1
|
Davis BTV, Velyvis A, Vahidi S. Fluorinated Ethylamines as Electrospray-Compatible Neutral pH Buffers for Native Mass Spectrometry. Anal Chem 2023; 95:17525-17532. [PMID: 37997939 DOI: 10.1021/acs.analchem.3c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Native electrospray ionization mass spectrometry (ESI-MS) has emerged as a potent tool for examining the native-like structures of macromolecular complexes. Despite its utility, the predominant "buffer" used, ammonium acetate (AmAc) with pKa values of 4.75 for acetic acid and 9.25 for ammonium, provides very little buffering capacity within the physiological pH range of 7.0-7.4. ESI-induced redox reactions alter the pH of the liquid within the ESI capillary. This can result in protein unfolding or weakening of pH-sensitive interactions. Consequently, the discovery of volatile, ESI-compatible buffers, capable of effectively maintaining pH within a physiological range, is of high importance. Here, we demonstrate that 2,2-difluoroethylamine (DFEA) and 2,2,2-trifluoroethylamine (TFEA) offer buffering capacity at physiological pH where AmAc falls short, with pKa values of 7.2 and 5.5 for the conjugate acids of DFEA and TFEA, respectively. Native ESI-MS experiments on model proteins cytochrome c and myoglobin electrosprayed with DFEA and TFEA demonstrated the preservation of noncovalent protein-ligand complexes in the gas phase. Protein stability assays and collision-induced unfolding experiments further showed that neither DFEA nor TFEA destabilized model proteins in solution or in the gas phase. Finally, we demonstrate that multisubunit protein complexes such as alcohol dehydrogenase and concanavalin A can be studied in the presence of DFEA or TFEA using native ESI-MS. Our findings establish DFEA and TFEA as new ESI-compatible neutral pH buffers that promise to bolster the use of native ESI-MS for the analysis of macromolecular complexes, particularly those sensitive to pH fluctuations.
Collapse
Affiliation(s)
- Bradley T V Davis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
2
|
Sharif D, Foroushani SH, Attanayake K, Dewasurendra VK, DeBastiani A, DeVor A, Johnson MB, Li P, Valentine SJ. Capillary Vibrating Sharp-Edge Spray Ionization Augments Field-Free Ionization Techniques to Promote Conformer Preservation in the Gas-Phase for Intractable Biomolecular Ions. J Phys Chem B 2022; 126:8970-8984. [PMID: 36318704 PMCID: PMC10278089 DOI: 10.1021/acs.jpcb.2c04960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Field-free capillary vibrating sharp-edge spray ionization (cVSSI) is evaluated for its ability to conduct native mass spectrometry (MS) experiments. The charge state distributions for nine globular proteins are compared using field-free cVSSI, field-enabled cVSSI, and electrospray ionization (ESI). In general, for both positive and negative ion mode, the average charge state (qavg) increases for field-free cVSSI with increasing molecular weight similar to ESI. A clear difference is that the qavg is significantly lower for field-free conditions in both analyses. Two proteins, leptin and thioredoxin, exhibit bimodal charge state distributions (CSDs) upon the application of voltage in positive ion mode; only a monomodal distribution is observed for field-free conditions. In negative ion mode, thioredoxin exhibits a multimodal CSD upon the addition of voltage to cVSSI. Extensive molecular dynamics (MD) simulations of myoglobin and leptin in nanodroplets suggest that the multimodal CSD for leptin may originate from increased conformational "breathing" (decreased packing) and association with the droplet surface. These properties along with increased droplet charge appear to play critical roles in shifting ionization processes for some proteins. Further exploration and development of field-free cVSSI as a new ionization source for native MS especially as applied to more flexible biomolecular species is warranted.
