1
|
Qian Z, Jiao M, Zhang N, Tang X, Liu S, Zhang F, Wang C, Zheng F. The IL-33/ST2 Axis Protects Retinal Ganglion Cells by Modulating the Astrocyte Response After Optic Nerve Injury. Neurosci Bull 2025; 41:61-76. [PMID: 39190095 PMCID: PMC11748692 DOI: 10.1007/s12264-024-01279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/29/2024] [Indexed: 08/28/2024] Open
Abstract
IL-33 and its receptor ST2 play crucial roles in tissue repair and homeostasis. However, their involvement in optic neuropathy due to trauma and glaucoma remains unclear. Here, we report that IL-33 and ST2 were highly expressed in the mouse optic nerve and retina. Deletion of IL-33 or ST2 exacerbated retinal ganglion cell (RGC) loss, retinal thinning, and nerve fiber degeneration following optic nerve (ON) injury. This heightened retinal neurodegeneration correlated with increased neurotoxic astrocytes in Il33-/- mice. In vitro, rIL-33 mitigated the neurotoxic astrocyte phenotype and reduced the expression of pro-inflammatory factors, thereby alleviating the RGC death induced by neurotoxic astrocyte-conditioned medium in retinal explants. Exogenous IL-33 treatment improved RGC survival in Il33-/- and WT mice after ON injury, but not in ST2-/- mice. Our findings highlight the role of the IL-33/ST2 axis in modulating reactive astrocyte function and providing neuroprotection for RGCs following ON injury.
Collapse
Affiliation(s)
- Zhigang Qian
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiwang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China.
| |
Collapse
|
2
|
Gilger BC, Hasegawa T, Sutton RB, Bower JJ, Li C, Hirsch ML. A chimeric anti-vascularization immunomodulator prevents high-risk corneal transplantation rejection via ex vivo gene therapy. Mol Ther 2024; 32:4006-4020. [PMID: 39245940 PMCID: PMC11573577 DOI: 10.1016/j.ymthe.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Corneal blindness affects more than 5 million individuals, with over 180,000 corneal transplantations (CTs) performed annually. In high-risk CTs, almost all grafts are rejected within 10 years. Here, we investigated adeno-associated virus (AAV) ex vivo gene therapy to establish immune tolerance in the corneal allograft to prevent high-risk CT rejection. Our previous work has demonstrated that HLA-G contributes to ocular immune privilege by inhibiting both immune cells and neovascularization; however, homodimerization is a rate-limiting step for optimal HLA-G function. Therefore, a chimeric protein called single-chain immunomodulator (scIM), was engineered to mimic the native activity of the secreted HLA-G dimer complex and eliminate the need for homodimerization. In a murine corneal burn model, AAV8-scIM significantly reduced corneal vascularization and fibrosis. Next, ex vivo AAV8-scIM gene delivery to corneal allografts was evaluated in a high-risk CT rejection rabbit model. All scIM-treated corneas were well tolerated and transparent after 42 days, while 83% of vehicle-treated corneas were rejected. Histologically, AAV-scIM-treated corneas were devoid of immune cell infiltration and vascularization, with minimal fibrosis at the host-graft interface. The data collectively demonstrate that scIM gene therapy prevents corneal neovascularization, reduces trauma-induced corneal fibrosis, and prevents allogeneic CT rejection in a high-risk large animal model.
