectral data were searched by the "hybrid" software packages Inspect and Byonic, which incorporate de novo elements of spectral interpretation into a database search. This dynamic search capacity accommodates the challenge of searching for more than 40 oxidative mass shifts that can occur in a staggering variety of possible combinatorial occurrences. A prevailing set of oxidized residues was identified with this comparative approach, and evaluation of these sites was informed by solvent accessible surface area gleaned through molecular dynamics simulations. Along with increased levels of oxidation around highly reactive "hotspot" sites as expected, the enhanced sensitivity of these measurements uncovered a surprising level of oxidation on less reactive residues.
Collapse
Affiliation(s)
- Carlee S McClintock
- Graduate School of Genome Science and Technology, University of Tennessee-Oak Ridge National Laboratory, 1060 Commerce Park, Oak Ridge, Tennessee 37830, USA
| | | | | | | | | |
Collapse
|
39
|
Gau BC, Chen J, Gross ML. Fast photochemical oxidation of proteins for comparing solvent-accessibility changes accompanying protein folding: data processing and application to barstar. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1230-8. [PMID: 23485913 PMCID: PMC3663899 DOI: 10.1016/j.bbapap.2013.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/21/2022]
Abstract
Mass spectrometry-based protein footprinting reveals regional and even amino-acid structural changes and fills the gap for many proteins and protein interactions that cannot be studied by X-ray crystallography or NMR spectroscopy. Hydroxyl radical-mediated labeling has proven to be particularly informative in this pursuit because many solvent-accessible residues can be labeled by OH in a protein or protein complex, thus providing more coverage than does specific amino-acid modifications. Finding all the OH-labeling sites requires LC/MS/MS analysis of a proteolyzed sample, but data processing is daunting without the help of automated software. We describe here a systematic means for achieving a comprehensive residue-resolved analysis of footprinting data in an efficient manner, utilizing software common to proteomics core laboratories. To demonstrate the method and the utility of OH-mediated labeling, we show that FPOP easily distinguishes the buried and exposed residues of barstar in its folded and unfolded states. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
- Brian C Gau
- Donald Danforth Plant Science Center, Washington University, St. Louis, MO 63132, USA
| | | | | |
Collapse
|
40
|
Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. ACTA ACUST UNITED AC 2013; Chapter 13:13.20.1-13.20.14. [PMID: 23255153 DOI: 10.1002/0471250953.bi1320s40] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Byonic is the name of a software package for peptide and protein identification by tandem mass spectrometry. This software, which has only recently become commercially available, facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot. Byonic allows the user to define an essentially unlimited number of variable modification types. Byonic also allows the user to set a separate limit on the number of occurrences of each modification type, so that a search may consider only one or two chance modifications such as oxidations and deamidations per peptide, yet allow three or four biological modifications such as phosphorylations, which tend to cluster together. Hence, Byonic can search for tens or even hundreds of modification types simultaneously without a prohibitively large combinatorial explosion. Byonic's Wildcard Search allows the user to search for unanticipated or even unknown modifications alongside known modifications. Finally, Byonic's Glycopeptide Search allows the user to identify glycopeptides without prior knowledge of glycan masses or glycosylation sites.
Collapse
|
41
|
Silva AM, Marçal SL, Vitorino R, Domingues MR, Domingues P. Characterization of in vitro protein oxidation using mass spectrometry: A time course study of oxidized alpha-amylase. Arch Biochem Biophys 2013; 530:23-31. [DOI: 10.1016/j.abb.2012.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 12/19/2022]
|
42
|
Chemokine oligomerization in cell signaling and migration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:531-78. [PMID: 23663982 DOI: 10.1016/b978-0-12-386931-9.00020-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemokines are small proteins best known for their role in controlling the migration of diverse cells, particularly leukocytes. Upon binding to their G-protein-coupled receptors on the leukocytes, chemokines stimulate the signaling events that cause cytoskeletal rearrangements involved in cell movement, and migration of the cells along chemokine gradients. Depending on the cell type, chemokines also induce many other types of cellular responses including those related to defense mechanisms, cell proliferation, survival, and development. Historically, most research efforts have focused on the interaction of chemokines with their receptors, where monomeric forms of the ligands are the functionally relevant state. More recently, however, the importance of chemokine interactions with cell surface glycosaminoglycans has come to light, and in most cases appears to involve oligomeric chemokine structures. This review summarizes existing knowledge relating to the structure and function of chemokine oligomers, and emerging methodology for determining structures of complex chemokine assemblies in the future.
