1
|
Chizzolini C, Guery JC, Noulet F, Gruaz L, Cenac C, Frasca L, Spoerl D, Arlettaz L, Horisberger A, Ribi C, Hugues S. Extrafollicular CD19 lowCXCR5 -CD11c - double negative 3 (DN3) B cells are significantly associated with disease activity in females with systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100252. [PMID: 39444662 PMCID: PMC11497371 DOI: 10.1016/j.jtauto.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Objective B cells play a major role in the development and maintenance of systemic lupus erythematosus (SLE). Double negative (DN) B cells defined by the lack of surface expression of IgD and CD27 have attracted recent interest for their sensitivity to Toll-like receptor 7 (TLR7) ligands and their potential role in the production of autoantibodies. Here we aimed at investigating the possible association of DN B cells and their subsets with SLE disease activity specifically in female patients, in which TLR7 gene has been reported to escape X chromosome inactivation. Methods Peripheral blood mononuclear cells were purified from woman participating to the clinically well-characterized Swiss SLE Cohort Study (SSCS). PBMC from age-matched healthy females were used as controls. PBMC were stained for cell surface markers, intracellular Tbet and analyzed by multicolor cytofluorimetry. Single nucleotide TLR7 polymorphisms were assessed by polymerase chain reaction. Results The median SLE disease activity index of the 86 females was 2, IQR [0-6], all but 8 were under chronic SLE treatment. B cells co-expressing CD11c and Tbet were increased, the mean fluorescence intensity (MFI) of CD19 was considerably reduced and we observed a large increase in CD11c + CXCR5-and CD11c-CXCR5-concomitantly with a reduction of CD11c-CXCR5+ B cells in SLE compared to 40 healthy donors (HD). When focusing on the DN B cell subset, we found a reduction of DN1 (CD11c-CXCR5+) and an increase of DN2 (CD11c + CXCR5-) and most impressively of DN3 (CD11c-CXCR5-) cells. The DN subset, particularly DN3, showed the lowest level of CD19 expression. Both DN1 and DN3 percentages as well as the CD19 MFI of DN cells were associated with SLE disease activity. The use of glucocorticoids, immunosuppressants, and antimalarials impacted differentially on the frequencies of DN B cell subsets. CD19 MFI in B cells and the percentage of DN3 were the strongest biomarkers of disease activity. The TLR7 snp3858384 G allele was associated with increased percentages of B cells and CD19+CD11c-CXCR5+ and decreased CD19+CD11c-CXCR5-. Conclusions DN3 B cells are strongly associated with SLE clinical activity pointing to their potential involvement in disease pathogenesis, and CD19 expression level performs accurately as disease activity biomarker.
Collapse
Affiliation(s)
- Carlo Chizzolini
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Charles Guery
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Paul Sabatier Toulouse, F-31024, Toulouse, France
| | - Fanny Noulet
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Lyssia Gruaz
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire Cenac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Paul Sabatier Toulouse, F-31024, Toulouse, France
| | - Loredana Frasca
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - David Spoerl
- Clinical Immunology and Allergy, Department of Medicine, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Lionel Arlettaz
- Department of Biology, ICH, Valais Hospital, Sion, Switzerland
| | - Alice Horisberger
- Service of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Camillo Ribi
- Service of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Zhang Z, Yuan Z, Wang Y, Zhang YH, Li Q, Zeng X, Guan Z, Bahabayi A, Wang P, Liu C. Upregulation of granzyme B and C-X3-C motif receptor 1 in circulating plasmablasts was negatively regulated by Notch signal in patients with systemic lupus erythematosus. J Leukoc Biol 2024; 116:1061-1071. [PMID: 38833584 DOI: 10.1093/jleuko/qiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/31/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024] Open
Abstract
As one molecule related to cytotoxicity, surface expression of C-X3-C motif receptor 1 (CX3CR1) was highly correlated with intracellular granzyme B (GZMB) in natural killer and cytolytic T cells. However, the expression of CX3CR1 and GZMB in B cells has not been clarified, and their clinical significance in systemic lupus erythematosus (SLE) remains unclear. This study aimed to clarify the changes and clinical significance of peripheral blood B cells expressing GZMB and/or CX3CR1 in SLE. Peripheral blood was collected from 39 patients with SLE and 48 healthy controls. We found that GZMB and CX3CR1 expression varied in different B-cell subsets, with plasmablasts possessing the highest positive percentages, consistent with bioinformatics prediction. GZMB+ and CX3CR1+ percentages in circulating B cells and plasmablasts were increased in patients with SLE. CX3CR1 was upregulated on B cells after in vitro stimulation. Notch intracellular domain expression was significantly decreased in plasmablasts of patients with SLE, and CX3CR1 in plasmablasts was downregulated with the addition of JAG1. In conclusion, GZMB and CX3CR1 were increased in B cells and in plasmablasts of patients with SLE and CX3CR1 was negatively regulated by Notch signal in plasmablasts, which may be involved in SLE pathogenesis.
Collapse
Affiliation(s)
- Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Yiying Wang
- School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Ya-Hui Zhang
- School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
- Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| |
Collapse
|
3
|
Song S, Zhang JY, Liu FY, Zhang HY, Li XF, Zhang SX. B cell subsets-related biomarkers and molecular pathways for systemic lupus erythematosus by transcriptomics analyses. Int Immunopharmacol 2023; 124:110968. [PMID: 37741131 DOI: 10.1016/j.intimp.2023.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE), an autoimmune disease, is characterised by B-cell abnormalities and a loss of tolerance that can produce autoantibody. However, the imperative genes and molecular pathways involved in the change of B cell populations remain unclear. METHODS The expression of B cell subsets between SLE and healthy controls (HCs) was detected based on micro-array transcriptome data. The Weighted Gene Co-Expression Network Analysis (WGCNA) further revealed the co-expression modules of naïve and memory B cells. Whereafter, we performed the functional enrichment analysis, Protein-protein interaction (PPI) networks construction and feature selection to screen hub genes. Ultimately, we recruited SLE patients and HCs from the Second Hospital of Shanxi Medical University and further verified these genes in transcriptome sequencing samples. RESULTS Total of 1087 SLE patients and 86 HCs constituted in the study. Compared to HCs, the levels of peripheral naïve B cells of SLE patients decreased, while memory B cells increased. WGCNA identified two modules with the highest correlation for the subsequent analysis. The purple module was primarily in connection with naïve B cells, and the GO analysis indicated that these genes were mainly abundant in B cell activation. The blue module relevant to memory B cells was most significantly enriched in the "defence response to virus" correlation pathway. Then we screened six hub genes by PPI and feature selection. Finally, four biomarkers (IFI27, IFITM1, MX2, IRF7) were identified by transcriptome sequencing verification. CONCLUSION Our study identified hub genes and key pathways associated with the naïve and memory B cells respectively, which may offer novel insights into the behaviours of B cells and the pathogenesis of SLE.
Collapse
Affiliation(s)
- Shan Song
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jing-Yuan Zhang
- Department of Pediatric Medicine, Shanxi Medical University, Taiyuan, China
| | - Fang-Yue Liu
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - He-Yi Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Xiao-Feng Li
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China; Ministry of Education Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Wen L, Zhang B, Wu X, Liu R, Fan H, Han L, Zhang Z, Ma X, Chu CQ, Shi X. Toll-like receptors 7 and 9 regulate the proliferation and differentiation of B cells in systemic lupus erythematosus. Front Immunol 2023; 14:1093208. [PMID: 36875095 PMCID: PMC9975558 DOI: 10.3389/fimmu.2023.1093208] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune illness marked by the loss of immune tolerance and the production of autoantibodies against nucleic acids and other nuclear antigens (Ags). B lymphocytes are important in the immunopathogenesis of SLE. Multiple receptors control abnormal B-cell activation in SLE patients, including intrinsic Toll-like receptors (TLRs), B-cell receptors (BCRs), and cytokine receptors. The role of TLRs, notably TLR7 and TLR9, in the pathophysiology of SLE has been extensively explored in recent years. When endogenous or exogenous nucleic acid ligands are recognized by BCRs and internalized into B cells, they bind TLR7 or TLR9 to activate related signalling pathways and thus govern the proliferation and differentiation of B cells. Surprisingly, TLR7 and TLR9 appear to play opposing roles in SLE B cells, and the interaction between them is still poorly understood. In addition, other cells can enhance TLR signalling in B cells of SLE patients by releasing cytokines that accelerate the differentiation of B cells into plasma cells. Therefore, the delineation of how TLR7 and TLR9 regulate the abnormal activation of B cells in SLE may aid the understanding of the mechanisms of SLE and provide directions for TLR-targeted therapies for SLE.