Collapse
Affiliation(s)
- Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Samira Hajian Foroushani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Vikum K Dewasurendra
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia26506, United States
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Matthew B Johnson
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia26506, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| |
Collapse
|
3
|
Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Wenzel TJ, Bajwa E, Klegeris A. Cytochrome c can be released into extracellular space and modulate functions of human astrocytes in a toll-like receptor 4-dependent manner. Biochim Biophys Acta Gen Subj 2019; 1863:129400. [PMID: 31344401 DOI: 10.1016/j.bbagen.2019.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/23/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic activation of glial cells contributes to neurodegenerative diseases. Cytochrome c (CytC) is a soluble mitochondrial protein that can act as a damage-associated molecular pattern (DAMP) when released into the extracellular space from damaged cells. CytC causes immune activation of microglia in a toll-like receptor (TLR) 4-dependent manner. The effects of extracellular CytC on astrocytes are unknown. Astrocytes, which are the most abundant glial cell type in the brain, express TLR 4 and secrete inflammatory mediators; therefore, we hypothesized that extracellular CytC can interact with the TLR 4 of astrocytes inducing their release of inflammatory molecules and cytotoxins. METHOD Experiments were conducted using primary human astrocytes, U118 MG human astrocytic cells, BV-2 murine microglia, and SH-SY5Y human neuronal cells. RESULTS Extracellularly applied CytC increased the secretion of interleukin (IL)-1β, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-12 p70 by cultured primary human astrocytes. Anti-TLR 4 antibodies blocked the CytC-induced secretion of IL-1β and GM-CSF by astrocytes. Supernatants from CytC-activated astrocytes were toxic to human SH-SY5Y neuronal cells. We also demonstrated CytC release from damaged glial cells by measuring CytC in the supernatants of BV-2 microglia after their exposure to cytotoxic concentrations of staurosporine, amyloid-β peptides (Aβ42) and tumor necrosis factor-α. CONCLUSION CytC can be released into the extracellular space from damaged glial cells causing immune activation of astrocytes in a TLR 4-dependent manner. GENERAL SIGNIFICANCE Astrocyte activation by CytC may contribute to neuroinflammation and neuronal death in neurodegenerative diseases. Astrocyte TLR 4 could be a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ekta Bajwa
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
5
|
Li G, Zheng S, Chen Y, Hou Z, Huang G. Reliable Tracking In-Solution Protein Unfolding via Ultrafast Thermal Unfolding/Ion Mobility-Mass Spectrometry. Anal Chem 2018; 90:7997-8001. [PMID: 29894165 DOI: 10.1021/acs.analchem.8b00859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequential unfolding of monomeric proteins is important for the global understanding of local conformational elements (e.g., secondary structures and domain connections) within those protein assemblies. Ion mobility-mass spectrometry (IM-MS) is an emerging and promising technique for probing gradual protein structural perturbations in the gas phase. However, it is still challenging to track sequential unfolding in the solution phase. Here, we extended IM-MS to track in-solution sequential unfolding of monomeric proteins having single and/or multidomains. The present method combines ultrafast local heating effect (LHE)-driven sequential unfolding with IM-MS identification. Protein sequential unfolding in solution is demonstrated by the rapid and controllable IM-MS data switch between native and gradually unfolded states. Our results show that LHE induces gradual protein conformational transitions associated with biological functions, where IM-MS tracks the sequential unfolding of monomeric proteins.
Collapse
|
6
|
Mortensen DN, Williams ER. Microsecond and nanosecond polyproline II helix formation in aqueous nanodrops measured by mass spectrometry. Chem Commun (Camb) 2018; 52:12218-12221. [PMID: 27711437 DOI: 10.1039/c6cc06423j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1.5 μs and <400 ns time constants for the formation of polyproline II helix structures in 21 and 16 residue peptides, respectively, are measured using rapid mixing from theta-glass emitters coupled with mass spectrometry. Results from these studies should serve as useful benchmarks for comparison with computational simulation results.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| |
Collapse
|
7
|
Motovilov KA, Savinov M, Zhukova ES, Pronin AA, Gagkaeva ZV, Grinenko V, Sidoruk KV, Voeikova TA, Barzilovich PY, Grebenko AK, Lisovskii SV, Torgashev VI, Bednyakov P, Pokorný J, Dressel M, Gorshunov BP. Observation of dielectric universalities in albumin, cytochrome C and Shewanella oneidensis MR-1 extracellular matrix. Sci Rep 2017; 7:15731. [PMID: 29147016 PMCID: PMC5691187 DOI: 10.1038/s41598-017-15693-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022] Open
Abstract
The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ 1(ν) whose magnitude exponentially decreases while cooling. With increasing frequency, dispersionless conductivity starts to reveal a power-law dependence σ 1(ν)∝ν s with s < 1 caused by hopping charge carriers. At low temperatures, such Universal Dielectric Response can cross over to another universal regime with nearly constant loss ε″∝σ1/ν = const. The powerful research potential based on such universalities is widely used in condensed matter physics. Here we study the broad-band (1-1012 Hz) dielectric response of Shewanella oneidensis MR-1 extracellular matrix, cytochrome C and serum albumin. Applying concepts of condensed matter physics, we identify transport mechanisms and a number of energy, time, frequency, spatial and temperature scales in these biological objects, which can provide us with deeper insight into the protein dynamics.