Collapse
|
43
|
Skora L, Fonseca-Ornelas L, Hofele RV, Riedel D, Giller K, Watzlawik J, Schulz-Schaeffer WJ, Urlaub H, Becker S, Zweckstetter M. Burial of the polymorphic residue 129 in amyloid fibrils of prion stop mutants. J Biol Chem 2012; 288:2994-3002. [PMID: 23209282 DOI: 10.1074/jbc.m112.423715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misfolding of the natively α-helical prion protein into a β-sheet rich isoform is related to various human diseases such as Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome. In humans, the disease phenotype is modified by a methionine/valine polymorphism at codon 129 of the prion protein gene. Using a combination of hydrogen/deuterium exchange coupled to NMR spectroscopy, hydroxyl radical probing detected by mass spectrometry, and site-directed mutagenesis, we demonstrate that stop mutants of the human prion protein have a conserved amyloid core. The 129 residue is deeply buried in the amyloid core structure, and its mutation strongly impacts aggregation. Taken together the data support a critical role of the polymorphic residue 129 of the human prion protein in aggregation and disease.
Collapse
Affiliation(s)
- Lukasz Skora
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. CURRENT PROTOCOLS IN BIOINFORMATICS 2012. [PMID: 23255153 DOI: 10.1002/0471250953.bi0471251320s0471250940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Byonic is the name of a software package for peptide and protein identification by tandem mass spectrometry. This software, which has only recently become commercially available, facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot. Byonic allows the user to define an essentially unlimited number of variable modification types. Byonic also allows the user to set a separate limit on the number of occurrences of each modification type, so that a search may consider only one or two chance modifications such as oxidations and deamidations per peptide, yet allow three or four biological modifications such as phosphorylations, which tend to cluster together. Hence, Byonic can search for tens or even hundreds of modification types simultaneously without a prohibitively large combinatorial explosion. Byonic's Wildcard Search allows the user to search for unanticipated or even unknown modifications alongside known modifications. Finally, Byonic's Glycopeptide Search allows the user to identify glycopeptides without prior knowledge of glycan masses or glycosylation sites.
Collapse
Affiliation(s)
- Marshall Bern
- Protein Metrics Inc, San Carlos, California
- Palo Alto Research Center, Palo Alto, California
| | - Yong J Kil
- Protein Metrics Inc, San Carlos, California
| | | |
Collapse
|
45
|
Watson C, Sharp JS. Conformational analysis of therapeutic proteins by hydroxyl radical protein footprinting. AAPS JOURNAL 2012; 14:206-17. [PMID: 22382679 DOI: 10.1208/s12248-012-9336-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/15/2012] [Indexed: 12/21/2022]
Abstract
Unlike small molecule drugs, therapeutic protein pharmaceuticals must not only have the correct amino acid sequence and modifications, but also the correct conformation to ensure safety and efficacy. Here, we describe a method for comparison of therapeutic protein conformations by hydroxyl radical protein footprinting using liquid chromatography-mass spectrometry (LC-MS) as an analytical platform. Hydroxyl radical protein footprinting allows for rapid analysis of the conformation of therapeutic proteins based on the apparent rate of oxidation of various amino acids by hydroxyl radicals generated in situ. Conformations of Neupogen®, a patented granulocyte colony-stimulating factor (GCSF), were compared to several expired samples of recombinant GCSF, as well as heat-treated Neupogen®. Conformations of different samples of the therapeutic proteins interferon α-2A and erythropoietin were also compared. Differences in the hydroxyl radical footprint were measured between Neupogen® and the expired or mishandled GCSF samples, and confirmed by circular dichroism spectroscopy. Samples that had identical circular dichroism spectra were also found to be indistinguishable by hydroxyl radical footprinting. The method is applicable to a wide variety of therapeutic proteins and formulations through the use of separations techniques to clean up the protein samples after radical oxidation. The reaction products are stable, allowing for flexibility in sample handling, as well as archiving and reanalysis of samples. Initial screening can be performed on small amounts of therapeutic protein with minimal training in LC-MS, but samples with structural differences from the reference can be more carefully analyzed by LC-MS/MS to attain higher spatial resolution, which can aid in engineering and troubleshooting.
