1
|
Zercher BP, Feng Y, Bush MF. Towards IM n with Electrostatic Drift Fields: Resetting the Potential of Trapped Ions Between Dimensions of Ion Mobility. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117163. [PMID: 37928050 PMCID: PMC10621600 DOI: 10.1016/j.ijms.2023.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Increasing the dimensionality of ion mobility (IM) presents an enticing opportunity to increase the information content and selectivity of many analyses. However, for implementations of IM that use constant electrostatic gradients to separate ions in a buffer gas, technical challenges have limited the adoption of the technique and number of dimensions within individual experiments. Here, we introduce a strategy to "reset" the potentials of ions between IM dimensions. To achieve this, mobility-selected ions are trapped between dimensions of IM, using a combination of RF and electrostatic fields, while the subsequent dimension of IM is devoid of any drift field. By applying an incremental voltage ramp, the potential of the trapping region is elevated, simultaneously establishing the drift field in the subsequent dimension of IM. The trapped ions are then released and separated. We measured similar arrival-time distributions of protein ions using this strategy and a method without potential resetting, suggesting that potential resetting can be performed without additional losses or activation of ions. The findings of those experiments were corroborated by ion trajectory simulations, which exhibited a very small changes in ion position and no significant changes in effective temperatures during potential resetting. Finally, we demonstrate that IM information can be preserved during potential resetting by selecting subpopulations of 9+ cytochrome c ions, resetting their potential, subjecting them to a second-dimension IM separation, and observing the retention of conformers within each subpopulation. We anticipate that this strategy will be useful for advancing flexible, multidimensional experiments on electrostatic IM instruments.
Collapse
Affiliation(s)
- Benjamin P. Zercher
- University of Washington Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Yuan Feng
- University of Washington Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
2
|
Liu FC, Ridgeway ME, Wootton CA, Theisen A, Panczyk EM, Meier F, Park MA, Bleiholder C. Top-Down Protein Analysis by Tandem-Trapped Ion Mobility Spectrometry/Mass Spectrometry (Tandem-TIMS/MS) Coupled with Ultraviolet Photodissociation (UVPD) and Parallel Accumulation/Serial Fragmentation (PASEF) MS/MS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2232-2246. [PMID: 37638640 PMCID: PMC11162218 DOI: 10.1021/jasms.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
"Top-down" proteomics analyzes intact proteins and identifies proteoforms by their intact mass as well as the observed fragmentation pattern in tandem mass spectrometry (MS/MS) experiments. Recently, hybrid ion mobility spectrometry-mass spectrometry (IM/MS) methods have gained traction for top-down experiments, either by allowing top-down analysis of individual isomers or alternatively by improving signal/noise and dynamic range for fragment ion assignment. We recently described the construction of a tandem-trapped ion mobility spectrometer/mass spectrometer (tandem-TIMS/MS) coupled with an ultraviolet (UV) laser and demonstrated a proof-of-principle for top-down analysis by UV photodissociation (UVPD) at 2-3 mbar. The present work builds on this with an exploration of a top-down method that couples tandem-TIMS/MS with UVPD and parallel-accumulation serial fragmentation (PASEF) MS/MS analysis. We first survey types and structures of UVPD-specific fragment ions generated in the 2-3 mbar pressure regime of our instrument. Notably, we observe UVPD-induced fragment ions with multiple conformations that differ from those produced in the absence of UV irradiation. Subsequently, we discuss how MS/MS spectra of top-down fragment ions lend themselves ideally for probability-based scoring methods developed in the bottom-up proteomics field and how the ability to record automated PASEF-MS/MS spectra resolves ambiguities in the assignment of top-down fragment ions. Finally, we describe the coupling of tandem-TIMS/MS workflows with UVPD and PASEF-MS/MS analysis for native top-down protein analysis.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | | | | | | | | | - Florian Meier
- Functional Proteomics, Jena University Hospital, 07747 Jena, Germany
| | | | - Christian Bleiholder
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
3
|
Zercher BP, Gozzo TA, Wageman A, Bush MF. Enhancing the Depth of Analyses with Next-Generation Ion Mobility Experiments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:27-48. [PMID: 37000959 PMCID: PMC10545071 DOI: 10.1146/annurev-anchem-091522-031329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent developments in ion mobility (IM) technology have expanded the capability to separate and characterize gas-phase ions of biomolecules, especially when paired with mass spectrometry. This next generation of IM technology has been ushered in by creative innovation focused on both instrument architectures and how electric fields are applied. In this review, we focus on the application of high-resolution and multidimensional IM to biomolecular analyses, encompassing the fields of glycomics, lipidomics, peptidomics, and proteomics. We highlight selected research that demonstrates the application of the new IM toolkit to challenging biomolecular systems. Through our review of recently published literature, we outline the current strengths of respective technologies and perspectives for future applications.
Collapse
Affiliation(s)
- Benjamin P Zercher
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - AnneClaire Wageman
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
4
|
Cropley TC, Chai M, Liu FC, Bleiholder C. Perspective on the potential of tandem-ion mobility /mass spectrometry methods for structural proteomics applications. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1106752. [PMID: 37333518 PMCID: PMC10273136 DOI: 10.3389/frans.2023.1106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cellular processes are usually carried out collectively by the entirety of all proteins present in a biological cell, i.e. the proteome. Mass spectrometry-based methods have proven particularly successful in identifying and quantifying the constituent proteins of proteomes, including different molecular forms of a protein. Nevertheless, protein sequences alone do not reveal the function or dysfunction of the identified proteins. A straightforward way to assign function or dysfunction to proteins is characterization of their structures and dynamics. However, a method capable to characterize detailed structures of proteins and protein complexes in a large-scale, systematic manner within the context of cellular processes does not yet exist. Here, we discuss the potential of tandem-ion mobility / mass spectrometry (tandem-IM/MS) methods to provide such ability. We highlight the capability of these methods using two case studies on the protein systems ubiquitin and avidin using the tandem-TIMS/MS technology developed in our laboratory and discuss these results in the context of other developments in the broader field of tandem-IM/MS.
Collapse
Affiliation(s)
- Tyler C. Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Mengqi Chai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Department of Chemistry, Washington University in St. Louis, Saint-Louis, Missouri, USA
| | - Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
5
|
Liu FC, Ridgeway ME, Park MA, Bleiholder C. Tandem-trapped ion mobility spectrometry/mass spectrometry ( tTIMS/MS): a promising analytical method for investigating heterogenous samples. Analyst 2022; 147:2317-2337. [PMID: 35521797 PMCID: PMC9914546 DOI: 10.1039/d2an00335j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ion mobility spectrometry/mass spectrometry (IMS/MS) is widely used to study various levels of protein structure. Here, we review the current state of affairs in tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS). Two different tTIMS/MS instruments are discussed in detail: the first tTIMS/MS instrument, constructed from coaxially aligning two TIMS devices; and an orthogonal tTIMS/MS configuration that comprises an ion trap for irradiation of ions with UV photons. We discuss the various workflows the two tTIMS/MS setups offer and how these can be used to study primary, tertiary, and quaternary structures of protein systems. We also discuss, from a more fundamental perspective, the processes that lead to denaturation of protein systems in tTIMS/MS and how to soften the measurement so that biologically meaningful structures can be characterised with tTIMS/MS. We emphasize the concepts underlying tTIMS/MS to underscore the opportunities tandem-ion mobility spectrometry methods offer for investigating heterogeneous samples.