Collapse
Affiliation(s)
- K A Motovilov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| | - M Savinov
- Institute of Physics AS CR, Praha 8, Czech Republic
| | - E S Zhukova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- A.M. Prokhorov General Physics Institute, RAS, Moscow, Russia
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
| | - A A Pronin
- A.M. Prokhorov General Physics Institute, RAS, Moscow, Russia
| | - Z V Gagkaeva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - V Grinenko
- Institute for Metallic Materials, IFW Dresden, Dresden, Germany
| | - K V Sidoruk
- Scientific Center of Russian Federation Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - T A Voeikova
- Scientific Center of Russian Federation Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - P Yu Barzilovich
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - A K Grebenko
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - S V Lisovskii
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | | | - P Bednyakov
- Institute of Physics AS CR, Praha 8, Czech Republic
| | - J Pokorný
- Institute of Physics AS CR, Praha 8, Czech Republic
| | - M Dressel
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow, 141701, Russia
| | - B P Gorshunov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
- A.M. Prokhorov General Physics Institute, RAS, Moscow, Russia.
- 1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany.
| |
Collapse
|
8
|
Zhao F, Matt SM, Bu J, Rehrauer OG, Ben-Amotz D, McLuckey SA. Joule Heating and Thermal Denaturation of Proteins in Nano-ESI Theta Tips. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2001-2010. [PMID: 28699064 PMCID: PMC5693742 DOI: 10.1007/s13361-017-1732-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 05/21/2023]
Abstract
Electro-osmotically induced Joule heating in theta tips and its effect on protein denaturation were investigated. Myoglobin, equine cytochrome c, bovine cytochrome c, and carbonic anhydrase II solutions were subjected to electro-osmosis in a theta tip and all of the proteins were denatured during the process. The extent of protein denaturation was found to increase with the applied square wave voltage and electrolyte concentration. The solution temperature at the end of a theta tip was measured directly by Raman spectroscopy and shown to increase with the square wave voltage, thereby demonstrating the effect of Joule heating through an independent method. The electro-osmosis of a solution comprised of myoglobin, bovine cytochrome c, and ubiquitin demonstrated that the magnitude of Joule heating that causes protein denaturation is positively correlated with protein melting temperature. This allows for a quick determination of a protein's relative thermal stability. This work establishes a fast, novel method for protein conformation manipulation prior to MS analysis and provides a temperature-controllable platform for the study of processes that take place in solution with direct coupling to mass spectrometry. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Feifei Zhao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Sarah M Matt
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Jiexun Bu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Owen G Rehrauer
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Dor Ben-Amotz
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
9
|
Chen B, Guo X, Tucholski T, Lin Z, McIlwain S, Ge Y. The Impact of Phosphorylation on Electron Capture Dissociation of Proteins: A Top-Down Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1805-1814. [PMID: 28685494 PMCID: PMC5711594 DOI: 10.1007/s13361-017-1710-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 05/12/2023]
Abstract
Electron capture dissociation (ECD) is well suited for the characterization of phosphoproteins, with which labile phosphate groups are generally preserved during the fragmentation process. However, the impact of phosphorylation on ECD fragmentation of intact proteins remains unclear. Here, we have performed a systematic investigation of the phosphorylation effect on ECD of intact proteins by comparing the ECD cleavages of mono-phosphorylated α-casein, multi-phosphorylated β-casein, and immunoaffinity-purified phosphorylated cardiac troponin I with those of their unphosphorylated counterparts, respectively. In contrast to phosphopeptides, phosphorylation has significantly reduced deleterious effects on the fragmentation of intact proteins during ECD. On a global scale, the fragmentation patterns are highly comparable between unphosphorylated and phosphorylated precursors under the same ECD conditions, despite a slight decrease in the number of fragment ions observed for the phosphorylated forms. On a local scale, single phosphorylation of intact proteins imposes minimal effects on fragmentation near the phosphorylation sites, but multiple phosphorylations in close proximity result in a significant reduction of ECD bond cleavages. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiao Guo