Collapse
Affiliation(s)
- Luyao Wen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Bei Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lei Han
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhibo Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xin Ma
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, United States
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Szelinski F, Stefanski AL, Schrezenmeier E, Rincon-Arevalo H, Wiedemann A, Reiter K, Ritter J, Lettau M, Dang V, Fuchs S, Frei AP, Alexander T, Lino AC, Dörner T. Antigen-experienced CXCR5 - CD19 low B cells are plasmablast precursors expanded in SLE. Arthritis Rheumatol 2022; 74:1556-1568. [PMID: 35507291 DOI: 10.1002/art.42157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Altered composition of the B cell compartment in the pathogenesis of systemic lupus erythematosus (SLE) is characterized by expanded plasmablast (PB) and IgD- CD27- double negative (DN) B cell populations. Previous studies showed that DN B cells represent a heterogeneous subset and further characterization is needed. METHODS Therefore, we analyzed two independent cohorts of healthy donors and SLE patients using a combined approach of flow (HD: n=16; SLE: n=28,) and mass cytometry (HD: n=18; SLE: n=24) and targeted RNA sequencing. To study B cell subsets formation in acute immune response versus autoimmunity we investigated HDs at various time points upon vaccination with BNT162b2 or during acute COVID-19 infection using flow cytometry. RESULTS We have found that IgD- CD27+ switched and atypical IgD- CD27- memory B cells, which are increased in SLE, represent heterogeneous populations composed of three different subsets each. Populations of CXCR5+ CD19int , CXCR5- CD19high and CXCR5- CD19low are found in both compartments suggesting their relationship. We characterize a hitherto unknown and antigen-experienced CXCR5- CD19low subset enhanced in SLE carrying a PB phenotype with diminished B cell receptor responsiveness and expression of CD38, CD95, CD71, PRDM1, XBP-1, and IRF4. CXCR5- CD19low subsets are increased and correlate with PB frequencies in SLE and upon BNT162b2-vaccination of HD suggesting their interrelationship and contribution to plasmacytosis. The demonstration of CXCR5- CD19low B cells amongst both CD27+ and CD27- cells questions the role of CD27 as reliable marker for B cell differentiation. CONCLUSION Our data suggest that CXCR5- CD19low B cells are precursors of plasmablasts, thus co-targeting this subset may have therapeutic value in SLE.
Collapse
Affiliation(s)
- Franziska Szelinski
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ana Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany
| | - Eva Schrezenmeier
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,Department of Nephrology and Intensive Medical Care, Charité- University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany.,Department of Nephrology and Intensive Medical Care, Charité- University Medicine Berlin, Berlin, Germany.,Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Annika Wiedemann
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany
| | - Karin Reiter
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Jacob Ritter
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Marie Lettau
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - VanDuc Dang
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Sebastian Fuchs
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Andreas P Frei
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| |
Collapse
|
6
|
Bale S, Varga J, Bhattacharyya S. Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Peripheral B Cell Subsets in Autoimmune Diseases: Clinical Implications and Effects of B Cell-Targeted Therapies. J Immunol Res 2020; 2020:9518137. [PMID: 32280720 PMCID: PMC7125470 DOI: 10.1155/2020/9518137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Antibody-secreting cells (ASCs) play a fundamental role in humoral immunity. The aberrant function of ASCs is related to a number of disease states, including autoimmune diseases and cancer. Recent insights into activated B cell subsets, including naïve B cell to ASC stages and their resultant cellular disturbances, suggest that aberrant ASC differentiation occurs during autoimmune diseases and is closely related to disease severity. However, the mechanisms underlying highly active ASC differentiation and the B cell subsets in autoimmune patients remain undefined. Here, we first review the processes of ASC generation. From the perspective of novel therapeutic target discovery, prediction of disease progression, and current clinical challenges, we further summarize the aberrant activity of B cell subsets including specialized memory CD11chiT-bet+ B cells that participate in the maintenance of autoreactive ASC populations. An improved understanding of subgroups may also enhance the knowledge of antigen-specific B cell differentiation. We further discuss the influence of current B cell therapies on B cell subsets, specifically focusing on systemic lupus erythematosus, rheumatoid arthritis, and myasthenia gravis.
Collapse
|
8
|
Fang J, Lin L, Lin D, Zhang R, Liu X, Wang D, Duan C, Lin X. The imbalance between regulatory memory B cells reveals possible pathogenesis involvement in pediatric immune thrombocytopenia. ACTA ACUST UNITED AC 2019; 24:473-479. [PMID: 31142214 DOI: 10.1080/16078454.2019.1622292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: CD19+CD24hiCD38hi regulatory B cells (Bregs) and CD19+CD27+ memory B cells (Bmems) are B cell subsets with specific immunoregulatory properties. In this study, the balance of these subsets was investigated in pediatric immune thrombocytopenia (ITP) patients, and the frequencies of Bregs and Bmems before and after first-line therapy were measured. Methods: Forty-nine pediatric ITP patients and 19 normal controls were enrolled in this study. The total CD19+ B cells, Bregs and Bmems in the peripheral blood (PB) of all cases were measured by flow cytometry. Results: We found higher frequencies of total CD19+ B cells and Bmems in newly diagnosed ITP patients than those in normal controls (p < 0.01), whereas the frequencies of CD19+CD24hiCD38hi Bregs was significantly lower in ITP patients (p < 0.001). After therapy with MP + IVIG, the level of CD19+CD24hiCD38hi Bregs and Bmems were almost normalized. Conclusion: Our results indicated that pediatric ITP patients were characterized by a decline in CD19+CD24hiCD38hi Bregs and increment of CD19+CD27+Bmems, and an increase of total CD19+ B cells in their peripheral blood.
Collapse
Affiliation(s)
- Junyue Fang
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Li Lin
- b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,c Department of Dermatology , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Dijin Lin
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Ruihao Zhang
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Xiuli Liu
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Di Wang
- d Department of Pediatrics , The First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Chaohui Duan
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Xianghua Lin
- a Department of Clinical Laboratory , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China.,b Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation , Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou , People's Republic of China
| |
Collapse
|
9
|
Gies V, Schickel JN, Jung S, Joublin A, Glauzy S, Knapp AM, Soley A, Poindron V, Guffroy A, Choi JY, Gottenberg JE, Anolik JH, Martin T, Soulas-Sprauel P, Meffre E, Korganow AS. Impaired TLR9 responses in B cells from patients with systemic lupus erythematosus. JCI Insight 2018. [PMID: 29515028 DOI: 10.1172/jci.insight.96795] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
B cells play a central role in systemic lupus erythematosus (SLE) pathophysiology but dysregulated pathways leading to a break in B cell tolerance remain unclear. Since Toll-like receptor 9 (TLR9) favors the elimination of autoreactive B cells in the periphery, we assessed TLR9 function in SLE by analyzing the responses of B cells and plasmacytoid dendritic cells (pDCs) isolated from healthy donors and patients after stimulation with CpG, a TLR9 agonist. We found that SLE B cells from patients without hydroxychloroquine treatment displayed defective in vitro TLR9 responses, as illustrated by the impaired upregulation of B cell activation molecules and the diminished production of various cytokines including antiinflammatory IL-10. In agreement with CD19 controlling TLR9 responses in B cells, decreased expression of the CD19/CD21 complex on SLE B cells was detected as early as the transitional B cell stage. In contrast, TLR7 function was preserved in SLE B cells, whereas pDCs from SLE patients properly responded to TLR9 stimulation, thereby revealing that impaired TLR9 function in SLE was restricted to B cells. We conclude that abnormal CD19 expression and TLR9 tolerogenic function in SLE B cells may contribute to the break of B cell tolerance in these patients.