Collapse
Affiliation(s)
- Brian C Gilger
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27607, USA; Bedrock Therapeutics, Raleigh, NC 27613, USA
| | - Tomoko Hasegawa
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - R Bryan Sutton
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Bedrock Therapeutics, Raleigh, NC 27613, USA
| | - Jacquelyn J Bower
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bedrock Therapeutics, Raleigh, NC 27613, USA
| | - Matthew L Hirsch
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bedrock Therapeutics, Raleigh, NC 27613, USA.
| |
Collapse
|
3
|
Naware S, Bussing D, Shah DK. Translational physiologically-based pharmacokinetic model for ocular disposition of monoclonal antibodies. J Pharmacokinet Pharmacodyn 2024; 51:493-508. [PMID: 37558929 DOI: 10.1007/s10928-023-09881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
We have previously published a PBPK model comprising the ocular compartment to characterize the disposition of monoclonal antibodies (mAbs) in rabbits. While rabbits are commonly used preclinical species in ocular research, non-human primates (NHPs) have the most phylogenetic resemblance to humans including the presence of macula in the eyes as well as higher sequence homology. However, their use in ocular research is limited due to the strict ethical guidelines. Similarly, in humans the ocular samples cannot be collected except for the tapping of aqueous humor (AH). Therefore, we have translated this rabbit model to monkeys and human species using literature-reported datasets. Parameters describing the tissue volumes, physiological flows, and FcRn-binding were obtained from the literature, or estimated by fitting the model to the data. In the monkey model, the values for the rate of lysosomal degradation for antibodies (Kdeg), intraocular reflection coefficients (σaq, σret, σcho), bidirectional rate of fluid circulation between the vitreous chamber and the aqueous chamber (QVA), and permeability-surface area product of lens (PSlens) were estimated; and were found to be 31.5 h-1, 0.7629, 0.6982, 0.9999, 1.64 × 10-5 L/h, and 4.62 × 10-7 L/h, respectively. The monkey model could capture the data in plasma, aqueous humor, vitreous humor and retina reasonably well with the predictions being within twofold of the observed values. For the human model, only the value of Kdeg was estimated to fit the model to the plasma pharmacokinetics (PK) of mAbs and was found to be 24.4 h-1 (4.14%). The human model could also capture the ocular PK data reasonably well with the predictions being within two- to threefold of observed values for the plasma, aqueous and vitreous humor. Thus, the proposed framework can be used to characterize and predict the PK of mAbs in the eye of monkey and human species following systemic and intravitreal administration. The model can also facilitate the development of new antibody-based therapeutics for the treatment of ocular diseases as well as predict ocular toxicities of such molecules following systemic administration.
Collapse
Affiliation(s)
- Sanika Naware
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - David Bussing
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
4
|
Zhang X, Yang L, Wang F, Su Y. Carbon quantum dots for the diagnosis and treatment of ophthalmic diseases. Hum Cell 2024; 37:1336-1346. [PMID: 39093514 DOI: 10.1007/s13577-024-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Carbon quantum dots (CQDs), an emerging nanomaterial, are gaining attention in ophthalmological applications due to their distinctive physical, chemical, and biological characteristics. For example, their inherent fluorescent capabilities offer a novel and promising alternative to conventional fluorescent dyes for ocular disease diagnostics. Furthermore, because of the excellent biocompatibility and minimal cytotoxicity, CQDs are well-suited for therapeutic applications. In addition, functionalized CQDs can effectively deliver drugs to the posterior part of the eyeball to inhibit neovascularization. This review details the use of CQDs in the management of ophthalmic diseases, including various retinal diseases, and ocular infections. While still in its initial phases within ophthalmology, the significant potential of CQDs for diagnosing and treating eye conditions is evident.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Yang
- Harbin Purui Eye Hospital, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The first affiliated hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquivel E, Martinez A, Visser KJ, Joven Araus A, Wang H, Simon A, Yun MH, Del Rio-Tsonis K. Macrophages modulate fibrosis during newt lens regeneration. Stem Cell Res Ther 2024; 15:141. [PMID: 38745238 PMCID: PMC11094960 DOI: 10.1186/s13287-024-03740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Previous studies have suggested that macrophages are present during lens regeneration in newts, but their role in the process is yet to be elucidated. METHODS Here we generated a transgenic reporter line using the newt, Pleurodeles waltl, that traces macrophages during lens regeneration. Furthermore, we assessed early changes