Collapse
Affiliation(s)
- Caroline Watson
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, Georgia 30602, USA
| | | |
Collapse
|
46
|
Wang L, Chance MR. Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting. Anal Chem 2011; 83:7234-41. [PMID: 21770468 DOI: 10.1021/ac200567u] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Structural MS is a rapidly growing field with many applications in basic research and pharmaceutical drug development. In this feature article the overall technology is described and several examples of how hydroxyl radical based footprinting MS can be used to map interfaces, evaluate protein structure, and identify ligand dependent conformational changes in proteins are described.
Collapse
Affiliation(s)
- Liwen Wang
- Center for Proteomics & Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
47
|
Schorzman AN, Perera L, Cutalo-Patterson JM, Pedersen LC, Pedersen LG, Kunkel TA, Tomer KB. Modeling of the DNA-binding site of yeast Pms1 by mass spectrometry. DNA Repair (Amst) 2011; 10:454-65. [PMID: 21354867 PMCID: PMC3084373 DOI: 10.1016/j.dnarep.2011.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/07/2011] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
Abstract
Mismatch repair (MMR) corrects replication errors that would otherwise lead to mutations and, potentially, various forms of cancer. Among several proteins required for eukaryotic MMR, MutLα is a heterodimer comprised of Mlh1 and Pms1. The two proteins dimerize along their C-terminal domains (CTDs), and the CTD of Pms1 houses a latent endonuclease that is required for MMR. The highly conserved N-terminal domains (NTDs) independently bind DNA and possess ATPase active sites. Here we use two protein footprinting techniques, limited proteolysis and oxidative surface mapping, coupled with mass spectrometry to identify amino acids involved along the DNA-binding surface of the Pms1-NTD. Limited proteolysis experiments elucidated several basic residues that were protected in the presence of DNA, while oxidative surface mapping revealed one residue that is uniquely protected from oxidation. Furthermore, additional amino acids distributed throughout the Pms1-NTD were protected from oxidation either in the presence of a non-hydrolyzable analog of ATP or DNA, indicating that each ligand stabilizes the protein in a similar conformation. Based on the recently published X-ray crystal structure of yeast Pms1-NTD, a model of the Pms1-NTD/DNA complex was generated using the mass spectrometric data as constraints. The proposed model defines the DNA-binding interface along a positively charged groove of the Pms1-NTD and complements prior mutagenesis studies of Escherichia coli and eukaryotic MutL.
Collapse
Affiliation(s)
- Allison N. Schorzman
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jenny M. Cutalo-Patterson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Lee G. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Thomas A. Kunkel
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
48
|
DeArmond PD, West GM, Huang HT, Fitzgerald MC. Stable isotope labeling strategy for protein-ligand binding analysis in multi-component protein mixtures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:418-430. [PMID: 21472561 PMCID: PMC3085011 DOI: 10.1007/s13361-010-0060-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 05/30/2023]
Abstract
Described here is a stable isotope labeling protocol that can be used with a chemical modification- and mass spectrometry-based protein-ligand binding assay for detecting and quantifying both the direct and indirect binding events that result from protein-ligand binding interactions. The protocol utilizes an H(2) (16)O(2) and H(2) (18)O(2) labeling strategy to evaluate the chemical denaturant dependence of methionine oxidation in proteins both in the presence and absence of a target ligand. The differential denaturant dependence to the oxidation reactions performed in the presence and absence of ligand provides a measure of the protein stability changes that occur as a result of direct interactions of proteins with the target ligand and/or as a result of indirect interactions involving other protein-ligand interactions that are either induced or disrupted by the ligand. The described protocol utilizes the (18)O/(16)O ratio in the oxidized protein samples to quantify the ligand-induced protein stability changes. The ratio is determined using the isotopic distributions observed for the methionine-containing peptides used for protein identification in the LC-MS-based proteomics readout. The strategy is applied to a multi-component protein mixture in this proof-of-principle experiment, which was designed to evaluate the technique's ability to detect and quantify the direct binding interaction between cyclosporin A and cyclophilin A and to detect the indirect binding interaction between cyclosporin A and calcineurin (i.e., the protein-protein interaction between cyclophilin A and calcineurin that is induced by cyclosporin A binding to cyclophilin A).