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Furuki K, Toyo'oka T, Yamaguchi H. A novel rapid analysis using mass spectrometry to evaluate downstream refolding of recombinant human insulin-like growth factor-1 (mecasermin). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1267-1278. [PMID: 28523846 DOI: 10.1002/rcm.7906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/28/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Mecasermin is used to treat elevated blood sugar as well as growth-hormone-resistant Laron-type dwarfism. Mecasermin isolated from inclusion bodies in extracts of E. coli must be refolded to acquire sufficient activity. However, there is no rapid analytical method for monitoring refolding during the purification process. METHODS We prepared mecasermin drug product, in-process samples during the oxidation of mecasermin, forced-reduced mecasermin, and aerially oxidized mecasermin after forced reduction. Desalted mecasermin samples were analyzed using MALDI-ISD. The peak intensity ratio of product to precursor ion was determined. The charge-state distribution (CSD) of mecasermin ions was evaluated using ESI-MS coupled with SEC-mode HPLC. The drift time and collision cross-sectional area (CCS) of mecasermin ions were evaluated using ESI-IMS-MS coupled with SEC-mode HPLC. RESULTS MALDI-ISD data, CSD values determined using ESI-MS, and the CCS acquired using ESI-IMS-MS revealed the relationship between the folded and unfolded proteoforms of forced-reduced mecasermin and aerially oxidized mecasermin with the free-SH:protein ratio of mecasermin drug product. The CCS area, which is determined using ESI-IMS-MS, provided proteoform information through rapid monitoring (<2 min) of in-process samples during the manufacture of mecasermin. CONCLUSIONS ESI-IMS-MS coupled with SEC-mode HPLC is a rapid and robust method for analyzing the free-SH:protein ratio of mecasermin that allows proteoform changes to be evaluated and monitored during the oxidation of mecasermin. ESI-IMS-MS is applicable as a process analytical technology tool for identifying the "critical quality attributes" and implementing "quality by design" for manufacturing mecasermin.
Collapse
Affiliation(s)
- Kenichiro Furuki
- Process Science Lab II, Biotechnology Labs, Astellas Pharma Inc., Ibaraki, Japan
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Toshimasa Toyo'oka
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Hideto Yamaguchi
- Process Science Lab II, Biotechnology Labs, Astellas Pharma Inc., Ibaraki, Japan
- Astellas Institute for Regenerative Medicine (AIRM), Astellas Pharma Inc., Marlborough, MA, USA
| |
Collapse
|
11
|
Kilpatrick LE, Kilpatrick EL. Optimizing High-Resolution Mass Spectrometry for the Identification of Low-Abundance Post-Translational Modifications of Intact Proteins. J Proteome Res 2017; 16:3255-3265. [PMID: 28738681 DOI: 10.1021/acs.jproteome.7b00244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intact protein analysis by liquid chromatography-mass spectrometry (LC-MS) is now possible due to the improved capabilities of mass spectrometers yielding greater resolution, mass accuracy, and extended mass ranges. Concurrent measurement of post-translational modifications (PTMs) during LC-MS of intact proteins is advantageous while monitoring critical proteoform status, such as for clinical samples or during production of reference materials. However, difficulties exist for PTM identification when the protein is large or contains multiple modification sites. In this work, analyses of low-abundance proteoforms of proteins of clinical or therapeutic interest, including C-reactive protein, vitamin D-binding protein, transferrin, and immunoglobulin G (NISTmAb), were performed on an Orbitrap Elite mass spectrometer. This work investigated the effect of various instrument parameters including source temperatures, in-source CID, microscan type and quantity, resolution, and automatic gain control on spectral quality. The signal-to-noise ratio was found to be a suitable spectral attribute which facilitated identification of low abundance PTMs. Source temperature and CID voltage were found to require specific optimization for each protein. This study identifies key instrumental parameters requiring optimization for improved detection of a variety of PTMs by LC-MS and establishes a methodological framework to ensure robust proteoform identifications, the first step in their ultimate quantification.