in gene expression during lens regeneration using two newt species, Notophthalmus viridescens and Pleurodeles waltl. Finally, we used clodronate liposomes to deplete macrophages during lens regeneration in both species and tested the effect of a subsequent secondary injury after macrophage recovery. RESULTS Macrophage depletion abrogated lens regeneration, induced the formation of scar-like tissue, led to inflammation, decreased iris pigment epithelial cell (iPEC) proliferation, and increased rates of apoptosis in the eye. Some of these phenotypes persisted throughout the last observation period of 100 days and could be attenuated by exogenous FGF2 administration. A distinct transcript profile encoding acute inflammatory effectors was established for the dorsal iris. Reinjury of the newt eye alleviated the effects of macrophage depletion, including the resolution of scar-like tissue, and re-initiated the regeneration process. CONCLUSIONS Together, our findings highlight the importance of macrophages for facilitating a pro-regenerative environment in the newt eye by regulating fibrotic responses, modulating the overall inflammatory landscape, and maintaining the proper balance of early proliferation and late apoptosis of the iPECs.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - J Raul Perez-Estrada
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Jared A Tangeman
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Weihao Chen
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Department of Statistics, Miami University, Oxford, OH, USA
| | - Sophia C Ratvasky
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Arielle Martinez
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Kimberly J Visser
- CRTD/ Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Hui Wang
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Maximina H Yun
- CRTD/ Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA.
- Center for Visual Sciences at, Miami University, Oxford, OH, USA.
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
6
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquive EL, Martinez A, Visser KJ, Araus AJ, Wang H, Simon A, Yun MH, Rio-Tsonis KD. Macrophages modulate fibrosis during newt lens regeneration. RESEARCH SQUARE 2023:rs.3.rs-3603645. [PMID: 38045376 PMCID: PMC10690311 DOI: 10.21203/rs.3.rs-3603645/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Previous studies indicated that macrophages play a role during lens regeneration in newts, but their function has not been tested experimentally. Methods Here we generated a transgenic newt reporter line in which macrophages can be visualized in vivo. Using this new tool, we analyzed the location of macrophages during lens regeneration. We uncovered early gene expression changes using bulk RNAseq in two newt species, Notophthalmus viridescens and Pleurodeles waltl. Next, we used clodronate liposomes to deplete macrophages, which inhibited lens regeneration in both newt species. Results Macrophage depletion induced the formation of scar-like tissue, an increased and sustained inflammatory response, an early decrease in iris pigment epithelial cell (iPEC) proliferation and a late increase in apoptosis. Some of these phenotypes persisted for at least 100 days and could be rescued by exogenous FGF2. Re-injury alleviated the effects of macrophage depletion and re-started the regeneration process. Conclusions Together, our findings highlight the importance of macrophages in facilitating a pro-regenerative environment in the newt eye, helping to resolve fibrosis, modulating the overall inflammatory landscape and maintaining the proper balance of early proliferation and late apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maximina H Yun
- Dresden University of Technology: Technische Universitat Dresden
| | | |
Collapse
|
7
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquivel E, Martinez A, Visser KJ, Araus AJ, Wang H, Simon A, Yun MH, Rio-Tsonis KD. Macrophages modulate fibrosis during newt lens regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543633. [PMID: 37333184 PMCID: PMC10274724 DOI: 10.1101/2023.06.04.543633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Previous studies indicated that macrophages play a role during lens regeneration in newts, but their function has not been tested experimentally. Here we generated a transgenic newt reporter line in which macrophages can be visualized in vivo. Using this new tool, we analyzed the location of macrophages during lens regeneration. We uncovered early gene expression changes using bulk RNAseq in two newt species, Notophthalmus viridescens and Pleurodeles waltl. Next, we used clodronate liposomes to deplete macrophages, which inhibited lens regeneration in both newt species. Macrophage depletion induced the formation of scar-like tissue, an increased and sustained inflammatory response, an early decrease in iris pigment epithelial cell (iPEC) proliferation and a late increase in apoptosis. Some of these phenotypes persisted for at least 100 days and could be rescued by exogenous FGF2. Re-injury alleviated the effects of macrophage depletion and re-started the regeneration process. Together, our findings highlight the importance of macrophages in facilitating a pro-regenerative environment in the newt eye, helping to resolve fibrosis, modulating the overall inflammatory landscape and maintaining the proper balance of early proliferation and late apoptosis.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - J Raul Perez-Estrada