Collapse
Affiliation(s)
- Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | | | | | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
6
|
Hollerbach AL, Conant CR, Nagy G, Ibrahim YM. Implementation of Ion Mobility Spectrometry-Based Separations in Structures for Lossless Ion Manipulations (SLIM). Methods Mol Biol 2022; 2394:453-469. [PMID: 35094340 PMCID: PMC9526429 DOI: 10.1007/978-1-0716-1811-0_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structures for Lossless Ion Manipulations (SLIM) is a powerful variant of traveling wave ion mobility spectrometry (TW-IMS) that uses a serpentine pattern of microelectrodes deposited onto printed circuit boards to achieve ultralong ion path lengths (13.5 m). Ions are propelled through SLIM platforms via arrays of TW electrodes while RF and DC electrodes provide radial confinement, establishing near lossless transmission. The recent ability to cycle ions multiple times through a SLIM has allowed ion path lengths to exceed 1000 m, providing unprecedented separation power and the ability to observe ion structural conformations unobtainable with other IMS technologies. The combination of high separation power, high signal intensity, and the ability to couple with mass spectrometry places SLIM in the unique position of being able to address longstanding proteomics and metabolomics challenges by allowing the characterization of isomeric mixtures containing low abundance analytes.
Collapse
Affiliation(s)
| | | | - Gabe Nagy
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
7
|
Nouri R, Guan W. Nanofluidic charged-coupled devices for controlled DNA transport and separation. NANOTECHNOLOGY 2021; 32:345501. [PMID: 34081025 DOI: 10.1088/1361-6528/ac027f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Controlled molecular transport and separation is of significant importance in various applications. In this work, we presented a novel concept of nanofluidic molecular charge-coupled device (CCD) for controlled DNA transport and separation. By leveraging the unique field-effect coupling in nanofluidic systems, the nanofluidic molecular CCD aims to store charged biomolecules such as DNAs in discrete regions in nanochannels and transfer and separate these biomolecules as a charge packet in a bucket brigade fashion. We developed a quantitative model to capture the impact of nanochannel surface charge, gating voltage and frequency, molecule diffusivity, and gating electrode geometry on the transport and separation efficiency. We studied the synergistic effects of these factors to guide the device design and optimize the DNA transport and separation in a nanofluidic CCD. The findings in this study provided insight into the rational design and implementation of the nanofluidic molecular CCD.
Collapse
Affiliation(s)
- Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
8
|
Austin CA, Inutan ED, Bohrer BC, Li J, Fischer JL, Wijerathne K, Foley CD, Lietz CB, Woodall DW, Imperial LF, Clemmer DE, Trimpin S, Larsen BS. Resolving Isomers of Star-Branched Poly(Ethylene Glycols) by IMS-MS Using Multiply Charged Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:21-32. [PMID: 32510213 DOI: 10.1021/jasms.0c00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ion mobility spectrometry (IMS) mass spectrometry (MS) centers on the ability to separate gaseous structures by size, charge, shape, and followed by mass-to-charge (m/z). For oligomeric structures, improved separation is hypothesized to be related to the ability to extend structures through repulsive forces between cations electrostatically bonded to the oligomers. Here we show the ability to separate differently branched multiply charged ions of star-branched poly(ethylene glycol) oligomers (up to 2000 Da) regardless of whether formed by electrospray ionization (ESI) charged solution droplets or from charged solid particles produced directly from a surface by matrix-assisted ionization. Detailed structural characterization of isomers of the star-branched compositions was first established using a home-built high-resolution ESI IMS-MS instrument. The doubly charged ions have well-resolved drift times, achieving separation of isomers and also allowing differentiation of star-branched versus linear oligomers. An IMS-MS "snapshot" approach allows visualization of architectural dispersity and (im)purity of samples in a straightforward manner. Analyses capabilities are shown for different cations and ionization methods using commercially available traveling wave IMS-MS instruments. Analyses directly from surfaces using the new ionization processes are, because of the multiply charging, not only associated with the benefits of improved gas-phase separations, relative to that of ions produced by matrix-assisted laser desorption/ionization, but also provide the potential for spatially resolved measurements relative to ESI and other ionization methods.
Collapse
Affiliation(s)
- Calvin A Austin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Brian C Bohrer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jing Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Joshua L Fischer
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kanchana Wijerathne
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Casey D Foley
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher B Lietz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Daniel W Woodall
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Lorelie F Imperial
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Barbara S Larsen
- DuPont, Nutrition & Biosciences, Wilmington, Delaware 19808, United States
| |
Collapse
|
9
|
Eldrid C, Thalassinos K. Developments in tandem ion mobility mass spectrometry. Biochem Soc Trans 2020; 48:2457-2466. [PMID: 33336686 PMCID: PMC7752082 DOI: 10.1042/bst20190788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/14/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023]
Abstract
Ion Mobility (IM) coupled to mass spectrometry (MS) is a useful tool for separating species of interest out of small quantities of heterogenous mixtures via a combination of m/z and molecular shape. While tandem MS instruments are common, instruments which employ tandem IM are less so with the first commercial IM-MS instrument capable of multiple IM selection rounds being released in 2019. Here we explore the history of tandem IM instruments, recent developments, the applications to biological systems and expected future directions.
Collapse
Affiliation(s)
- Charles Eldrid
- Institute of Structural and Molecular Biology, UCL, Gower St, London WC1E 6BT, U.K
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, UCL, Gower St, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck University, Malet Place, London WC1E 7HX, U.K
| |
Collapse
|
10
|
Chen C, Tabrizchi M, Li H. Ion gating in ion mobility spectrometry: Principles and advances. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
May JC, Knochenmuss R, Fjeldsted JC, McLean JA. Resolution of Isomeric Mixtures in Ion Mobility Using a Combined Demultiplexing and Peak Deconvolution Technique. Anal Chem 2020; 92:9482-9492. [DOI: 10.1021/acs.analchem.9b05718] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jody C. May
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | | | | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
12
|
Dodds JN, Baker ES. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2185-2195. [PMID: 31493234 PMCID: PMC6832852 DOI: 10.1007/s13361-019-02288-2] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 05/07/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique that has experienced exponential growth as a field of study. Interfacing IMS with mass spectrometry (IMS-MS) provides additional analytical power as complementary separations from each technique enable multidimensional characterization of detected analytes. IMS separations occur on a millisecond timescale, and therefore can be readily nested into traditional GC and LC/MS workflows. However, the continual development of novel IMS methods has generated some level of confusion regarding the advantages and disadvantages of each. In this critical insight, we aim to clarify some common misconceptions for new users in the community pertaining to the fundamental concepts of the various IMS instrumental platforms (i.e., DTIMS, TWIMS, TIMS, FAIMS, and DMA), while addressing the strengths and shortcomings associated with each. Common IMS-MS applications are also discussed in this review, such as separating isomeric species, performing signal filtering for MS, and incorporating collision cross-section (CCS) values into both targeted and untargeted omics-based workflows as additional ion descriptors for chemical annotation. Although many challenges must be addressed by the IMS community before mobility information is collected in a routine fashion, the future is bright with possibilities.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
13
|
Pukala T. Importance of collision cross section measurements by ion mobility mass spectrometry in structural biology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:72-82. [PMID: 30265417 DOI: 10.1002/rcm.8294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
The field of ion mobility mass spectrometry (IM-MS) has developed rapidly in recent decades, with new fundamental advances underpinning innovative applications. This has been particularly noticeable in the field of biomacromolecular structure determination and structural biology, with pioneering studies revealing new structural insight for complex protein assemblies which control biological function. This perspective offers a review of recent developments in IM-MS which have enabled expanding applications in protein structural biology, principally focusing on the quantitative measurement of collision cross sections and their interpretation to describe higher order protein structures.