Collapse
Affiliation(s)
- Vincent Gies
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sophie Jung
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Reference Center for Oral Rare Diseases (O-Rares), "Pôle de Médecine et de Chirurgie Bucco-Dentaires, University Hospital - Faculty of Dentistry, University of Strasbourg, Strasbourg, France
| | - Aurélie Joublin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Salomé Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anne-Marie Knapp
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Anne Soley
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Vincent Poindron
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France
| | - Aurélien Guffroy
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France
| | - Jin-Young Choi
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jacques-Eric Gottenberg
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,UFR Medicine, University of Strasbourg, Strasbourg, France.,Department of Rheumatology, National Reference Center for Autoimmune Diseases, University Hospital, Strasbourg, France
| | - Jennifer H Anolik
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Thierry Martin
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France.,UFR Medicine, University of Strasbourg, Strasbourg, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France.,UFR Pharmaceutical Sciences, Strasbourg University, Illkirch, France
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anne-Sophie Korganow
- CNRS UPR 3572 "Immunopathology and Therapeutic Chemistry"/Laboratory of Excellence Médalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France.,Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases, University Hospital, Strasbourg, France.,UFR Medicine, University of Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Peripheral B-Cell Subset Distribution in Primary Antiphospholipid Syndrome. Int J Mol Sci 2018; 19:ijms19020589. [PMID: 29462939 PMCID: PMC5855811 DOI: 10.3390/ijms19020589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Background: B-cell differentiation and B-cell tolerance checkpoints may be different in antiphospholipid syndrome (APS) from systemic lupus erythematosus (SLE) and can help to understand differences between them. Our aim was to define alterations of B-cell subsets in patients with primary APS (pAPS) and to compare them with SLE patients and healthy controls (HC). Methods: Cross-sectional study including three study groups: 37 patients with pAPS, 11 SLE patients, and 21 age- and gender-matched HC. We determined the frequencies of different B-cell subsets in peripheral blood naïve and memory compartments. In addition, we measured serum B cell-activating factor (BAFF) levels and circulating pro-inflammatory cytokines, such as IL-6, by commercial ELISA and CBA, respectively. Results: Patients with pAPS showed a lower percentage of immature and naïve B cells than patients with SLE (p = 0.013 and p = 0.010, respectively) and a higher percentage of non-switched memory B cells than patients with SLE (p = 0.001). No differences either in the percentage of switched memory cells or plasma cells were found among the different groups. Serum BAFF levels were higher in SLE patients than in healthy controls and pAPS patients (p = 0.001 and p = 0.017, respectively). A significant increase in the serum BAFF levels was also observed in pAPS patients compared to HC (p = 0.047). Circulating IL-6 levels were higher in SLE and pAPS patients than HC (p = 0.036 and p = 0.048, respectively). A positive correlation was found between serum BAFF and IL-6 levels in patients with SLE but not in pAPS (p = 0.011). Conclusions: Our characterization of peripheral blood B-cell phenotypes in pAPS demonstrates different frequencies of circulating B cells at different stages of differentiation. These differences in the naïve B-cell repertoire could explain the higher number and variety of autoantibodies in SLE patients in comparison to pAPS patients, especially in those with obstetric complications.
Collapse
|
11
|
Omar HH, Nasef SI, Omar HH, Ghaly MS. CD5+ B lymphocytes in systemic lupus erythematosus patients: relation to disease activity. Clin Rheumatol 2017; 36:2719-2726. [PMID: 28918596 DOI: 10.1007/s10067-017-3818-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/04/2017] [Accepted: 09/04/2017] [Indexed: 01/23/2023]
Abstract
B cells are essential players in the pathogenic mechanisms of systemic lupus erythematosus (SLE). Although CD5+ B cells have been considered to play a paradoxical role in preventing, rather than inducing autoimmunity, there is no consensus agreement about the proportions of CD5+ B cells population in SLE patients. So, the aim of the present study was to assess blood concentration of CD5+ B cells in patients with SLE and to evaluate their relationship with disease activity and organ damage. We recruited 100 SLE patients and 100 healthy control subjects. Based on SLE disease activity index (SLEDAI), patients were divided into two groups: active SLE (n = 50) and inactive SLE (n = 50). SLE was active when SLEDAI was ≥ 4. The expression of CD5+ B cells was evaluated using flow cytometry to measure the proportions and absolute numbers of the cells. The proportions of CD5+ B cells of total lymphocytes were significantly lower in SLE patients versus controls (4.1 ± 3.9 vs 10.8 ± 5.2%, P = <0.001). CD5+ B cells were significantly decreased in active SLE patients (3.1 ± 2.7%) in comparison to inactive patients (5.2 ± 3.7%) (P = 0.013). CD5+ B cells correlated positively with C3 (r = 0.328, P = 0.020) and C4 (r = 0.355, P = 0.011). CD5+ B cells were significantly decreased in SLE patients compared to healthy controls and they were significantly decreased in active SLE patients in comparison to inactive ones.
Collapse
Affiliation(s)
- Hanan Hassan Omar
- Clinical Pathology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samah Ismail Nasef
- Physical Medicine, Rheumatology and Rehabilitation department, Faculty of Medicine, Suez Canal University, Ismailia, 41111, Egypt.
| | - Hamdy Hassan Omar
- Internal Medicine department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona Sayed Ghaly
- Physical Medicine, Rheumatology and Rehabilitation department, Faculty of Medicine, Suez Canal University, Ismailia, 41111, Egypt
| |
Collapse
|
12
|
Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 2017; 87:596-608. [DOI: 10.1016/j.biopha.2016.12.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
|
13
|
Fan H, Zhao G, Ren D, Liu F, Dong G, Hou Y. Gender differences of B cell signature related to estrogen-induced IFI44L/BAFF in systemic lupus erythematosus. Immunol Lett 2017; 181:71-78. [DOI: 10.1016/j.imlet.2016.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 01/01/2023]
|
14
|
Estrogen receptor alpha promotes lupus in (NZB×NZW)F1 mice in a B cell intrinsic manner. Clin Immunol 2016; 174:41-52. [PMID: 27989899 DOI: 10.1016/j.clim.2016.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/22/2016] [Indexed: 11/21/2022]
Abstract
Lupus is a systemic autoimmune disease characterized by the production of autoreactive antibodies against nuclear antigens. Women are disproportionately affected by lupus, and this sex bias is thought to be due, in large part, to the ability of estrogens to promote lupus pathogenesis. Previously, we have shown that global deletion of estrogen receptor alpha (ERα) significantly attenuated loss of tolerance, immune cell activation, autoantibody production, and the development of lupus nephritis. Here we show that targeted deletion of ERα specifically in B cells retards production of pathogenic autoantibodies and the development of nephritis in lupus-prone (NZB×NZW)F1 mice. Furthermore, we observed that ERα deletion in B cells was associated with decreased B cell activation in young, pre-autoimmune (NZB×NZW)F1 females. Altogether, these data suggest that ERα acts in a B cell-intrinsic manner to control B cell activation, autoantibody production, and lupus nephritis.
Collapse
|
15
|
Btk inhibition treats TLR7/IFN driven murine lupus. Clin Immunol 2016; 164:65-77. [PMID: 26821304 DOI: 10.1016/j.clim.2016.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 11/23/2022]
Abstract
Bruton's tyrosine kinase (Btk) is expressed in a variety of immune cells and previous work has demonstrated that blocking Btk is a promising strategy for treating autoimmune diseases. Herein, we utilized a tool Btk inhibitor, M7583, to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon. In BXSB-Yaa lupus mice, Btk inhibition reduced autoantibodies, nephritis, and mortality. In the pristane-induced DBA/1 lupus model, Btk inhibition suppressed arthritis, but autoantibodies and the IFN gene signature were not significantly affected; suggesting efficacy was mediated through inhibition of Fc receptors. In vitro studies using primary human macrophages revealed that Btk inhibition can block activation by immune complexes and TLR7 which contributes to tissue damage in SLE. Overall, our results provide translational insight into how Btk inhibition may provide benefit to a variety of SLE patients by affecting both BCR and FcR signaling.
Collapse
|
16
|
Specific HDAC6 inhibition by ACY-738 reduces SLE pathogenesis in NZB/W mice. Clin Immunol 2015; 162:58-73. [PMID: 26604012 DOI: 10.1016/j.clim.2015.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/30/2023]
Abstract
We sought to determine if a selective HDAC6 inhibitor (ACY-738) decreases disease in NZB/W mice. From 22 to 38weeks-of-age, mice were injected intraperitoneally with 5 or 20mg/kg of ACY-738, or vehicle control. Body weight and proteinuria were measured every 2weeks, while sera anti-dsDNA, Ig isotypes, and cytokine levels were measured every 4weeks. Kidney disease was determined by evaluation of sera, urine, immune complex deposition, and renal pathology. Flow cytometric analysis assessed thymic, splenic, bone marrow, and peripheral lymphocyte differentiation patterns. Our results showed HDAC6 inhibition decreased SLE disease by inhibiting immune complex-mediated glomerulonephritis, sera anti-dsDNA levels, and inflammatory cytokine production and increasing splenic Treg cells. Inhibition of HDAC6 increased the percentage of cells in the early-stage developmental fractions of both pro- and pre-B cells. These results suggest that specific HDAC6 inhibition may be able to decrease SLE disease by altering aberrant T and B cell differentiation.