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Jared A Tangeman
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Weihao Chen
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Department of Statistics, Miami University, Oxford, OH, USA
| | - Sophia C Ratvasky
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Arielle Martinez
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Kimberly J Visser
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alberto Joven Araus
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Hui Wang
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Andras Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Maximina H Yun
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| |
Collapse
|
8
|
Rao M, Huang YK, Liu CC, Meadows C, Cheng HC, Zhou M, Chen YC, Xia X, Goldberg JL, Williams AM, Kuwajima T, Chang KC. Aldose reductase inhibition decelerates optic nerve degeneration by alleviating retinal microglia activation. Sci Rep 2023; 13:5592. [PMID: 37019993 PMCID: PMC10076364 DOI: 10.1038/s41598-023-32702-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
As part of the central nervous system (CNS), retinal ganglion cells (RGCs) and their axons are the only neurons in the retina that transmit visual signals from the eye to the brain via the optic nerve (ON). Unfortunately, they do not regenerate upon injury in mammals. In ON trauma, retinal microglia (RMG) become activated, inducing inflammatory responses and resulting in axon degeneration and RGC loss. Since aldose reductase (AR) is an inflammatory response mediator highly expressed in RMG, we investigated if pharmacological inhibition of AR can attenuate ocular inflammation and thereby promote RGC survival and axon regeneration after ON crush (ONC). In vitro, we discovered that Sorbinil, an AR inhibitor, attenuates BV2 microglia activation and migration in the lipopolysaccharide (LPS) and monocyte chemoattractant protein-1 (MCP-1) treatments. In vivo, Sorbinil suppressed ONC-induced Iba1 + microglia/macrophage infiltration in the retina and ON and promoted RGC survival. Moreover, Sorbinil restored RGC function and delayed axon degeneration one week after ONC. RNA sequencing data revealed that Sorbinil protects the retina from ONC-induced degeneration by suppressing inflammatory signaling. In summary, we report the first study demonstrating that AR inhibition transiently protects RGC and axon from degeneration, providing a potential therapeutic strategy for optic neuropathies.
Collapse
Affiliation(s)
- Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Chandler Meadows
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Hui-Chun Cheng
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Mengli Zhou
- Department of Computational and Systems Biology, Hillman Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- Department of Computational and Systems Biology, Hillman Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Andrew M Williams
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA.
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
9
|
Quiescent innate and adaptive immune responses maintain the long-term integrity of corneal endothelium reconstituted through allogeneic cell injection therapy. Sci Rep 2022; 12:18072. [PMID: 36302875 PMCID: PMC9613641 DOI: 10.1038/s41598-022-22522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023] Open
Abstract
This study aims to clarify the immunogenicity in acquired and innate immune responses of cultured human corneal endothelial cells (hCECs) applied for cell injection therapy, a newly established modality for corneal endothelium failures. Thirty-four patients with corneal endothelial failure received injection of allogeneic hCEC suspension into anterior chamber. No sign of immunological rejection was observed in all 34 patients during the 5-8 years postoperative follow-up period. Cell injection therapy was successful in 2 patients treated for endothelial failure after penetrating keratoplasty and one patient with Descemet membrane stripping automated endothelial keratoplasty failure. ELISPOT assays performed in allo-mixed lymphocyte reaction to the alloantigen identical to that on the injected hCECs, elicited sparse IFN-γ-specific spots in the peripheral blood mononuclear cells of patients who received hCEC injection. The therapy generated simple and smooth graft-host junctions without wound stress. The injection of C57BL/6 CECs into the anterior chamber of BALB/c mice, which rejected C57BL/6 corneas 6 weeks ago, induced no sign of inflammatory reactions after the second challenge of alloantigen. Collectively, injection of the hCEC cell suspension in the aqueous humor induces immune tolerance that contributes to the survival of the reconstituted endothelium.