Collapse
Affiliation(s)
- Tara Pukala
- Discipline of Chemistry, University of Adelaide, North Terrace, Adelaide, South Australia, 5005
| |
Collapse
|
14
|
Reinecke T, Davis AL, Clowers BH. Determination of Gas-Phase Ion Mobility Coefficients Using Voltage Sweep Multiplexing. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:977-986. [PMID: 30989619 DOI: 10.1007/s13361-019-02182-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
In a standard single averaged, drift tube ion mobility spectrometry (IMS) experiment, typically less than 1% of the ions are utilized, with the rest of the ions neutralizing on a closed ion gate or ion optic element. Though some efforts at lower pressures (e.g., 4 Torr) have been made to address this issue by concentrating ions prior to release into a drift cell, the ion current reaching the detector during an IMS experiment is often diminished due to this lower duty cycle. Additionally, when considering the temporal nature of the drift tube IMS experiment and the trajectory of IMS towards higher resolution separations and lower duty cycles, increased detector sampling rates are another factor also which further necessitates new modes of conducting the IMS experiment. Placing this trend in context with ion mobility-mass spectrometry instruments (IM-MS), there are numerous types of mass spectrometers that are simply incompatible with the single averaged ion mobility spectrometry experiments due to timing incompatibilities (i.e., ion traps are an order of magnitude slower than the IMS experiment). However, by utilizing a dual gate ion mobility spectrometer for ion multiplexing, ion utilization efficiency can be significantly increased while creating a measurement signal that can be recorded at low sampling rates. In this work, we present the fundamental theory and first results from proof-of-concept measurements using a new type of ion multiplexing that relies on changing the electric field within the drift cell during the course of an experiment while simultaneously opening the ion gates at a constant frequency. For brevity, this mode is termed voltage sweep multiplexing (VSM). Key variables for this type of experiment are discussed and verified with measurements from traditional signal averaged experiments. Graphical Abstract .
Collapse
Affiliation(s)
- Tobias Reinecke
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Austen L Davis
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
15
|
Kirk AT, Bohnhorst A, Raddatz CR, Allers M, Zimmermann S. Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments. Anal Bioanal Chem 2019; 411:6229-6246. [PMID: 30957205 DOI: 10.1007/s00216-019-01807-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
Abstract
With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution. In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving power are explained and compared between the different instruments. This allows understanding the current limitations of resolving power and how ion mobility spectrometers may progress in the future. Graphical abstract.
Collapse
Affiliation(s)
- Ansgar T Kirk
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany.
| | - Alexander Bohnhorst
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Christian-Robert Raddatz
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Maria Allers
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| | - Stefan Zimmermann
- Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz Universität Hannover, Appelstr. 9A, 30167, Hannover, Germany
| |
Collapse
|
16
|
Tose LV, Benigni P, Leyva D, Sundberg A, Ramírez CE, Ridgeway ME, Park MA, Romão W, Jaffé R, Fernandez-Lima F. Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1287-1295. [PMID: 29756663 DOI: 10.1002/rcm.8165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 05/05/2023]
Abstract
RATIONALE There is a need for fast, post-ionization separation during the analysis of complex mixtures. In this study, we evaluate the use of a high-resolution mobility analyzer with high-resolution and ultrahigh-resolution mass spectrometry for unsupervised molecular feature detection. Goals include the study of the reproducibility of trapped ion mobility spectrometry (TIMS) across platforms, applicability range, and potential challenges during routine analysis. METHODS A TIMS analyzer was coupled to time-of-flight mass spectrometry (TOF MS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) instruments for the analysis of singly charged species in the m/z 150-800 range of a complex mixture (Suwannee River Fulvic Acid Standard). Molecular features were detected using an unsupervised algorithm based on chemical formula and IMS profiles. RESULTS TIMS-TOF MS and TIMS-FT-ICR MS analysis provided 4950 and 7760 m/z signals, 1430 and 3050 formulas using the general Cx Hy N0-3 O0-19 S0-1 composition, and 7600 and 22 350 [m/z; chemical formula; K; CCS] features, respectively. CONCLUSIONS TIMS coupled to TOF MS and FT-ICR MS showed similar performance and high reproducibility. For the analysis of complex mixtures, both platforms were able to capture the major trends and characteristics; however, as the chemical complexity at the level of nominal mass increases with m/z (m/z >300-350), only TIMS-FT-ICR MS was able to report the lower abundance compositional trends.