Collapse
|
17
|
Szabó K, Papp G, Szántó A, Tarr T, Zeher M. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren's syndrome and systemic lupus erythematosus. Clin Exp Immunol 2015; 183:76-89. [PMID: 26358223 DOI: 10.1111/cei.12703] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 01/09/2023] Open
Abstract
Follicular T helper (Tfh) cells have a crucial role in regulating immune responses within secondary lymphoid follicles by directing B cell differentiation towards memory B cells and plasma cells. Because abnormal humoral responses are key features in both primary Sjögren's syndrome (pSS) and systemic lupus erythematosus (SLE), the aim of this study was to profile the pathological connection between peripheral Tfh cells and B cells in the two diseases. Twenty-five pSS patients, 25 SLE patients and 21 healthy controls were enrolled into the study. We determined the ratio of circulating Tfh-like cells, their interleukin (IL)-21 production and different B cell subsets by flow cytometry. We observed higher percentages of naive B cells in both diseases, while non-switched and switched memory B cells showed decreased frequencies. The proportions of double-negative B cells and plasmablasts were elevated in SLE and decreased in pSS. The percentages of transitional B cells and mature-naive B cells were higher in SLE. Patients with more severe disease course had an elevated ratio of TFH-like cells and increased IL-21 production. Moreover, expansion of Tfh-like cells correlated positively with parameters related to antibody secretion, including serum immunoglobulin (Ig)G, immune complexes (ICs) and autoantibodies. Correlation analysis between Tfh-like cells and certain B cell subsets revealed possible defects during B cell selection. In conclusion, our observations on the profound expansion of circulating Tfh-like cells and their IL-21 production, along with the characteristic aberrant peripheral B cell distribution in both pSS and SLE, indicate the prominent role of Tfh cell in the regulation of B cell selection.
Collapse
Affiliation(s)
- K Szabó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Papp
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Szántó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - T Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - M Zeher
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Stohl W, Merrill JT, Looney RJ, Buyon J, Wallace DJ, Weisman MH, Ginzler EM, Cooke B, Holloway D, Kaliyaperumal A, Kuchimanchi KR, Cheah TC, Rasmussen E, Ferbas J, Belouski SS, Tsuji W, Zack DJ. Treatment of systemic lupus erythematosus patients with the BAFF antagonist "peptibody" blisibimod (AMG 623/A-623): results from randomized, double-blind phase 1a and phase 1b trials. Arthritis Res Ther 2015; 17:215. [PMID: 26290435 PMCID: PMC4545922 DOI: 10.1186/s13075-015-0741-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Blisibimod is a potent B cell-activating factor (BAFF) antagonist that binds to both cell membrane-expressed and soluble BAFF. The goal of these first-in-human studies was to characterize the safety, tolerability, and pharmacokinetic and pharmacodynamic profiles of blisibimod in subjects with systemic lupus erythematosus (SLE). METHODS SLE subjects with mild disease that was stable/inactive at baseline received either a single dose of blisibimod (0.1, 0.3, 1, or 3 mg/kg subcutaneous [SC] or 1, 3, or 6 mg/kg intravenous [IV]) or placebo (phase 1a; N = 54), or four weekly doses of blisibimod (0.3, 1, or 3 mg/kg SC or 6 mg/kg IV) or placebo (phase 1b; N = 63). Safety and tolerability measures were collected, and B cell subset measurements and pharmacokinetic analyses were performed. RESULTS All subjects (93 % female; mean age 43.7 years) carried the diagnosis of SLE for ≥ 1 year. Single- and multiple-dose treatment with blisibimod produced a decrease in the number of naïve B cells (24-76 %) and a transient relative increase in the memory B cell compartment, with the greatest effect on IgD(-)CD27+; there were no notable changes in T cells or natural killer cells. With time, memory B cells reverted to baseline, leading to a calculated 30 % reduction in total B cells by approximately 160 days after the first dose. In both the single- and multiple-dosing SC cohorts, the pharmacokinetic profile indicated slow absorption, dose-proportional exposure from 0.3 through 3.0 mg/kg SC and 1 through 6 mg/kg IV, linear pharmacokinetics across the dose range of 1.0-6.0 mg/kg, and accumulation ratios ranging from 2.21 to 2.76. The relative increase in memory B cells was not associated with safety signals, and the incidence of adverse events, anti-blisibimod antibodies, and clinical laboratory abnormalities were comparable between blisibimod- and placebo-treated subjects. CONCLUSIONS Blisibimod changed the constituency of the B cell pool and single and multiple doses of blisibimod exhibited approximate dose-proportional pharmacokinetics across the dose range 1.0-6.0 mg/kg. The safety and tolerability profile of blisibimod in SLE was comparable with that of placebo. These findings support further studies of blisibimod in SLE and other B cell-mediated diseases. TRIAL REGISTRATION Clinicaltrials.gov NCT02443506 . Registered 11 May 2015. NCT02411136 Registered 7 April 2015.
Collapse
Affiliation(s)
- William Stohl
- Los Angeles County and University of Southern California Medical Center and University of Southern California Keck School of Medicine, 1975 Zonal Ave., Los Angeles, CA, 90033, USA.
- Division of Rheumatology, Los Angeles County + University of Southern California Medical Center and Keck School of Medicine of the University of Southern California, 2011 Zonal Ave., Los Angeles, CA, 90033, USA.
| | - Joan T Merrill
- Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK, 73104, USA.
| | - R John Looney
- University of Rochester, 252 Elmwood Ave., Rochester, NY, 14627, USA.
| | - Jill Buyon
- Hospital for Joint Disease, 301 E 17th St., New York, NY, 10003, USA.
| | - Daniel J Wallace
- Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| | - Michael H Weisman
- Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, 90048, USA.
| | - Ellen M Ginzler
- SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.
| | - Blaire Cooke
- Amgen Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| | - Donna Holloway
- Formerly of Amgen, Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| | | | | | | | - Erik Rasmussen
- Amgen Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| | - John Ferbas
- Amgen Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| | - Shelley S Belouski
- Formerly of Amgen, Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| | - Wayne Tsuji
- Amgen Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| | - Debra J Zack
- Formerly of Amgen, Inc., 1 Amgen Center Dr., Thousand Oaks, CA, 91320, USA.
| |
Collapse
|
19
|
Ruer-Laventie J, Simoni L, Schickel JN, Soley A, Duval M, Knapp AM, Marcellin L, Lamon D, Korganow AS, Martin T, Pasquali JL, Soulas-Sprauel P. Overexpression of Fkbp11, a feature of lupus B cells, leads to B cell tolerance breakdown and initiates plasma cell differentiation. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:265-79. [PMID: 26417441 PMCID: PMC4578525 DOI: 10.1002/iid3.65] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 05/03/2015] [Indexed: 12/20/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is a severe systemic autoimmune disease, characterized by multi-organ damages, triggered by an autoantibody-mediated inflammation, and with a complex genetic influence. It is today accepted that adult SLE arises from the building up of many subtle gene variations, each one adding a new brick on the SLE susceptibility and contributing to a phenotypic trait to the disease. One of the ways to find these gene variations consists in comprehensive analysis of gene expression variation in a precise cell type, which can constitute a good complementary strategy to genome wide association studies. Using this strategy, and considering the central role of B cells in SLE, we analyzed the B cell transcriptome of quiescent SLE patients, and identified an overexpression of FKBP11, coding for a cytoplasmic putative peptidyl-prolyl cis/trans isomerase and chaperone enzyme. To understand the consequences of FKBP11 overexpression on B cell function and on autoimmunity's development, we created lentiviral transgenic mice reproducing this gene expression variation. We showed that high expression of Fkbp11 reproduces by itself two phenotypic traits of SLE in mice: breakdown of B cell tolerance against DNA and initiation of plasma cell differentiation by acting upstream of Pax5 master regulator gene.