Collapse
Affiliation(s)
- Lisa E Kilpatrick
- National Institute of Standards and Technology , Material Measurement Laboratory, Biomolecular Measurement Division, 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| | - Eric L Kilpatrick
- National Institute of Standards and Technology , Material Measurement Laboratory, Biomolecular Measurement Division, 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
12
|
Karki S, Sistani H, Archer JJ, Shi F, Levis RJ. Isolating Protein Charge State Reduction in Electrospray Droplets Using Femtosecond Laser Vaporization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:470-478. [PMID: 28063091 DOI: 10.1007/s13361-016-1576-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Charge state distributions are measured using mass spectrometry for both native and denatured cytochrome c and myoglobin after laser vaporization from the solution state into an electrospray (ES) plume consisting of a series of solution additives differing in gas-phase basicity. The charge distribution depends on both the pH of the protein solution prior to laser vaporization and the gas-phase basicity of the solution additive employed in the ES solvent. Cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 resulted in the average charge state distribution (Zavg) of 7.0 ± 0.1 (8.2 ± 0.1), 9.7 ± 0.2 (14.5 ± 0.3), and 11.6 ± 0.3 (16.4 ± 0.1), respectively, in ammonium formate ES solvent. The charge distribution shifted from higher charge states to lower charge states when the ES solvent contained amines additives with higher gas-phase basicity. In the case of triethyl ammonium formate, Zavg of cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 decreased to 4.9 (5.7), 7.4 ± 0.2 (9.6 ± 0.3), and 7.9 ± 0.3 (9.8 ± 0.2), respectively. The detection of a charge state distribution corresponding to folded protein after laser vaporized, acid-denatured protein interacts with the ES solvent containing ammonium formate, ammonium acetate, triethyl ammonium formate, and triethyl ammonium acetate suggests that at least a part of protein population folds within the electrospray droplet on a millisecond timescale. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Santosh Karki
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Habiballah Sistani
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Jieutonne J Archer
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Fengjian Shi
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Robert J Levis
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
13
|
Mortensen DN, Williams ER. Surface-Induced Protein Unfolding in Submicron Electrospray Emitters. Anal Chem 2016; 88:9662-9668. [PMID: 27615434 DOI: 10.1021/acs.analchem.6b02499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The charging of protein ions formed by nanoelectrospray ionization (nanoESI) with tips that are between 1.5 μm and 250 nm in outer diameter is compared. More charging is obtained with the smaller tip sizes for proteins that have a net positive charge in solution, and additional high-charge-state distributions are often observed. A single charge-state distribution of holo-myoglobin ions is produced by nanoESI from a slightly acidified aqueous solution with the micron outer diameter tips, but some apo-myoglobin ions are produced with the submicron tips. In contrast, the charge-state distributions for proteins with a net negative charge in solution do not depend on tip size. Both the formation of high charge states and the appearance of higher-charge-state distributions, as well as the loss of the heme group from myoglobin, indicate that a fraction of the protein population is unfolding with the smaller tips. The increased charging with the smaller tip sizes for proteins with a net positive charge but not for proteins with a net negative charge indicates that the unfolding occurs prior to nanoelectrospray ionization as a result of Coulombic attraction between positively charged protein molecules in solution and the glass surfaces of the emitter tips that are negatively charged. These results demonstrate a novel method for producing highly charged protein ions that does not require exposing the proteins to additional chemicals either in solution or in the gas phase.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| |
Collapse
|
14
|
Mortensen DN, Williams ER. Ultrafast (1 μs) Mixing and Fast Protein Folding in Nanodrops Monitored by Mass Spectrometry. J Am Chem Soc 2016; 138:3453-60. [PMID: 26902747 DOI: 10.1021/jacs.5b13081] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of theta-glass emitters and mass spectrometry to monitor reactions that occur as fast as one μs is demonstrated. Acidified aqueous solutions containing unfolded proteins are mixed with aqueous ammonium acetate solutions to increase the solution pH and induce protein folding during nanoelectrospray ionization. Protein charge-state distributions show the extent to which folding occurs, and reaction times are obtained from known protein folding time constants. Shorter reaction times are obtained by decreasing the solution flow rate, and reaction times between 1.0 and 22 μs are obtained using flow rates between 48 and 2880 pL/s, respectively. Remarkably similar reaction times are obtained for three different proteins (Trp-cage, myoglobin, and cytochrome c) with folding time constants that differ by more than an order of magnitude (4.1, 7, and 57 μs, respectively), indicating that the reaction times obtained using rapid mixing from theta-glass emitters are independent of protein identity. A folding time constant of 2.2 μs is obtained for the formation of a β-hairpin structure of renin substrate tetradecapeptide, which is the fastest folding event measured using a rapid mixing technique. The 1.0 μs reaction time obtained here is about an order of magnitude lower than the shortest reaction time probed using a conventional mixer (8 μs). Moreover, this fast reaction time is obtained with a 48 pL/s flow rate, which is 2000-times less than the flow rate required to obtained the 8 μs reaction time using a conventional mixer. These results indicate that rapid mixing with theta-glass emitters can be used to access significantly faster reaction times while consuming substantially less sample than in conventional mixing apparatus.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| |
Collapse
|
15
|
Altmeyer MO, Manz A, Neužil P. Microfluidic Superheating for Peptide Sequence Elucidation. Anal Chem 2015; 87:5997-6003. [PMID: 26035024 DOI: 10.1021/acs.analchem.5b00189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we introduce microfluidic superheating as a new method for peptide fragmentation prior to mass spectrometric analysis. The superheating conditions were found to be stable up to 240 °C for more than 30 min without elevated pressure or boiling of the aqueous sample. As proof of principle, we exposed the peptides ACTH1-10 and OVA257-264 to various superheating conditions, causing different degrees of decomposition. Optimized superheating conditions resulted in the entire peptide ladder sequence of the y-ions, allowing the amino acid sequence to be deduced from a single-stage mass spectrum. Thus, obtaining information in the same quality as from tandem mass spectrometry can be achieved by a single superheating step.