Collapse
Affiliation(s)
- Patrick D DeArmond
- Department of Chemistry, Duke University, Durham, Box 90346, NC 27708-0346, USA
| | | | | | | |
Collapse
|
49
|
Zhu Y, Guo T, Sze SK. Elucidating structural dynamics of integral membrane proteins on native cell surface by hydroxyl radical footprinting and nano LC-MS/MS. Methods Mol Biol 2011; 790:287-303. [PMID: 21948423 DOI: 10.1007/978-1-61779-319-6_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although the snapshots of different in vitro conformational states have been intensively studied, current techniques such as nuclear magnetic resonance, X-ray crystallography, and electron microscope method cannot probe the in vivo conformational movements of integral membrane proteins on cell surfaces. Here, we describe a hydroxyl radical protein footprinting coupled to a mass spectrometry detection technique to probe the structural dynamics of a membrane protein directly on the native cell surface. This method uses in situ generation of hydroxyl radicals to oxidize and covalently modify integral membrane proteins on the cell surface. To explain this technique in detail, we use the porin OmpF as an example, although the method may be applied to study any membrane protein. Footprinting results show that the surface mapping data of OmpF are consistent with its current crystallographic structure. In addition, this technique also enables the detection of in vivo voltage gating of porin OmpF for the first time. This novel cell surface footprinting method coupled with MS analysis can be a potentially efficient method to study the structural dynamics of the membrane proteins of a living cell.
Collapse
Affiliation(s)
- Yi Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | | |
Collapse
|
50
|
Roeser J, Bischoff R, Bruins AP, Permentier HP. Oxidative protein labeling in mass-spectrometry-based proteomics. Anal Bioanal Chem 2010; 397:3441-55. [PMID: 20155254 PMCID: PMC2911539 DOI: 10.1007/s00216-010-3471-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 01/07/2023]
Abstract
Oxidation of proteins and peptides is a common phenomenon, and can be employed as a labeling technique for mass-spectrometry-based proteomics. Nonspecific oxidative labeling methods can modify almost any amino acid residue in a protein or only surface-exposed regions. Specific agents may label reactive functional groups in amino acids, primarily cysteine, methionine, tyrosine, and tryptophan. Nonspecific radical intermediates (reactive oxygen, nitrogen, or halogen species) can be produced by chemical, photochemical, electrochemical, or enzymatic methods. More targeted oxidation can be achieved by chemical reagents but also by direct electrochemical oxidation, which opens the way to instrumental labeling methods. Oxidative labeling of amino acids in the context of liquid chromatography(LC)-mass spectrometry (MS) based proteomics allows for differential LC separation, improved MS ionization, and label-specific fragmentation and detection. Oxidation of proteins can create new reactive groups which are useful for secondary, more conventional derivatization reactions with, e.g., fluorescent labels. This review summarizes reactions of oxidizing agents with peptides and proteins, the corresponding methodologies and instrumentation, and the major, innovative applications of oxidative protein labeling described in selected literature from the last decade.
Collapse
Affiliation(s)
- Julien Roeser
- Analytical Biochemistry and Mass Spectrometry Core Facility, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rainer Bischoff
- Analytical Biochemistry and Mass Spectrometry Core Facility, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Andries P. Bruins
- Analytical Biochemistry and Mass Spectrometry Core Facility, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hjalmar P. Permentier
- Analytical Biochemistry and Mass Spectrometry Core Facility, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|