Collapse
Affiliation(s)
- Julie Ruer-Laventie
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Léa Simoni
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Jean-Nicolas Schickel
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Anne Soley
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France
| | - Monique Duval
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Anne-Marie Knapp
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France
| | - Luc Marcellin
- Department of Anatomopathology, H, ô, pitaux Universitaires de Strasbourg F-67085, France
| | - Delphine Lamon
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France
| | - Anne-Sophie Korganow
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France
| | - Thierry Martin
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France
| | - Jean-Louis Pasquali
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Université de Strasbourg, UFR Médecine Strasbourg, F-67085, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France
| | - Pauline Soulas-Sprauel
- CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of Excellence Medalis Strasbourg, F-67084, France ; Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg F-67085, France ; Université de Strasbourg, UFR Sciences Pharmaceutiques Illkirch, F-67401, France
| |
Collapse
|
20
|
Turato C, Pontisso P. SERPINB3 (serpin peptidase inhibitor, clade B (ovalbumin), member 3). ACTA ACUST UNITED AC 2015; 19:202-209. [PMID: 25984243 DOI: 10.4267/2042/56413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Review on SERPINB3, with data on DNA/RNA, on the protein encoded and where the gene is implicated.
Collapse
|
21
|
Fan H, Liu F, Dong G, Ren D, Xu Y, Dou J, Wang T, Sun L, Hou Y. Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus. Cell Death Dis 2014; 5:e1416. [PMID: 25210799 PMCID: PMC4225223 DOI: 10.1038/cddis.2014.375] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023]
Abstract
B-cell abnormality including excessive activation and lymphopenia is a central feature of systemic lupus erythematosus (SLE). Although activation threshold, auto-reaction and death of B cells can be affected by intrinsical and/or external signaling, the underlying mechanisms are unclear. Herein, we demonstrate that co-activation of Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) pathways is a core event for the survival/dead states of B cells in SLE. We found that the mortalities of CD19(+)CD27(-) and CD19(+)IgM(+) B-cell subsets were increased in the peripheral blood mononuclear cells (PBMCs) of SLE patients. The gene microarray analysis of CD19(+) B cells from active SLE patients showed that the differentially expressed genes were closely correlated to TLR7, BCR, apoptosis, necroptosis and immune pathways. We also found that co-activation of TLR7 and BCR could trigger normal B cells to take on SLE-like B-cell characters including the elevated viability, activation and proliferation in the first 3 days and necroptosis in the later days. Moreover, the necroptotic B cells exhibited mitochondrial dysfunction and hypoxia, along with the elevated expression of necroptosis-related genes, consistent with that in both SLE B-cell microarray and real-time PCR verification. Expectedly, pretreatment with the receptor-interacting protein kinase 1 (RIPK1) inhibitor Necrostatin-1, and not the apoptosis inhibitor zVAD, suppressed B-cell death. Importantly, B cells from additional SLE patients also significantly displayed high expression levels of necroptosis-related genes compared with those from healthy donors. These data indicate that co-activation of TLR7 and BCR pathways can promote B cells to hyperactivation and ultimately necroptosis. Our finding provides a new explanation on B-cell lymphopenia in active SLE patients. These data suggest that extrinsic factors may increase the intrinsical abnormality of B cells in SLE patients.
Collapse
Affiliation(s)
- H Fan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - F Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - G Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - D Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Y Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - J Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - T Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - L Sun
- Department of Immunology and Rheumatology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Y Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
22
|
Gatto M, Iaccarino L, Ghirardello A, Bassi N, Pontisso P, Punzi L, Shoenfeld Y, Doria A. Serpins, immunity and autoimmunity: old molecules, new functions. Clin Rev Allergy Immunol 2014; 45:267-80. [PMID: 23325331 DOI: 10.1007/s12016-013-8353-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serine protease inhibitors (serpins) are evolutionary old, structurally conserved molecules which encompass nearly all branches of life. More than 1,000 serpins were characterized to date which are subdivided into 16 subgroups (A-P) according to their common ancestry; among them, 37 are found in humans. Serpins were termed after their capability to inhibit serine proteases, but mounting evidence suggests that they may achieve a greater deal of functions, ranging from embryological growth to synaptic plasticity, development of both myeloid and lymphoid immune cells, and modulation of apoptosis. Serpins are mainly extracellular molecules, although some of them (namely, ov-serpins or clade B serpins) mostly act inside the cells, being either ubiquitously or tissue-specifically expressed. Among newly characterized serpin functions, regulation of cellular proliferation through apoptosis modulation and proteasome disturbance seems to play a major role. Accordingly, several serpins were found to be hyperexpressed in tumor cells. Indeed, apoptosis dysregulation is likely to be a cornerstone in both tumorigenesis and autoimmunity, since uncontrolled cellular viability results in tumor proliferation, while inefficient disposal of apoptotic debris may favor the rescue of autoreactive immune cells. Such a process was widely documented in systemic lupus erythematosus (SLE). Interestingly, alterations in the expression of some serpins, e.g., the ov-serpin SERPINB3, are being unraveled in patients affected with SLE and other autoimmune disorders, suggesting that a failure in serpin function might affect immune homeostasis and self-tolerance, thereby contributing to autoimmunity. Here, we provide an overview of serpin origin, function, and dysfunction, focusing on human serpins and ov-serpins, with a hub on SERPINB3.
Collapse
Affiliation(s)
- Mariele Gatto
- Division of Rheumatology, Department of Medicine, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sakly K, Lahmar R, Nefzi F, Hammami S, Harzallah O, Sakly N, Sakly W, Hassine M, Mahjoub S, Ghedira I, Feki S. Phenotypic abnormalities of peripheral blood mononuclear cells in patients with Behçet's disease and association with HLA-B51 expression. Immunol Invest 2014; 43:463-78. [PMID: 24661088 DOI: 10.3109/08820139.2014.886260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the subclasses and the immunophenotypic profile of peripheral mononuclear cells in patients with Behçet's disease (BD) and to assess associations between the expression of HLA-B51 antigen and that of other cell markers. Thirty healthy volunteer blood donors and forty patients with BD were enrolled into this study. Phenotyping was performed using two color flow cytometry. HLA-B51 typing was performed using the complement dependent microlymphocytotoxicity assay. Unlike controls, patients with BD presented a modified immunophenotypic profile of lymphocytes. Compared to those in the remission phase, patients with active BD showed an increased mean of MFI ratio of CD56 on CD16+CD56+ cells (32.47 ± 14.26 versus 23.87 ± 10.3; p = 0.032), increased absolute numbers of CD4(-)CD8(bright) and CD4(+)CD8(+) cells (657.1 ± 463.6 cells/µL versus 319.24 ± 116.4 cells/µL; p = 0.017 and 40.77 ± 36.41 cells/µL versus 10.77 ± 9.78 cells/µL; p < 0.0001, respectively) and an elevated mean of MFI ratio of CD19 on B cells (252.3 ± 56.7 versus 205.67 ± 32.3; p = 0.021). However, expression of HLA-B51 was not associated with any specific immunophenotypic profile. In conclusion, abnormal immunophenotypic profile of peripheral lymphocytes was found in patients with BD, especially in active phase, reflecting an immune dysregulation. Moreover, HLA-B51 expression was not found to be related to the expression of other cell markers.