Collapse
Affiliation(s)
- Lilian V Tose
- Federal University of Espírito Santo, Petroleomic and Forensic Chemistry Laboratory, Department of Chemistry, 29075-910, Vitória, ES, Brazil
| | - Paolo Benigni
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - Dennys Leyva
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - Abigail Sundberg
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | - César E Ramírez
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
| | | | | | - Wanderson Romão
- Federal University of Espírito Santo, Petroleomic and Forensic Chemistry Laboratory, Department of Chemistry, 29075-910, Vitória, ES, Brazil
- Federal Institute of Education, Science and Technology of Espírito Santo, 29106-010, Vila Velha, ES, Brazil
| | - Rudolf Jaffé
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
- Florida International University, Southeast Environmental Research Center, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, 33199, USA
- Florida International University, Southeast Environmental Research Center, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
17
|
Amo-González M, Pérez S. Planar Differential Mobility Analyzer with a Resolving Power of 110. Anal Chem 2018; 90:6735-6741. [DOI: 10.1021/acs.analchem.8b00579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Sergio Pérez
- SEADM, Parque Tecnológico de Boecillo 205, Valladolid 47151, Spain
| |
Collapse
|
18
|
Amo-González M, Carnicero I, Pérez S, Delgado R, Eiceman GA, Fernández de la Mora G, Fernández de la Mora J. Ion Mobility Spectrometer-Fragmenter-Ion Mobility Spectrometer Analogue of a Triple Quadrupole for High-Resolution Ion Analysis at Atmospheric Pressure. Anal Chem 2018; 90:6885-6892. [DOI: 10.1021/acs.analchem.8b01086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Irene Carnicero
- SEADM, Parque Tecnológico de Boecillo 205, Valladolid, Spain 47151
| | - Sergio Pérez
- SEADM, Parque Tecnológico de Boecillo 205, Valladolid, Spain 47151
| | - Rafael Delgado
- SEADM, Parque Tecnológico de Boecillo 205, Valladolid, Spain 47151
| | - Gary A. Eiceman
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
- Chemistry Department, Loughborough University, Loughborough, U.K. LE11 3TU
| | | | - Juan Fernández de la Mora
- Mechanical Engineering Department, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
19
|
Adams KJ, Smith NF, Ramirez CE, Fernandez-Lima F. Discovery and targeted monitoring of polychlorinated biphenyl metabolites in blood plasma using LC-TIMS-TOF MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:133-140. [PMID: 29915519 PMCID: PMC6003708 DOI: 10.1016/j.ijms.2017.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present work, the potential for rapid, targeted analysis of hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) in diluted human blood plasma using liquid chromatography coupled with trapped ion mobility spectrometry and TOF high resolution mass spectrometry (LC-TIMS-TOF MS) was evaluated. Experimental OH-PCB collisional cross section (CCSN2) and gas-phase candidate structures (<3% error) are reported for the first time and used, in addition to the LC retention time and accurate m/z, as OH-PCB identification features in order to increase the detection selectivity. The proposed LC-TIMS-TOF MS workflow combines a "dilute-and-shoot" sample preparation strategy, a robust liquid chromatography step, a high-resolving power mobility separation (R ~ 150-250) and high-resolution mass spectrometry (R ~ 30-40k) for the separation, identification and quantification of common OH-PCB isomers with limits of detection comparable to traditional workflows (e.g., LOD and LOQ of ~10 pg/mL and ~50 pg/mL, respectively). The higher selectivity and low detection limits provides multiple advantages compared to current methodologies that typically require long, labor-intensive preparation and/or derivatization steps prior to gas or liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Kendra J. Adams
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Natalie F. Smith
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Cesar E. Ramirez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
20
|
Dit Fouque KJ, Moreno J, Hegemann JD, Zirah S, Rebuffat S, Fernandez-Lima F. Identification of Lasso Peptide Topologies Using Native Nanoelectrospray Ionization-Trapped Ion Mobility Spectrometry–Mass Spectrometry. Anal Chem 2018; 90:5139-5146. [DOI: 10.1021/acs.analchem.7b05230] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Javier Moreno
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Julian D. Hegemann
- Department of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Séverine Zirah
- Muséum National d’Histoire Naturelle, Laboratoire MCAM, Sorbonne Universités, 75005 Paris, France
| | - Sylvie Rebuffat
- Muséum National d’Histoire Naturelle, Laboratoire MCAM, Sorbonne Universités, 75005 Paris, France
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
21
|
Dodds JN, May JC, McLean JA. Correlating Resolving Power, Resolution, and Collision Cross Section: Unifying Cross-Platform Assessment of Separation Efficiency in Ion Mobility Spectrometry. Anal Chem 2017; 89:12176-12184. [PMID: 29039942 PMCID: PMC5744666 DOI: 10.1021/acs.analchem.7b02827] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we examine the relationship among resolving power (Rp), resolution (Rpp), and collision cross section (CCS) for compounds analyzed in previous ion mobility (IM) experiments representing a wide variety of instrument platforms and IM techniques. Our previous work indicated these three variables effectively describe and predict separation efficiency for drift tube ion mobility spectrometry experiments. In this work, we seek to determine if our previous findings are a general reflection of IM behavior that can be applied to various instrument platforms and mobility techniques. Results suggest IM distributions are well characterized by a Gaussian model and separation efficiency can be predicted on the basis of the empirical difference in the gas-phase CCS and a CCS-based resolving power definition (CCS/ΔCCS). Notably traveling wave (TWIMS) was found to operate at resolutions substantially higher than a single-peak resolving power suggested. When a CCS-based Rp definition was utilized, TWIMS was found to operate at a resolving power between 40 and 50, confirming the previous observations by Giles and co-workers. After the separation axis (and corresponding resolving power) is converted to cross section space, it is possible to effectively predict separation behavior for all mobility techniques evaluated (i.e., uniform field, trapped ion mobility, traveling wave, cyclic, and overtone instruments) using the equations described in this work. Finally, we are able to establish for the first time that the current state-of-the-art ion mobility separations benchmark at a CCS-based resolving power of >300 that is sufficient to differentiate analyte ions with CCS differences as small as 0.5%.
Collapse
Affiliation(s)
| | | | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville Tennessee 37235, United States
| |
Collapse
|
22
|
Amo-Gonzalez M, Fernandez de la Mora J. Mobility Peak Tailing Reduction in a Differential Mobility Analyzer (DMA) Coupled with a Mass Spectrometer and Several Ionization Sources. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1506-1517. [PMID: 28560563 DOI: 10.1007/s13361-017-1630-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 06/07/2023]
Abstract
The differential mobility analyzer (DMA) is a narrow-band linear ion mobility filter operating at atmospheric pressure. It combines in series with a quadrupole mass spectrometer (Q-MS) for mobility/mass analysis, greatly reducing chemical noise in selected ion monitoring. However, the large flow rate of drift gas (~1000 L/min) required by DMAs complicates the achievement of high gas purity. Additionally, the symmetry of the drying counterflow gas at the interface of many commercial MS instruments, is degraded by the lateral motion of the drift gas at the DMA entrance slit. As a result, DMA mobility peaks often exhibit tails due to the attachment of impurity vapors, either (1) to the reagent ion within the separation cell, or (2) to the analyte of interest in the ionization region. In order to greatly increase the noise-suppression capacity of the DMA, we describe various vapor-removal schemes and measure the resulting increase in the tailing ratio, (TR = signal at the peak maximum over signal two half-widths away from this maximum). Here we develop a low-outgassing DMA circuit connected to a mass spectrometer, and test it with three ionization sources (APCI, Desolvating-nano ESI, and Desolvating low flow SESI). While prior TR values were in the range 100-1000, the three new sources achieve TR ~ 105. The SESI source has been optimized for maximum sensitivity, delivering an unprecedented gain for TNT of 190 counts/fg, equivalent to an ionization efficiency of one out of 140 neutral molecules. Graphical Abstract ᅟ.