Collapse
|
10
|
Optimization of a Plasma Rich in Growth Factors Membrane for the Treatment of Inflammatory Ocular Diseases. Bioengineering (Basel) 2022; 9:bioengineering9100508. [PMID: 36290475 PMCID: PMC9598884 DOI: 10.3390/bioengineering9100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The main purpose of the present study is to develop an immunosafe fibrin membrane obtained by plasma rich in growth factors technology (is-mPRGF) with improved mechanical properties that could be applied in patients with inflammatory ocular diseases. Blood was drawn from three healthy donors and centrifuged, and the collected PRGF was activated and distributed into two groups: (i) mPRGF: a PRGF membrane maintained at 37 °C for 30 min; (ii) IS5+30: mPRGF incubated at 37 °C for 5 min and then incubated at 56 °C for 30 min. The content of both membranes was analyzed for several growth factors such as IgE and the complement activation, as well as biological activity on different ocular surface cells. Furthermore, the physical and mechanical characterizations were also evaluated. IS5+30 completely reduced the complement activity and decreased the IgE while preserving the concentration of the main growth factors. IS5+30 induced similar biological activity regarding mPRGF on the different ocular surface cells analyzed. Furthermore, no significant differences in release kinetics or fibrin degradation were observed between both membranes. Summarizing, IS5+30 totally reduces complement activity while preserving the concentration of most growth factors and their biological activity. Furthermore, the physical and mechanical properties of the fibrin membrane are preserved after heat inactivation.
Collapse
|
11
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
12
|
Liu S, Shah DK. Mathematical Models to Characterize the Absorption, Distribution, Metabolism, and Excretion of Protein Therapeutics. Drug Metab Dispos 2022; 50:867-878. [PMID: 35197311 PMCID: PMC11022906 DOI: 10.1124/dmd.121.000460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Therapeutic proteins (TPs) have ranked among the most important and fastest-growing classes of drugs in the clinic, yet the development of successful TPs is often limited by unsatisfactory efficacy. Understanding pharmacokinetic (PK) characteristics of TPs is key to achieving sufficient and prolonged exposure at the site of action, which is a prerequisite for eliciting desired pharmacological effects. PK modeling represents a powerful tool to investigate factors governing in vivo disposition of TPs. In this mini-review, we discuss many state-of-the-art models that recapitulate critical processes in each of the absorption, distribution, metabolism/catabolism, and excretion pathways of TPs, which can be integrated into the physiologically-based pharmacokinetic framework. Additionally, we provide our perspectives on current opportunities and challenges for evolving the PK models to accelerate the discovery and development of safe and efficacious TPs. SIGNIFICANCE STATEMENT: This minireview provides an overview of mechanistic pharmacokinetic (PK) models developed to characterize absorption, distribution, metabolism, and elimination (ADME) properties of therapeutic proteins (TPs), which can support model-informed discovery and development of TPs. As the next-generation of TPs with diverse physicochemical properties and mechanism-of-action are being developed rapidly, there is an urgent need to better understand the determinants for the ADME of TPs and evolve existing platform PK models to facilitate successful bench-to-bedside translation of these promising drug molecules.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
13
|
Role of Janus Kinase (JAK) Inhibitor in Autoimmune Ocular Inflammation: A Systematic Review. J Immunol Res 2021; 2021:2324400. [PMID: 34966823 PMCID: PMC8712175 DOI: 10.1155/2021/2324400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose To evaluate the effectiveness of Janus kinase (JAK) inhibitors for the treatment of patients with autoimmune disease and associated inflammatory ocular diseases. Methods We identified relevant literature by screening the MEDLINE, PubMed, and Cochrane databases for randomized controlled trials, cohort studies, case controls, and case reports. Results Seven studies, including 11 patients, were included in the final systematic analysis. Of the 11 patients, there were 5 cases of juvenile idiopathic arthritis- (JIA-) associated uveitis, 1 case of rheumatoid arthritis- (RA-) associated keratitis, 1 case of RA-associated scleritis, 1 case of psoriasis-associated conjunctivitis, 2 cases of noninfectious scleritis, and 1 case of uveitis with suspected autoimmune disease. None of these 11 patients responded adequately to conventional treatments, including biological agents; these were all refractory cases and switched to JAK inhibitor therapy. Irrespective of whether they were suffering from uveitis, scleritis, or other types of ocular inflammation, all 11 patients showed an improvement to JAK inhibitors without significant side effects. Different types of JAK inhibitors might be associated with different responses when used to treat ocular inflammation. Conclusions JAK inhibitors may represent an alternative treatment option for patients with autoimmune ocular inflammation.