Collapse
Affiliation(s)
- K Sakly
- Research Unit 03/UR/07 "Autoimmunity and Allergy", Faculty of Pharmacy, University of Monastir , Monastir , Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Küçükali Cİ, Kürtüncü M, Çoban A, Çebi M, Tüzün E. Epigenetics of multiple sclerosis: an updated review. Neuromolecular Med 2014; 17:83-96. [PMID: 24652042 DOI: 10.1007/s12017-014-8298-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/13/2014] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease characterized with autoimmune response against myelin proteins and progressive axonal loss. The heterogeneity of the clinical course and low concordance rates in monozygotic twins have indicated the involvement of complex heritable and environmental factors in MS pathogenesis. MS is more often transmitted to the next generation by mothers than fathers suggesting an epigenetic influence. One of the possible reasons of this parent-of-origin effect might be the human leukocyte antigen-DRB1*15 allele, which is the major risk factor for MS and regulated by epigenetic mechanisms such as DNA methylation and histone deacetylation. Moreover, major environmental risk factors for MS, vitamin D deficiency, smoking and Ebstein-Barr virus are all known to exert epigenetic changes. In the last few decades, compelling evidence implicating the role of epigenetics in MS has accumulated. Increased or decreased acetylation, methylation and citrullination of genes regulating the expression of inflammation and myelination factors appear to be particularly involved in the epigenetics of MS. Although much less is known about epigenetic factors causing neurodegeneration, epigenetic mechanisms regulating axonal loss, apoptosis and mitochondrial dysfunction in MS are in the process of identification. Additionally, expression levels of several microRNAs (miRNAs) (e.g., miR-155 and miR-326) are increased in MS brains and potential mechanisms by which these factors might influence MS pathogenesis have been described. Certain miRNAs may also be potentially used as diagnostic biomarkers in MS. Several reagents, especially histone deacetylase inhibitors have been shown to ameliorate the symptoms of experimental allergic encephalomyelitis. Ongoing efforts in this field are expected to result in characterization of epigenetic factors that can be used in prediction of treatment responsive MS patients, diagnostic screening panels and treatment methods with specific mechanism of action.
Collapse
Affiliation(s)
- Cem İsmail Küçükali
- Department of Neuroscience, Institute for Experimental Medicine (DETAE), Istanbul University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
25
|
Gender differences of B cell signature in healthy subjects underlie disparities in incidence and course of SLE related to estrogen. J Immunol Res 2014; 2014:814598. [PMID: 24741625 PMCID: PMC3987971 DOI: 10.1155/2014/814598] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to investigate mechanism of the gender differences of B cells. The results showed that 358 differential gene expressions (DEGs) were displayed between healthy females and males. Compared with male, 226 and 132 genes were found to be up- and downregulated in the female. 116 genes displayed possible correlation with estrogen. Moreover, the upregulated DEGs (Cav1, CD200R1, TNFRSF17, and CXCR3) and downregulated DEGs (EIF1AY and DDX3Y) in healthy female may be involved in gender predominance of some immune diseases. Furthermore, signaling pathway analysis for estrogen-relevant DEGs showed that only 26 genes were downregulated in SLE female versus SLE male, of which expressions of 8 genes had significant difference between SLE females and SLE males but are having nonsignificant difference between healthy females and healthy males. Except for the 5 Y-chromosome-related genes or varients, only 3 DEGs (LTF, CAMP, and DEFA4) were selected and qRT-PCR confirmed that the expressions of LTF and CAMP decreased significantly in B cells from female SLE patients. These data indicated that the gender differences were existent in global gene expression of B cells and the difference may be related to estrogen.
Collapse
|
26
|
Brenu EW, Huth TK, Hardcastle SL, Fuller K, Kaur M, Johnston S, Ramos SB, Staines DR, Marshall-Gradisnik SM. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. Int Immunol 2013; 26:233-42. [PMID: 24343819 DOI: 10.1093/intimm/dxt068] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perturbations in immune processes are a hallmark of a number of autoimmune and inflammatory disorders. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is an inflammatory disorder with possible autoimmune correlates, characterized by reduced NK cell activity, elevations in regulatory T cells (Tregs) and dysregulation in cytokine levels. The purpose of this article is to examine innate and adaptive immune cell phenotypes and functional characteristics that have not been previously examined in CFS/ME patients. Thirty patients with CFS/ME and 25 non-fatigued controls were recruited for this study. Whole blood samples were collected from all participants for the assessment of cell phenotypes, functional properties, receptors, adhesion molecules, antigens and intracellular proteins using flow cytometric protocols. The cells investigated included NK cells, dendritic cells, neutrophils, B cells, T cells, γδT cells and Tregs. Significant changes were observed in B-cell subsets, Tregs, CD4(+)CD73(+)CD39(+) T cells, cytotoxic activity, granzyme B, neutrophil antigens, TNF-α and IFN-γ in the CFS/ME patients in comparison with the non-fatigued controls. Alterations in B cells, Tregs, NK cells and neutrophils suggest significant impairments in immune regulation in CFS/ME and these may have similarities to a number of autoimmune disorders.
Collapse
Affiliation(s)
- Ekua Weba Brenu
- School of Medical Science, Griffith University, Gold Coast, QLD 4215, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Le Coz C, Joublin A, Pasquali JL, Korganow AS, Dumortier H, Monneaux F. Circulating TFH subset distribution is strongly affected in lupus patients with an active disease. PLoS One 2013; 8:e75319. [PMID: 24069401 PMCID: PMC3777901 DOI: 10.1371/journal.pone.0075319] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023] Open
Abstract
Follicular helper T cells (TFH) represent a distinct subset of CD4+ T cells specialized in providing help to B lymphocytes, which may play a central role in autoimmune diseases having a major B cell component such as systemic lupus erythematosus. Recently, TFH subsets that share common phenotypic and functional characteristics with TFH cells from germinal centers, have been described in the peripheral blood from healthy individuals. The aim of this study was to analyze the distribution of such populations in lupus patients. Circulating TFH cell subsets were defined by multicolor flow cytometry as TFH17 (CXCR3-CCR6+), TFH1 (CXCR3 + CCR6-) or TFH2 (CXCR3-CCR6-) cells among CXCR5 + CD45RA-CD4+ T cells in the peripheral blood of 23 SLE patients and 23 sex and age-matched healthy controls. IL-21 receptor expression by B cells was analyzed by flow cytometry and the serum levels of IL-21 and Igs were determined by ELISA tests. We found that the TFH2 cell subset frequency is strongly and significantly increased in lupus patients with an active disease (SLEDAI score>8), while the TFH1 cell subset percentage is greatly decreased. The TFH2 and TFH1 cell subset frequency alteration is associated with the presence of high Ig levels and autoantibodies in patient’s sera. Moreover, the TFH2 cell subset enhancement correlates with an increased frequency of double negative memory B cells (CD27-IgD-CD19+ cells) expressing the IL-21R. Finally, we found that IgE levels in lupus patients’ sera correlate with disease activity and seem to be associated with high TFH2 cell subset frequency. In conclusion, our study describes for the first time the distribution of circulating TFH cell subsets in lupus patients. Interestingly, we found an increased frequency of TFH2 cells, which correlates with disease activity. Our results suggest that this subset might play a key role in lupus pathogenesis.
Collapse
Affiliation(s)
- Carole Le Coz
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique/Laboratory of excellence MEDALIS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
28
|
Up-regulation of transcription factor Blimp1 in systemic lupus erythematosus. Mol Immunol 2013; 56:574-82. [PMID: 23911415 DOI: 10.1016/j.molimm.2013.05.241] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE B lymphocyte induced maturation protein 1 (Blimp1) is a transcription factor that is critical for differentiation and antibody production in plasma cells. In order to understand the mechanism of systemic lupus erythematosus (SLE), the role of Blimp1 expression was studied in patients with SLE and in healthy control subjects. And Blimp1 tissue distribution in MRL/lpr lupus mice was also investigated. METHODS The mRNA expression level of Blimp1 was analyzed by fluorescent real time PCR and compared between the 40 SLE patients and 30 control subjects. Expression of CD138, CD27 and CD19 in peripheral blood cells was analyzed by flow cytometry. Blimp1 mRNA and protein expression levels and tissue distribution in the kidneys, spleen and lymph nodes of MRL/lpr lupus and normal mice were analyzed. RESULTS Blimp1 mRNA expression level was 2.1 times greater in the SLE group as compared to the control group. The increased mRNA expression of Blimp1 seemed to be related to SLE disease activity and anti-nuclear antibody (ANA) titer. In SLE patients, the CD138+ plasma cells increased as the CD27+ cells decreased. Compared with normal mice, Blimp1 was strongly expressed in the kidneys, lymph nodes and spleen of MRL/lpr lupus mice. The expression level of Blimp1 mRNA in the kidneys, lymph nodes and spleen of MRL/lpr lupus mice was much higher than normal mice (1.76, 2.02, and 2.05 times greater, respectively, P<0.05). Similarly, protein levels in the above mentioned organs were also much higher (1.54, 1.99, and 2.21 times greater, respectively, P<0.05). CONCLUSIONS The elevated expression of Blimp1 in SLE patients and in the lupus mouse model is correlated with increases in plasma cells, autoantibodies and disease activity. It is closely related to differentiation of B-lymphocytes, antibody production and renal lesions. Blimp1 may play a role in SLE disease development.