Collapse
|
23
|
Nahin M, Oberreit D, Fukushima N, Larriba-Andaluz C. Modeling of an Inverted Drift Tube for Improved Mobility Analysis of Aerosol Particles. Sci Rep 2017; 7:6456. [PMID: 28744005 PMCID: PMC5527120 DOI: 10.1038/s41598-017-06448-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/13/2017] [Indexed: 01/29/2023] Open
Abstract
A new mobility particle analyzer, which has been termed Inverted Drift Tube, has been modeled analytically as well as numerically and proven to be a very capable instrument. The basis for the new design have been the shortcomings of the previous ion mobility spectrometers, in particular (a) diffusional broadening which leads to degradation of instrument resolution and (b) inadequate low and fixed resolution (not mobility dependent) for large sizes. To overcome the diffusional broadening and have a mobility based resolution, the IDT uses two varying controllable opposite forces, a flow of gas with velocity v gas , and a linearly increasing electric field that opposes the movement. A new parameter, the separation ratio Λ = v drift /v gas , is employed to determine the best possible separation for a given set of nanoparticles. Due to the system's need to operate at room pressure, two methods of capturing the ions at the end of the drift tube have been developed, Intermittent Push Flow for a large range of mobilities, and Nearly-Stopping Potential Separation, with very high separation but limited only to a narrow mobility range. A chromatography existing concept of resolving power is used to differentiate between peak resolution in the IDT and acceptable separation between similar mobility sizes.
Collapse
Affiliation(s)
- Minal Nahin
- Integrated Nanosystems Development Institute(INDI), IUPUI, Department of Mechanical Engineering, Indianapolis, IN, 46106, USA
| | | | | | - Carlos Larriba-Andaluz
- Integrated Nanosystems Development Institute(INDI), IUPUI, Department of Mechanical Engineering, Indianapolis, IN, 46106, USA.
| |
Collapse
|
24
|
Allen SJ, Eaton RM, Bush MF. Structural Dynamics of Native-Like Ions in the Gas Phase: Results from Tandem Ion Mobility of Cytochrome c. Anal Chem 2017. [PMID: 28636328 DOI: 10.1021/acs.analchem.7b01234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ion mobility (IM) is a gas-phase separation technique that is used to determine the collision cross sections of native-like ions of proteins and protein complexes, which are in turn used as restraints for modeling the structures of those analytes in solution. Here, we evaluate the stability of native-like ions using tandem IM experiments implemented using structures for lossless ion manipulations (SLIM). In this implementation of tandem IM, ions undergo a first dimension of IM up to a switch that is used to selectively transmit ions of a desired mobility. Selected ions are accumulated in a trap and then released after a delay to initiate the second dimension of IM. For delays ranging from 16 to 33 231 ms, the collision cross sections of native-like, 7+ cytochrome c ions increase monotonically from 15.1 to 17.1 nm2. The largest products formed in these experiments at near-ambient temperature are still far smaller than those formed in energy-dependent experiments (∼21 nm2). However, the collision cross section increases by ∼2% between delay times of 16 and 211 ms, which may have implications for other IM experiments on these time scales. Finally, two subpopulations from the full population were each mobility selected and analyzed as a function of delay time, showing that the three populations can be differentiated for at least 1 s. Together, these results suggest that elements of native-like structure can have long lifetimes at near-ambient temperature in the gas phase but that gas-phase dynamics should be considered when interpreting results from IM.
Collapse
Affiliation(s)
- Samuel J Allen
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Rachel M Eaton
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- University of Washington , Department of Chemistry, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
25
|
Ibrahim YM, Hamid AM, Deng L, Garimella SVB, Webb IK, Baker ES, Smith RD. New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst 2017; 142:1010-1021. [PMID: 28262893 PMCID: PMC5431593 DOI: 10.1039/c7an00031f] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structures for lossless ion manipulations (SLIM) provide a new paradigm for efficient, complex and extended gas phase ion manipulations. SLIM are created from electric fields generated by the application of DC and RF potentials to arrays of electrodes patterned on two parallel surfaces. The electric fields provide lossless ion manipulations, including effective ion transport and storage. SLIM modules have been developed using both constant and oscillatory electric fields (e.g. traveling waves) to affect the ion motion. Ion manipulations demonstrated to date with SLIM include: extended trapping, ion selection, ion dissociation, and ion mobility spectrometry (IMS) separations achieving unprecedented ultra high resolution. SLIM thus provide the basis for previously impractical manipulations, such as very long path length ion mobility separations where ions traverse a serpentine path multiple times, as well as new capabilities that extend the utility of these developments based on temporal and spatial compression of ion mobility separations and other ion distributions. The evolution of SLIM devices developed over the last three years is reviewed and we provide examples of various ion manipulations performed, and briefly discuss potential applications and new directions.
Collapse
Affiliation(s)
- Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ahmed M Hamid
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Liulin Deng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
26
|
Garabedian A, Butcher D, Lippens JL, Miksovska J, Chapagain PP, Fabris D, Ridgeway ME, Park MA, Fernandez-Lima F. Structures of the kinetically trapped i-motif DNA intermediates. Phys Chem Chem Phys 2016; 18:26691-26702. [PMID: 27711445 PMCID: PMC5652045 DOI: 10.1039/c6cp04418b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the present work, the conformational dynamics and folding pathways of i-motif DNA were studied in solution and in the gas-phase as a function of the solution pH conditions using circular dichroism (CD), photoacoustic calorimetry analysis (PAC), trapped ion mobility spectrometry-mass spectrometry (TIMS-MS), and molecular dynamics (MD). Solution studies showed at thermodynamic equilibrium the existence of a two-state folding mechanism, whereas during the pH = 7.0 → 4.5 transition a fast and slow phase (ΔHfast + ΔHslow = 43 ± 7 kcal mol-1) with a volume change associated with the formation of hemiprotonated cytosine base pairs and concomitant collapse of the i-motif oligonucleotide into a compact conformation were observed. TIMS-MS experiments showed that gas-phase, kinetically trapped i-motif DNA intermediates produced by nanoESI are preserved, with relative abundances depending on the solution pH conditions. In particular, a folded i-motif DNA structure was observed in nanoESI-TIMS-MS for low charge states in both positive and negative ion mode (e.g., z = ±3 to ±5) at low pH conditions. As solution pH increases, the cytosine neutralization leads to the loss of cytosine-cytosine+ (C·CH+) base pairing in the CCC strands and in those conditions we observe partially unfolded i-motif DNA conformations in nanoESI-TIMS-MS for higher charge states (e.g., z = -6 to -9). Collisional induced activation prior to TIMS-MS showed the existence of multiple local free energy minima, associated with the i-motif DNA unfolding at z = -6 charge state. For the first time, candidate gas-phase structures are proposed based on mobility measurements of the i-motif DNA unfolding pathway. Moreover, the inspection of partially unfolded i-motif DNA structures (z = -7 and z = -8 charge states) showed that the presence of inner cations may or may not induce conformational changes in the gas-phase. For example, incorporation of ammonium adducts does not lead to major conformational changes while sodium adducts may lead to the formation of sodium mediated bonds between two negatively charged sides inducing the stabilization towards more compact structures in new local, free energy minima in the gas-phase.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA.
| | - David Butcher
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA.
| | | | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA. and Biomolecular Science Institute, Florida International University, Miami, USA
| | - Prem P Chapagain
- Biomolecular Science Institute, Florida International University, Miami, USA and Department of Physics, Florida International University, Miami, USA
| | | | | | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA. and Biomolecular Science Institute, Florida International University, Miami, USA
| |
Collapse
|
27
|
Benigni P, Marin R, Molano-Arevalo JC, Garabedian A, Wolff JJ, Ridgeway ME, Park MA, Fernandez-Lima F. Towards the Analysis of High Molecular Weight Proteins and Protein complexes using TIMS-MS. INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR ION MOBILITY SPECTROMETRY 2016; 19:95-104. [PMID: 27818614 PMCID: PMC5091298 DOI: 10.1007/s12127-016-0201-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/02/2023]
Abstract
In the present work, we demonstrate the potential and versatility of TIMS for the analysis of proteins, DNA-protein complexes and protein-protein complexes in their native and denatured states. In addition, we show that accurate CCS measurement are possible and in good agreement with previously reported CCS values using other IMS analyzers (<5% difference). The main challenges for the analysis of high mass proteins and protein complexes in the mobility and m/z domain are described. That is, the analysis of high molecular weight systems in their native state may require the use of higher electric fields or a compromise in the TIMS mobility resolution by reducing the bath gas velocity in order to effectively trap at lower electric fields. This is the first report of CCS measurements of high molecular weight biomolecules and biomolecular complexes (~ 150 kDa) using TIMS-MS.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Rebecca Marin
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | - Alyssa Garabedian
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | - Melvin A. Park
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
28
|
Gray C, Thomas B, Upton R, Migas L, Eyers C, Barran P, Flitsch S. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta Gen Subj 2016; 1860:1688-709. [DOI: 10.1016/j.bbagen.2016.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
|
29
|
Garimella SVB, Ibrahim YM, Tang K, Webb IK, Baker ES, Tolmachev AV, Chen TC, Anderson GA, Smith RD. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1128-35. [PMID: 27052738 PMCID: PMC4955798 DOI: 10.1007/s13361-016-1371-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 05/13/2023]
Abstract
A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Aleksey V Tolmachev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tsung-Chi Chen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gordon A Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
30
|
Isomer Separation of Polybrominated Diphenyl Ether Metabolites using nanoESI-TIMS-MS. ACTA ACUST UNITED AC 2016; 19:69-76. [PMID: 27642261 DOI: 10.1007/s12127-016-0198-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this paper, high-resolution nano-electrospray ionization-trapped ion mobility spectrometry coupled to mass spectrometry (nESI-TIMS-MS) is used for the study of hydroxylated polybrominated diphenyl ether (OH-PBDE) metabolites. In particular, experimental ion-neutral collision cross sections (CCS) were measured for five structural OH-PBDE isomers using TIMS-MS. Candidate structures were proposed for each IMS band observed in good agreement with the experimental CCS measurements (5% error). The analytical power of TIMS-MS to baseline and partially separate structural isomers of OH-BDE in binary and ternary mixtures is shown for single charge species with a mobility resolving power of RIMS ~ 400. This work provides the proof of concept for the analysis of low concentration OH-PBDE in environmental samples based on accurate collision cross section and mass measurements without the need for derivatization and pre-fractionation protocols, thus significantly reducing the cost and analysis time.
Collapse
|
31
|
Garimella SVB, Ibrahim YM, Webb IK, Ipsen AB, Chen TC, Tolmachev AV, Baker ES, Anderson GA, Smith RD. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch. Analyst 2016; 140:6845-52. [PMID: 26289106 DOI: 10.1039/c5an00844a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process of redirecting ions through 90° turns and 'tee' switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated at 4 Torr pressure using SIMION simulations and theoretical methods. The nature of pseudo-potential in SLIM-tee structures has also been explored. Simulations show that 100% transmission efficiency in SLIM devices can be achieved with guard electrode voltages lower than ∼10 V. The ion plume width in these conditions is ∼1.6 mm while at lower guard voltages lead to greater plume widths. Theoretical calculations show marginal loss of ion mobility resolving power (<5%) during ion turn due to the finite plume widths (i.e. race track effect). More robust SLIM designs that reduce the race track effect while maximizing ion transmission are also reported. In addition to static turns, the dynamic switching of ions into orthogonal channels was also evaluated both using SIMION ion trajectory simulations and experimentally. Simulations and theoretical calculations were in close agreement with experimental results and were used to develop more refined SLIM designs.
Collapse
Affiliation(s)
- Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Silveira JA, Danielson W, Ridgeway ME, Park MA. Altering the mobility-time continuum: nonlinear scan functions for targeted high resolution trapped ion mobility-mass spectrometry. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s12127-016-0196-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Ewing MA, Glover MS, Clemmer DE. Hybrid ion mobility and mass spectrometry as a separation tool. J Chromatogr A 2016; 1439:3-25. [DOI: 10.1016/j.chroma.2015.10.080] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
|
34
|
Benigni P, Marin R, Fernandez-Lima F. Towards unsupervised polyaromatic hydrocarbons structural assignment from SA-TIMS-FTMS data. ACTA ACUST UNITED AC 2015; 18:151-157. [PMID: 26525904 DOI: 10.1007/s12127-015-0175-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With the advent of high resolution ion mobility analyzers and their coupling to ultrahigh resolution mass spectrometers, there is a need to further develop a theoretical workflow capable of correlating experimental accurate mass and mobility measurements with tridimensional candidate structures. In the present work, a general workflow is described for unsupervised tridimensional structural assignment based on accurate mass measurements, mobility measurements, in silico 2D-3D structure generation, and theoretical mobility calculations. In particular, the potential of this workflow will be shown for the analysis of polyaromatic hydrocarbons from Coal Tar SRM 1597a using selected accumulation - trapped ion mobility spectrometry (SA-TIMS) coupled to Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). The proposed workflow can be adapted to different IMS scenarios, can utilize different collisional cross-section calculators and has the potential to include MSn and IMSn measurements for faster and more accurate tridimensional structural assignment.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Rebecca Marin
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | | |
Collapse
|
35
|
Schenk ER, Nau F, Fernandez-Lima F. Theoretical predictor for candidate structure assignment from IMS data of biomolecule-related conformational space. INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR ION MOBILITY SPECTROMETRY 2015; 18:23-29. [PMID: 27330407 PMCID: PMC4909055 DOI: 10.1007/s12127-015-0165-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability to correlate experimental ion mobility data with candidate structures from theoretical modeling provides a powerful analytical and structural tool for the characterization of biomolecules. In the present paper, a theoretical workflow is described to generate and assign candidate structures for experimental trapped ion mobility and H/D exchange (HDX-TIMS-MS) data following molecular dynamics simulations and statistical filtering. The applicability of the theoretical predictor is illustrated for a peptide and protein example with multiple conformations and kinetic intermediates. The described methodology yields a low computational cost and a simple workflow by incorporating statistical filtering and molecular dynamics simulations. The workflow can be adapted to different IMS scenarios and CCS calculators for a more accurate description of the IMS experimental conditions. For the case of the HDX-TIMS-MS experiments, molecular dynamics in the "TIMS box" accounts for a better sampling of the molecular intermediates and local energy minima.