Collapse
Affiliation(s)
- Matthias O Altmeyer
- ∥KIST Europe, Microfluidics, 66123 Saarbrücken, Germany.,⊥Twente University, MESA+, Institute for Nanotechnology, 7500 AE Enschede, Netherlands
| | - Andreas Manz
- ∥KIST Europe, Microfluidics, 66123 Saarbrücken, Germany
| | - Pavel Neužil
- ∥KIST Europe, Microfluidics, 66123 Saarbrücken, Germany.,§Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| |
Collapse
|
16
|
Mortensen DN, Williams ER. Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal Chem 2014; 87:1281-7. [PMID: 25525976 PMCID: PMC4303338 DOI: 10.1021/ac503981c] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Theta-glass emitters are used to
rapidly mix two solutions to induce
either protein folding or unfolding during nanoelectrospray (nanoESI).
Mixing acid-denatured myoglobin with an aqueous ammonium acetate solution
to increase solution pH results in protein folding during nanoESI.
A reaction time and upper limit to the droplet lifetime of 9 ±
2 μs is obtained from the relative abundance of the folded conformer
in these rapid mixing experiments compared to that obtained from solutions
at equilibrium and a folding time constant of 7 μs. Heme reincorporation
does not occur, consistent with the short droplet lifetime and the
much longer time constant for this process. Similar mixing experiments
with acid-denatured cytochrome c and the resulting
folding during nanoESI indicate a reaction time of between 7 and 25
μs depending on the solution composition. The extent of unfolding
of holo-myoglobin upon rapid mixing with theta-glass emitters is less
than that reported previously (Fisher
et al. 2014, 86, 4581−458824702054), a result
that is attributed to the much smaller, ∼1.5 μm, average
o.d. tips used here. These results indicate that the time frame during
which protein folding or unfolding can occur during nanoESI depends
both on the initial droplet size, which can be varied by changing
the emitter tip diameter, and on the solution composition. This study
demonstrates that protein folding or unfolding processes that occur
on the ∼10 μs time scale can be readily investigated
using rapid mixing with theta-glass emitters combined with mass spectrometry.
Collapse
Affiliation(s)
- Daniel N Mortensen
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | |
Collapse
|
17
|
Ren X, Liu J, Zhang C, Luo H. Direct analysis of samples under ambient condition by high-voltage-assisted laser desorption ionization mass spectrometry in both positive and negative ion mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:613-620. [PMID: 23413220 DOI: 10.1002/rcm.6499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE With the rapid development of ambient mass spectrometry, the hybrid laser-based ambient ionization methods which can generate multiply charged ions of large biomolecules and also characterize small molecules with good signal-to-noise in both positive and negative ion modes are of particular interest. METHODS An ambient ionization method termed high-voltage-assisted laser desorption ionization (HALDI) is developed, in which a 1064 nm laser is used to desorb various liquid samples from the sample target biased at a high potential without the need for an organic matrix. The pre-charged liquid samples are desorbed by the laser to form small charged droplets which may undergo an electrospray-like ionization process to produce multiply charged ions of large biomolecules. RESULTS Various samples including proteins, oligonucleotides (ODNs), drugs, whole milk and chicken eggs have been analyzed by HALDI-MS in both positive and negative ion mode with little or no sample preparation. In addition, HALDI can generate intense signals with better signal-to-noise in negative ion mode than laser desorption spay post-ionization (LDSPI) from the same samples, such as ODNs and some carboxylic-group-containing small drug molecules. CONCLUSIONS HALDI-MS can directly analyze a variety of liquid samples including proteins, ODNs, pharmaceuticals and biological fluids in both positive and negative ion mode without the use of an organic matrix. This technique may be further developed into a useful tool for rapid analysis in many different fields such as pharmaceutical, food, and biological sciences.