Collapse
|
29
|
Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res Ther 2012; 14 Suppl 5:S1. [PMID: 23281743 PMCID: PMC3535716 DOI: 10.1186/ar3909] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anti-CD20 therapy using rituximab directly targeting B cells has been approved for treatment of non-Hodgkin lymphoma, rheumatoid arthritis and anti-neutrophil cytoplasmic antibody-associated vasculitides and has led to reappreciation of B-lineage cells for anti-rheumatic treatment strategies. Moreover, blocking B-cell activating factor with belimumab, a drug that is licensed for treatment of active, seropositive systemic lupus erythematosus (SLE), represents an alternative, indirect anti-B-cell approach interfering with proper B-cell development. While these approaches apparently have no substantial impact on antibody-secreting plasma cells, challenges to improve the treatment of difficult-to-treat patients with SLE remain. In this context, anti-CD19 antibodies have the promise to directly target autoantibody-secreting plasmablasts and plasma cells as well as early B-cell differentiation stages not covered by anti-CD20 therapy. Currently known distinct expression profiles of CD19 by human plasma cell subsets, experiences with anti-CD19 therapies in malignant conditions as well as the rationale of targeting autoreactive plasma cells in patients with SLE are discussed in this review.
Collapse
|
30
|
Schickel JN, Pasquali JL, Soley A, Knapp AM, Decossas M, Kern A, Fauny JD, Marcellin L, Korganow AS, Martin T, Soulas-Sprauel P. Carabin deficiency in B cells increases BCR-TLR9 costimulation-induced autoimmunity. EMBO Mol Med 2012; 4:1261-75. [PMID: 23109291 PMCID: PMC3531602 DOI: 10.1002/emmm.201201595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/22/2023] Open
Abstract
The mechanisms behind flares of human autoimmune diseases in general, and of systemic lupus in particular, are poorly understood. The present scenario proposes that predisposing gene defects favour clinical flares under the influence of external stimuli. Here, we show that Carabin is low in B cells of (NZB × NZW) F1 mice (murine SLE model) long before the disease onset, and is low in B cells of lupus patients during the inactive phases of the disease. Using knock-out and B-cell-conditional knock-out murine models, we identify Carabin as a new negative regulator of B-cell function, whose deficiency in B cells speeds up early B-cell responses and makes the mice more susceptible to anti-dsDNA production and renal lupus flare after stimulation with a Toll-like Receptor 9 agonist, CpG-DNA. Finally, in vitro analysis of NFκB activation and Erk phosphorylation in TLR9- and B-cell receptor (BCR)-stimulated Carabin-deficient B cells strongly suggests how the internal defect synergizes with the external stimulus and proposes Carabin as a natural inhibitor of the potentially dangerous crosstalk between BCR and TLR9 pathways in self-reactive B cells.
Collapse
|
31
|
Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I. Advances in human B cell phenotypic profiling. Front Immunol 2012; 3:302. [PMID: 23087687 PMCID: PMC3467643 DOI: 10.3389/fimmu.2012.00302] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/10/2012] [Indexed: 12/11/2022] Open
Abstract
To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort.
Collapse
Affiliation(s)
- Denise A Kaminski
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Rochester, NY, USA
| | | | | | | | | |
Collapse
|
32
|
Selmi C, Leung PSC, Sherr DH, Diaz M, Nyland JF, Monestier M, Rose NR, Gershwin ME. Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 2012; 39:272-84. [PMID: 22749494 DOI: 10.1016/j.jaut.2012.05.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 01/22/2023]
Abstract
The mechanisms leading to autoimmune diseases remain largely unknown despite numerous lines of experimental inquiry and epidemiological evidence. The growing number of genome-wide association studies and the largely incomplete concordance for autoimmune diseases in monozygotic twins support the role of the environment (including infectious agents and chemicals) in the breakdown of tolerance leading to autoimmunity via numerous mechanisms. The present article reviews the major theories on the mechanisms of the environmental influence on autoimmunity by addressing the different degrees of confidence that characterize our knowledge. The theories discussed herein include (i) the role of innate immunity mediated by toll-like receptors in triggering the autoimmune adaptive response characterizing the observed pathology; (ii) changes in spleen marginal zone B cells in autoantibody production with particular focus on the B10 subpopulation; (iii) Th17 cell differentiation and T regulatory cells in the aryl hydrocarbon receptor model; (iv) self antigen changes induced by chemical and infectious agents which could break tolerance by post-translational modifications and molecular mimicry; and finally (v) epigenetic changes, particularly DNA methylation, that are induced by environmental stimuli and may contribute to autoimmunity initiation. We are convinced that these working hypotheses, in most cases supported by solid evidence, should be viewed in parallel with animal models and epidemiological observations to provide a comprehensive picture of the environmental causes of autoimmune diseases.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kawata K, Illarionov P, Yang GX, Kenny TP, Zhang W, Tsuda M, Ando Y, Leung PSC, Ansari AA, Gershwin ME. Mincle and human B cell function. J Autoimmun 2012; 39:315-22. [PMID: 22698596 DOI: 10.1016/j.jaut.2012.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/03/2012] [Accepted: 04/15/2012] [Indexed: 01/04/2023]
Abstract
C-type lectin receptors are pattern recognition receptors that are critical for autoimmunity and the immune response. Mincle is a C-type lectin receptor expressed by a variety of antigen presenting cells including macrophages, neutrophils, dendritic cells and B cells; a variety of stimuli including stress are known to induce the expression of Mincle. Mincle is an FcRγ-associated activation receptor that senses damaged cells and upon ligation induces activated macrophages to produce inflammatory cytokines. Recently, while several studies have reported that Mincle plays an important role in macrophage responses to fungal infection its function on B cells remains to be defined. In efforts to elucidate the function of Mincle expressed by B cells, we studied the expression of Mincle on subsets of B cells and analyzed cytokines and synthesized immunoglobulin upon ligation of Mincle. The expression of Mincle on CD27-CD19(+) naïve B cells is significantly higher than CD27 + CD19(+) memory B cells. The stimulation of TLR9 ligand induced Mincle expression on B cells. Furthermore, co-stimulation of TLR9 and Mincle ligand reduced IgG and IgA production from B cells without a significant change in the inflammatory cytokines TNF-α, IL-6, IL-8 and IL-10. Our data identifies Mincle as a potentially critical player in human B cell responses.
Collapse
Affiliation(s)
- Kazuhito Kawata
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, 95616 CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Suzuki Y, Yoshida T, Wang G, Togano T, Miyamoto S, Miyazaki K, Iwabuchi K, Nakayama M, Horie R, Niitsu N, Sato Y, Nakamura N. Association of CD20 levels with clinicopathological parameters and its prognostic significance for patients with DLBCL. Ann Hematol 2012; 91:997-1005. [DOI: 10.1007/s00277-012-1407-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/04/2012] [Indexed: 12/01/2022]
|
35
|
Kaminski DA, Wei C, Rosenberg AF, Lee FEH, Sanz I. Multiparameter flow cytometry and bioanalytics for B cell profiling in systemic lupus erythematosus. Methods Mol Biol 2012; 900:109-34. [PMID: 22933067 PMCID: PMC3927893 DOI: 10.1007/978-1-60761-720-4_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
B lymphocyte involvement in systemic lupus erythematosus has been recognized for several decades, mainly in the context of autoantibody production. Both mouse and human studies reveal that different types of antibody responses, as well as antibody-independent effector functions can be ascribed to distinct subpopulations (subsets) of circulating B cells. Characterizing human B cell subsets can advance the field of autoimmunity even further by establishing B cell signatures associated with disease severity, progression, and response-to-treatment. For this purpose, we have developed specialized B cell reagent panels for multiparameter flow cytometry, and combine their use with advanced bioinformatics strategies that together will likely be advantageous for improving the characterization, prognosis, and for possibly improving treatment regimens of chronic inflammatory diseases such as lupus.