Collapse
Affiliation(s)
- Emily R Schenk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Frederic Nau
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
36
|
Ewing MA, Conant CRP, Zucker SM, Griffith KJ, Clemmer DE. Selected Overtone Mobility Spectrometry. Anal Chem 2015; 87:5132-8. [DOI: 10.1021/ac504555u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael A. Ewing
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Steven M. Zucker
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kent J. Griffith
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
37
|
Benigni P, Thompson CJ, Ridgeway ME, Park MA, Fernandez-Lima F. Targeted high-resolution ion mobility separation coupled to ultrahigh-resolution mass spectrometry of endocrine disruptors in complex mixtures. Anal Chem 2015; 87:4321-5. [PMID: 25818070 PMCID: PMC4867114 DOI: 10.1021/ac504866v] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Traditional separation and detection of targeted compounds from complex mixtures from environmental matrices requires the use of lengthy prefractionation steps and high-resolution mass analyzers due to the large number of chemical components and their large structural diversity (highly isomeric). In the present work, selected accumulation trapped ion mobility spectrometry (SA-TIMS) is coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for direct separation and characterization of targeted endocrine-disrupting compounds (EDC) from a complex environmental matrix in a single analysis. In particular, targeted identification based on high-resolution mobility (R ∼ 70-120) and ultrahigh-resolution mass measurements (R > 400 000) of seven commonly targeted EDC and their isobars (e.g., bisphenol A, (Z)- and (E)-diethylstilbestrol, hexestrol, estrone, α-estradiol, and 17-ethynylestradiol) is shown from a complex mixture of water-soluble organic matter (e.g., Suwannee River Fulvic Acid Standard II) complemented with reference standard measurements and theoretical calculations (<3% error).
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | | | - Mark E. Ridgeway
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
38
|
Donohoe GC, Khakinejad M, Valentine SJ. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:564-576. [PMID: 25510931 DOI: 10.1007/s13361-014-1045-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.
Collapse
Affiliation(s)
- Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | | |
Collapse
|
39
|
Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 2015; 140:1376-90. [PMID: 25465076 PMCID: PMC4331213 DOI: 10.1039/c4an01100g] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion Mobility Spectrometry (IMS) is a widely used and 'well-known' technique of ion separation in the gaseous phase based on the differences in ion mobilities under an electric field. All IMS instruments operate with an electric field that provides space separation, but some IMS instruments also operate with a drift gas flow that provides also a temporal separation. In this review we will summarize the current IMS instrumentation. IMS techniques have received an increased interest as new instrumentation and have become available to be coupled with mass spectrometry (MS). For each of the eight types of IMS instruments reviewed it is mentioned whether they can be hyphenated with MS and whether they are commercially available. Finally, out of the described devices, the six most-consolidated ones are compared. The current review article is followed by a companion review article which details the IMS hyphenated techniques (mainly gas chromatography and mass spectrometry) and the factors that make the data from an IMS device change as a function of device parameters and sampling conditions. These reviews will provide the reader with an insightful view of the main characteristics and aspects of the IMS technique.
Collapse
Affiliation(s)
- R Cumeras
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB s/n, E-08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Jody C. May
- Department
of Chemistry,
Center for Innovative Technology, Vanderbilt Institute for Chemical
Biology, Vanderbilt Institute for Integrative Biosystems Research
and Education , Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A. McLean
- Department
of Chemistry,
Center for Innovative Technology, Vanderbilt Institute for Chemical
Biology, Vanderbilt Institute for Integrative Biosystems Research
and Education , Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
41
|
Vidal-de-Miguel G, Macía M, Barrios C, Cuevas J. Transversal Modulation Ion Mobility Spectrometry (IMS) Coupled with Mass Spectrometry (MS): Exploring the IMS-IMS-MS Possibilities of the Instrument. Anal Chem 2015; 87:1925-32. [DOI: 10.1021/ac504178n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. Vidal-de-Miguel
- Sociedad Europea de Análisis Diferencial de Movilidad SL, P. Tec. Boecillo, Parcela 205, Edificio
Cartif, Boecillo, 47151 Valladolid, Spain
- Department
of Energy Engineering and Fluid Mechanics, Valladolid University, Paseo del Cauce, 50A, 47011 Valladolid, Spain
| | - M. Macía
- Sociedad Europea de Análisis Diferencial de Movilidad SL, P. Tec. Boecillo, Parcela 205, Edificio
Cartif, Boecillo, 47151 Valladolid, Spain
| | - C. Barrios
- Sociedad Europea de Análisis Diferencial de Movilidad SL, P. Tec. Boecillo, Parcela 205, Edificio
Cartif, Boecillo, 47151 Valladolid, Spain
- Department
of Energy Engineering and Fluid Mechanics, Valladolid University, Paseo del Cauce, 50A, 47011 Valladolid, Spain
| | - J. Cuevas
- Sociedad Europea de Análisis Diferencial de Movilidad SL, P. Tec. Boecillo, Parcela 205, Edificio
Cartif, Boecillo, 47151 Valladolid, Spain
| |
Collapse
|
42
|
Clowers BH, Siems WF, Yu Z, Davis AL. A two-phase approach to fourier transform ion mobility time-of-flight mass spectrometry. Analyst 2015; 140:6862-70. [DOI: 10.1039/c5an00941c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new two-phased approach to combining raw frequency encoded data enables enhanced levels of signal to noise ratio for ion mobility mass spectrometry experiments.
Collapse
Affiliation(s)
| | | | - Zhihao Yu
- Department of Chemistry
- Washington State University
- Pullman
- USA
| | - Austen L. Davis
- Department of Chemistry
- Washington State University
- Pullman
- USA
| |
Collapse
|
43
|
Maurer MM, Donohoe GC, Valentine SJ. Advances in ion mobility-mass spectrometry instrumentation and techniques for characterizing structural heterogeneity. Analyst 2015; 140:6782-98. [PMID: 26114255 DOI: 10.1039/c5an00922g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enabling IM-MS instrumentation and techniques for characterizing sample structural heterogeneity have developed rapidly over the last five years.
Collapse
Affiliation(s)
- Megan M. Maurer
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Gregory C. Donohoe
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | | |
Collapse
|
44
|
Shvartsburg AA. Ultrahigh-Resolution Differential Ion Mobility Separations of Conformers for Proteins above 10 kDa: Onset of Dipole Alignment? Anal Chem 2014; 86:10608-15. [DOI: 10.1021/ac502389a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexandre A. Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
45
|
Donohoe GC, Maleki H, Arndt JR, Khakinejad M, Yi J, McBride C, Nurkiewicz TR, Valentine SJ. A new ion mobility-linear ion trap instrument for complex mixture analysis. Anal Chem 2014; 86:8121-8. [PMID: 25068446 DOI: 10.1021/ac501527y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new instrument that couples a low-pressure drift tube with a linear ion trap mass spectrometer is demonstrated for complex mixture analysis. The combination of the low-pressure separation with the ion trapping capabilities provides several benefits for complex mixture analysis. These include high sensitivity, unique ion fragmentation capabilities, and high reproducibility. Even though the gas-phase separation and the mass measurement steps are each conducted in an ion filtering mode, detection limits for mobility-selected peptide ions are in the tens of attomole range. In addition to ion separation, the low-pressure drift tube can be used as an ion fragmentation cell yielding mobility-resolved fragment ions that can be subsequently analyzed by multistage tandem mass spectrometry (MS(n)) methods in the ion trap. Because of the ion trap configuration, these methods can be comprised of any number (limited by ion signal) of collision-induced dissociation (CID) and electron transfer dissociation (ETD) processes. The high reproducibility of the gas-phase separation allows for comparison of two-dimensional ion mobility spectrometry (IMS)-MS data sets in a pixel-by-pixel fashion without the need for data set alignment. These advantages are presented in model analyses representing mixtures encountered in proteomics and metabolomics experiments.