Collapse
Affiliation(s)
- Xinxin Ren
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | |
Collapse
|
18
|
Knapman TW, Valette NM, Warriner SL, Ashcroft AE. Ion Mobility Spectrometry-Mass Spectrometry of Intrinsically Unfolded Proteins: Trying to Put Order into Disorder. CURR ANAL CHEM 2013; 9:181-191. [PMID: 23885220 PMCID: PMC3706957 DOI: 10.2174/1573411011309020004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/15/2011] [Accepted: 05/09/2012] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins do not adopt well-defined native structures and therefore present an intriguing challenge in terms of structural elucidation as they are relatively inaccessible to traditional approaches such as NMR and X-ray crystallography. Many members of this important group of proteins have a distinct biological function and frequently undergo a conformational change on binding to their physiological targets which can in turn modulate their function. Furthermore, many intrinsically unstructured proteins are associated with a wide range of major diseases including cancer and amyloid-related disorders. Here, electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) has been used to probe the conformational characteristics of two intrinsically disordered proteins: apo-cytochrome c and apo-osteocalcin. Both proteins are structured in their holo-states when bound to their respective substrates, but disordered in their apo-states. Here, the conformational properties of the holo- and the apo-protein forms for both species have been analysed and their mass spectral data and ion mobility spectrometry-derived collision cross-sectional areas, indicative of their physical size, compared to study the relationship between substrate binding and tertiary structure. In both cases, the intrinsically unstructured apo-states populated multiple conformations with larger cross-sectional areas than their holo-analogues, suggesting that intrinsic disorder in proteins does not preclude the formation of preferred conformations. Additionally, analysis of truncated analogues of osteocalcin has located the region of the protein responsible for the conformational changes detected upon metal cation binding. Together, the data illustrate the scope and utility of ESI-IMS-MS for studying the characteristics and properties of intrinsically disordered proteins whose analysis by other techniques is limited.
Collapse
Affiliation(s)
- T W Knapman
- Astbury Centre for Structural Molecular Biology, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
19
|
Banerjee S. Induction of protein conformational change inside the charged electrospray droplet. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:193-204. [PMID: 23378092 DOI: 10.1002/jms.3148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
The behavior of the analyte molecules inside the neutral core of the charged electrospray (ES) droplet is not unambiguously known to date. The possibility of protein conformational change inside the charged ES droplet has been investigated. The ES droplets encapsulating the protein molecules were exposed to the acetic acid vapor in the ionization chamber to absorb the acetic acid vapor. Because of the faster evaporation of water than that of acetic acid, the droplets became enriched with acetic acid and thus altered the solvent environment (e.g. pH and polarity) of the final charged droplets from where the naked charged analytes (proteins) are formed. Thus, the perturbation of the ES droplet solvent environment resulted in the protein conformational change (unfolding) during the short lifespan of the ES droplet and that is reflected by the multimodal charge state distribution in the corresponding mass spectra. Further, the extent of this conformational change inside the ES droplet was found to be related to the structural flexibility of the protein. Although the protein conformational change inside the ES droplet has been driven by using acetic acid vapor in the present study, the results would help in the near future to understand the spontaneity of the conformational change of the analyte on the millisecond timescale of phase transition in the natural way of ES process.
Collapse
Affiliation(s)
- Shibdas Banerjee
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
| |
Collapse
|
20
|
Marginean I, Kronewitter SR, Moore RJ, Slysz GW, Monroe ME, Anderson G, Tang K, Smith RD. Improving N-glycan coverage using HPLC-MS with electrospray ionization at subambient pressure. Anal Chem 2012; 84:9208-13. [PMID: 23025344 DOI: 10.1021/ac301961u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise in, for example, clinical biomarker discovery. However, the low glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera can hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and are prone to fragmentation. Here we show that, following liquid chromatographic separation on graphite columns, subambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile in comparison with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by the SPIN interface were observed at higher charge states for approximately half of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.
Collapse
Affiliation(s)
- Ioan Marginean
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang J, Zhang T, Lu C, Bian L. Distribution and Transition of Native and Completely Unfolded Conformations in the Unfolding of Bovine Heart Cytochrome c Induced by Urea and Guanidine Hydrochloride. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201180337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Bian L, Zhang T, Yang X, Liu L, Zheng X. Unfolding of Bovine Heart Cytochrome c Induced by Urea and Guanidine Hydrochloride. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Miao Z, Wu S, Chen H. The study of protein conformation in solution via direct sampling by desorption electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1730-6. [PMID: 20620076 PMCID: PMC3704159 DOI: 10.1016/j.jasms.2010.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 05/21/2023]
Abstract
The direct sampling feature of liquid sample desorption electrospray ionization (DESI) allows the ionization of liquid samples without adding acids/organic solvents (i.e., without sample pretreatment). As a result, it provides a new approach for probing protein conformation in solution. In this study, it has been observed that native protein ions are generated from proteins in water by DESI. Interestingly, the intensities of the resulting protein ions appear to be higher than those generated by ESI of the proteins in water or in ammonium acetate. For protein solutions that already contain acids/organic solvents, DESI can be used to investigate the influences of these denaturants on protein conformations and the obtained results are in good agreement with spectroscopic data. In addition, online monitoring of protein conformational changes by DESI is feasible; for instance, heat-induced unfolding of ubiquitin can be traced with DESI in water without influences of organic solvents/acids. This DESI method provides a new alternative tool for the study of protein conformation in solution.