Collapse
Affiliation(s)
- Denise A Kaminski
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Garaud JC, Schickel JN, Blaison G, Knapp AM, Dembele D, Ruer-Laventie J, Korganow AS, Martin T, Soulas-Sprauel P, Pasquali JL. B cell signature during inactive systemic lupus is heterogeneous: toward a biological dissection of lupus. PLoS One 2011; 6:e23900. [PMID: 21886837 PMCID: PMC3160348 DOI: 10.1371/journal.pone.0023900] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosous (SLE) is an autoimmune disease with an important clinical and biological heterogeneity. B lymphocytes appear central to the development of SLE which is characterized by the production of a large variety of autoantibodies and hypergammaglobulinemia. In mice, immature B cells from spontaneous lupus prone animals are able to produce autoantibodies when transferred into immunodeficient mice, strongly suggesting the existence of intrinsic B cell defects during lupus. In order to approach these defects in humans, we compared the peripheral B cell transcriptomas of quiescent lupus patients to normal B cell transcriptomas. When the statistical analysis is performed on the entire group of patients, the differences between patients and controls appear quite weak with only 14 mRNA genes having a false discovery rate ranging between 11 and 17%, with 6 underexpressed genes (PMEPA1, TLR10, TRAF3IP2, LDOC1L, CD1C and EGR1). However, unforced hierarchical clustering of the microarrays reveals a subgroup of lupus patients distinct from both the controls and the other lupus patients. This subgroup has no detectable clinical or immunological phenotypic peculiarity compared to the other patients, but is characterized by 1/an IL-4 signature and 2/the abnormal expression of a large set of genes with an extremely low false discovery rate, mainly pointing to the biological function of the endoplasmic reticulum, and more precisely to genes implicated in the Unfolded Protein Response, suggesting that B cells entered an incomplete BLIMP1 dependent plasmacytic differentiation which was undetectable by immunophenotyping. Thus, this microarray analysis of B cells during quiescent lupus suggests that, despite a similar lupus phenotype, different biological roads can lead to human lupus.
Collapse
Affiliation(s)
- Jean-Claude Garaud
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | - Anne-Marie Knapp
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Doulaye Dembele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Julie Ruer-Laventie
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Anne-Sophie Korganow
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thierry Martin
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Pauline Soulas-Sprauel
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Jean-Louis Pasquali
- CNRS UPR 9021, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
38
|
Abstract
There is now growing evidence that autoimmunity is the common trait connecting multiple clinical phenotypes albeit differences in tissue specificity, pathogenetic mechanisms, and therapeutic approaches cannot be overlooked. Over the past years we witnessed a constant growth of the number of publications related to autoimmune diseases in peer-reviewed journals of the immunology area. Original data referred to factors from common injury pathways (i.e. T helper 17 cells, serum autoantibodies, or vitamin D) and specific diseases such as multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. As an example, the issue of a latitudinal gradient in the prevalence and incidence rates has been proposed for all autoimmune diseases and was recently coined as geoepidemiology to suggest new environmental triggers for tolerance breakdown. The present article is aimed at reviewing the articles that were published over the past year in the major autoimmunity and immunology journals.
Collapse
Affiliation(s)
- Carlo Selmi
- Autoimmunity and Metabolism Unit, Department of Medicine, IRCCS Istituto Clinico Humanitas, Italy.
| |
Collapse
|
39
|
Bibliography. Spondyloarthropathies. Current world literature. Curr Opin Rheumatol 2011; 23:406-7. [PMID: 21637083 DOI: 10.1097/bor.0b013e3283489bf8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Meslier Y, André S, Dimitrov JD, Delignat S, Bayry J, Kaveri SV, Lacroix-Desmazes S. Bortezomib delays the onset of factor VIII inhibitors in experimental hemophilia A, but fails to eliminate established anti-factor VIII IgG-producing cells. J Thromb Haemost 2011; 9:719-28. [PMID: 21251202 DOI: 10.1111/j.1538-7836.2011.04200.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Replacement therapy with exogenous factor VIII to treat hemorrhages induces inhibitory anti-FVIII antibodies in up to 30% of patients with hemophilia A. Current approaches to eradicate FVIII inhibitors using high-dose FVIII injection protocols (immune tolerance induction) or anti-CD20 depleting antibodies (Rituximab) demonstrate limited efficacy; they are extremely expensive and/or require stringent compliance from the patients. OBJECTIVES To investigate whether the proteasome inhibitor bortezomib, which depletes plasmocytes, modulates the anti-FVIII immune response in FVIII-deficient mice. METHODS AND RESULTS Preventive 4-week treatment of naïve mice with bortezomib at the time of FVIII administration delayed the development of inhibitory anti-FVIII IgG, and depleted plasma cells as well as different lymphoid cell subsets. Conversely, curative treatment of inhibitor-positive mice for 10 weeks, along with FVIII administration, failed to eradicate FVIII inhibitors to extents that would be clinically relevant if achieved in patients. Accordingly, bortezomib did not eradicate anti-FVIII IgG-secreting plasmocytes that had homed to survival niches in the bone marrow, despite significant elimination of total plasma cells. CONCLUSIONS The data suggest that strategies for the efficient reduction of anti-FVIII IgG titers in patients with hemophilia A should rely on competition for survival niches for plasmocytes in the bone marrow rather than the mere use of proteasome inhibitors.
Collapse
Affiliation(s)
- Y Meslier
- INSERM U872, Centre de recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Dhirapong A, Lleo A, Yang GX, Tsuneyama K, Dunn R, Kehry M, Packard TA, Cambier JC, Liu FT, Lindor K, Coppel RL, Ansari AA, Gershwin ME. B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology 2011; 53:527-35. [PMID: 21274873 PMCID: PMC3058242 DOI: 10.1002/hep.24044] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/29/2010] [Indexed: 12/16/2022]
Abstract
UNLABELLED Primary biliary cirrhosis (PBC) is considered a model autoimmune disease due to the clinical homogeneity of patients and the classic hallmark of antimitochondrial antibodies (AMAs). Indeed, the presence of AMAs represents the most highly directed and specific autoantibody in autoimmune diseases. However, the contribution of B cells to the pathogenesis of PBC is unclear. Therefore, although AMAs appear to interact with the biliary cell apotope and contribute to biliary pathology, there is no correlation of disease severity and titer of AMAs. The recent development of well-characterized monoclonal antibodies specific for the B cell populations, anti-CD20 and anti-CD79, and the development of a well-defined xenobiotic-induced model of autoimmune cholangitis prompted us to use these reagents and the model to address the contribution of B cells in the pathogenesis of murine PBC. Prior to the induction of autoimmune cholangitis, mice were treated with either anti-CD20, anti-CD79, or isotype-matched control monoclonal antibody and followed for B cell development, the appearance of AMAs, liver pathology, and cytokine production. Results of the studies reported herein show that the in vivo depletion of B cells using either anti-CD20 or anti-CD79 led to the development of a more severe form of cholangitis than observed in control mice, which is in contrast with results from several other autoimmune models that have documented an important therapeutic role of B cell-specific depletion. Anti-CD20/CD79-treated mice had increased liver T cell infiltrates and higher levels of proinflammatory cytokines. CONCLUSION Our results reflect a novel disease-protective role of B cells in PBC and suggest that B cell depletion therapy in humans with PBC should be approached with caution.
Collapse
Affiliation(s)
- Amy Dhirapong
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Ana Lleo
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA,Hepatobiliary Immunopathology Unit, IRCCS-Istituto Clinico Humanitas, Rozzano, Italy
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Koichi Tsuneyama
- Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Sugitani, Toyama, Japan
| | | | | | - Thomas A. Packard
- University of Colorado Denver School of Medicine and National Jewish Medical and Research Center, Denver, CO
| | - John C. Cambier
- University of Colorado Denver School of Medicine and National Jewish Medical and Research Center, Denver, CO
| | - Fu-Tong Liu
- Department of Dermatology, University of California at Davis, School of Medicine, Sacramento, CA, USA
| | - Keith Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic Foundation, Rochester, MN
| | - Ross L. Coppel
- Department of Microbiology, Monash University, Clayton, Australia
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|
42
|
Abstract
The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Meda
- Department of Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | |
Collapse
|
43
|
Conti F, Perricone C, Ceccarelli F, Valesini G. Rituximab treatment of systemic lupus erythematosus in controlled trials and in clinical practice: Two sides of the same coin. Autoimmun Rev 2010; 9:716-20. [PMID: 20667484 DOI: 10.1016/j.autrev.2010.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/17/2010] [Indexed: 12/12/2022]
|
44
|
Youinou P, Pers JO. The international symposium on Sjögren's syndrome in Brest: The “top of the tops” at the “tip of the tips”. Autoimmun Rev 2010; 9:589-90. [DOI: 10.1016/j.autrev.2010.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|