Collapse
Affiliation(s)
- Gregory C Donohoe
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
A novel overtone mobility spectrometry (OMS) instrument utilizing a gridless elimination mechanism and cooperative radio frequency confinement is described. The gridless elimination region uses a set of mobility-discriminating radial electric fields that are designed so that the frequency of field application results in selective transmission and elimination of ions. To neutralize ions with mobilities that do not match the field application frequency, active elimination regions radially defocus ions toward the lens walls. Concomitantly, a lens-dependent radio frequency waveform is applied to the transmission regions of the drift tube resulting in radial confinement for mobility-matched ions. Compared with prior techniques, which use many grids for ion elimination, the new gridless configuration substantially reduces indiscriminate ion losses. A description of the apparatus and elimination process, including detailed simulations showing how ions are transmitted and eliminated is presented. A prototype 28 cm long OMS instrument is shown to have a resolving power of 20 and is capable of attomole detection limits of a model peptide (angiotensin I) spiked into a complex mixture (in this case peptides generated from digestion of β-casein with trypsin).
Collapse
Affiliation(s)
- Steven M Zucker
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | | | |
Collapse
|
47
|
Lalli PM, Corilo YE, Fasciotti M, Riccio MF, de Sa GF, Daroda RJ, Souza GHMF, McCullagh M, Bartberger MD, Eberlin MN, Campuzano IDG. Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the effects of polarizable drift gases and ionic charge distribution. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:989-997. [PMID: 24078238 DOI: 10.1002/jms.3245] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/28/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
We have studied the behavior of isomers and analogues by traveling wave ion mobility mass spectrometry (TWIM-MS) using drift-gases with varying masses and polarizabilities. Despite the reduced length of the cell (18 cm), a pair of constitutional isomers, N-butylaniline and para-butylaniline, with theoretical collision cross-section values in helium (ΩHe ) differing by as little as 1.2 Å(2) (1.5%) but possessing contrasting charge distribution, showed baseline peak-to-peak resolution (Rp-p ) for their protonated molecules, using carbon dioxide (CO2), nitrous oxide (N2O) and ethene (C2H4 ) as the TWIM drift-gas. Near baseline Rp-p was also obtained in CO2 for a group of protonated haloanilines (para-chloroaniline, para-bromoaniline and para-iodoaniline) which display contrasting masses and theoretical ΩHe , which differ by as much as 15.7 Å(2) (19.5%) but similar charge distributions. The deprotonated isomeric pair of trans-oleic acid and cis-oleic acid possessing nearly identical theoretical ΩHe and ΩN2 as well as similar charge distributions, remained unresolved. Interestingly, an inversion of drift-times were observed for the 1,3-dialkylimidazolium ions when comparing He, N2 and N2O. Using density functional theory as a means of examining the ions electronic structure, and He and N2-based trajectory method algorithm, we discuss the effect of the long-range charge induced dipole attractive and short-range Van der Waals forces involved in the TWIM separation in drift-gases of differing polarizabilities. We therefore propose that examining the electronic structure of the ions under investigation may potentially indicate whether the use of more polarizable drift-gases could improve separation and the overall success of TWIM-MS analysis.
Collapse
Affiliation(s)
- Priscila M Lalli
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, 13084-970, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Glaskin RS, Ewing MA, Clemmer DE. Ion Trapping for Ion Mobility Spectrometry Measurements in a Cyclical Drift Tube. Anal Chem 2013; 85:7003-8. [DOI: 10.1021/ac4015066] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rebecca S. Glaskin
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Michael A. Ewing
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
49
|
Ewing MA, Zucker SM, Valentine SJ, Clemmer DE. Overtone mobility spectrometry: part 5. Simulations and analytical expressions describing overtone limits. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:615-21. [PMID: 23468094 PMCID: PMC4521626 DOI: 10.1007/s13361-012-0559-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 05/26/2023]
Abstract
Mathematical expressions for the analytical duty cycle associated with different overtones in overtone mobility spectrometry are derived from the widths of the transmitted packets of ions under different instrumental operating conditions. Support for these derivations is provided through ion trajectory simulations. The outcome of the theory and simulations indicates that under all operating conditions there exists a limit or maximum observable overtone that will result in ion transmission. Implications of these findings on experimental design are discussed.
Collapse
Affiliation(s)
- Michael A. Ewing
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Steven M. Zucker
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
50
|
Lapthorn C, Pullen F, Chowdhry BZ. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. MASS SPECTROMETRY REVIEWS 2013; 32:43-71. [PMID: 22941854 DOI: 10.1002/mas.21349] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 01/29/2012] [Accepted: 03/08/2012] [Indexed: 05/11/2023]
Abstract
The phenomenon of ion mobility (IM), the movement/transport of charged particles under the influence of an electric field, was first observed in the early 20th Century and harnessed later in ion mobility spectrometry (IMS). There have been rapid advances in instrumental design, experimental methods, and theory together with contributions from computational chemistry and gas-phase ion chemistry, which have diversified the range of potential applications of contemporary IMS techniques. Whilst IMS-mass spectrometry (IMS-MS) has recently been recognized for having significant research/applied industrial potential and encompasses multi-/cross-disciplinary areas of science, the applications and impact from decades of research are only now beginning to be utilized for "small molecule" species. This review focuses on the application of IMS-MS to "small molecule" species typically used in drug discovery (100-500 Da) including an assessment of the limitations and possibilities of the technique. Potential future developments in instrumental design, experimental methods, and applications are addressed. The typical application of IMS-MS in relation to small molecules has been to separate species in fairly uniform molecular classes such as mixture analysis, including metabolites. Separation of similar species has historically been challenging using IMS as the resolving power, R, has been low (3-100) and the differences in collision cross-sections that could be measured have been relatively small, so instrument and method development has often focused on increasing resolving power. However, IMS-MS has a range of other potential applications that are examined in this review where it displays unique advantages, including: determination of small molecule structure from drift time, "small molecule" separation in achiral and chiral mixtures, improvement in selectivity, identification of carbohydrate isomers, metabonomics, and for understanding the size and shape of small molecules. This review provides a broad but selective overview of current literature, concentrating on IMS-MS, not solely IMS, and small molecule applications.
Collapse
Affiliation(s)
- Cris Lapthorn
- School of Science, University of Greenwich, Medway Campus, Chatham, Kent ME4 4TB, UK
| | | | | |
Collapse
|