Collapse
Affiliation(s)
- Zhixin Miao
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | | | | |
Collapse
|
24
|
Konermann L, Stocks BB, Pan Y, Tong X. Mass spectrometry combined with oxidative labeling for exploring protein structure and folding. MASS SPECTROMETRY REVIEWS 2010; 29:651-667. [PMID: 19672951 DOI: 10.1002/mas.20256] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review discusses various mass spectrometry (MS)-based approaches for exploring structural aspects of proteins in solution. Electrospray ionization (ESI)-MS, in particular, has found fascinating applications in this area. For example, when used in conjunction with solution-phase hydrogen/deuterium exchange (HDX), ESI-MS is a highly sensitive tool for probing conformational dynamics. The main focus of this article is a technique that is complementary to HDX, that is, the covalent labeling of proteins by hydroxyl radicals. The reactivity of individual amino acid side chains with *OH is strongly affected by their degree of solvent exposure. Thus, analysis of the oxidative labeling pattern by peptide mapping and tandem mass spectrometry provides detailed structural information. A convenient method for *OH production is the photolysis of H(2)O(2) by a pulsed UV laser, resulting in oxidative labeling on the microsecond time scale. Selected examples demonstrate the use of this technique for structural studies on membrane proteins, and the combination with rapid mixing devices for characterizing the properties of short-lived protein (un)folding intermediates.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | | | | | |
Collapse
|
25
|
Gau BC, Sharp JS, Rempel DL, Gross ML. Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal Chem 2010; 81:6563-71. [PMID: 20337372 DOI: 10.1021/ac901054w] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a chemical footprinting method whereby exposed amino-acid residues are covalently labeled by oxidation with hydroxyl radicals produced by the photolysis of hydrogen peroxide. Modified residues can be detected by standard trypsin proteolysis followed by LC/MS/MS, providing information about solvent accessibility at the peptide and even the amino-acid level. Like other chemical footprinting techniques, FPOP must ensure only the native conformation is labeled. Although oxidation via hydroxyl radical induces unfolding in proteins on a time scale of milliseconds or longer, FPOP is designed to limit (*)OH exposure to 1 micros or less by employing a pulsed laser for initiation to produce the radicals and a radical-scavenger to limit their lifetimes. We applied FPOP to three oxidation-sensitive proteins and found that the distribution of modification (oxidation) states is Poisson when a scavenger is present, consistent with a single conformation protein modification model. This model breaks down when a scavenger is not used and/or hydrogen peroxide is not removed following photolysis. The outcome verifies that FPOP occurs on a time scale faster than conformational changes in these proteins.
Collapse
Affiliation(s)
- Brian C Gau
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
26
|
Casalini S, Battistuzzi G, Borsari M, Bortolotti CA, Di Rocco G, Ranieri A, Sola M. Electron Transfer Properties and Hydrogen Peroxide Electrocatalysis of Cytochrome c Variants at Positions 67 and 80. J Phys Chem B 2010; 114:1698-706. [DOI: 10.1021/jp9090365] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Stefano Casalini
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Gianantonio Battistuzzi
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Borsari
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Carlo Augusto Bortolotti
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Giulia Di Rocco
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Antonio Ranieri
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| | - Marco Sola
- Contribution from the Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, I-41100 Modena, Italy, and CNR-INFM National Center nanoStructures and bioSystems at Surfaces - S3, Via Campi 213/A, I-41100 Modena, Italy
| |
Collapse
|
27
|
Pan Y, Brown L, Konermann L. Mapping the Structure of an Integral Membrane Protein under Semi-Denaturing Conditions by Laser-Induced Oxidative Labeling and Mass Spectrometry. J Mol Biol 2009; 394:968-81. [DOI: 10.1016/j.jmb.2009.09.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 12/23/2022]
|