Collapse
|
14
|
The Perception of Esthetic Importance of Craniofacial Elements. J Craniofac Surg 2021; 33:142-145. [PMID: 34510066 DOI: 10.1097/scs.0000000000008122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT The human face is an important human structure, often judged by its esthetics. It serves great purpose, as it is and always has been involved in both cultural matters, such as art, as well as biological matters, such as exhibition of emotion and mate selection. Throughout history, there have been multiple studies on what makes a face attractive. Despite the myriad ways in which the face has been explored academically, there has been a lack of reports on which craniofacial elements are deemed the most important for attractiveness subjectively. To fill up this gap on the perception of the esthetics of the human face, as well as to provide a contemporary view on the matter, this research was conducted. Participants were asked to fill out a questionnaire with a visual analogue scale for each craniofacial element and questions about appearance satisfaction. A total of 299 participants were enrolled in this study. Eyes, hair and teeth were deemed to be the most important craniofacial elements for attractiveness. Women scored teeth, hair, and eyebrows significantly higher than men, men scored higher in satisfaction with their own appearance than women. Older people, married people and people in a relationship care less about the opinion of others regarding their appearance. The results from this study can be used to identify a focus in the future development of esthetically related matters, such as plastic surgery or art and will add to the academic knowledge on the perception of craniofacial beauty.
Collapse
|
15
|
Ramírez-Granillo A, Bautista-Hernández LA, Bautista-De Lucío VM, Magaña-Guerrero FS, Domínguez-López A, Córdova-Alcántara IM, Pérez NO, Martínez-Rivera MDLA, Rodríguez-Tovar AV. Microbial Warfare on Three Fronts: Mixed Biofilm of Aspergillus fumigatus and Staphylococcus aureus on Primary Cultures of Human Limbo-Corneal Fibroblasts. Front Cell Infect Microbiol 2021; 11:646054. [PMID: 34485167 PMCID: PMC8415486 DOI: 10.3389/fcimb.2021.646054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Background Coinfections with fungi and bacteria in ocular pathologies are increasing at an alarming rate. Two of the main etiologic agents of infections on the corneal surface, such as Aspergillus fumigatus and Staphylococcus aureus, can form a biofilm. However, mixed fungal–bacterial biofilms are rarely reported in ocular infections. The implementation of cell cultures as a study model related to biofilm microbial keratitis will allow understanding the pathogenesis in the cornea. The cornea maintains a pathogen-free ocular surface in which human limbo-corneal fibroblast cells are part of its cell regeneration process. There are no reports of biofilm formation assays on limbo-corneal fibroblasts, as well as their behavior with a polymicrobial infection. Objective To determine the capacity of biofilm formation during this fungal–bacterial interaction on primary limbo-corneal fibroblast monolayers. Results The biofilm on the limbo-corneal fibroblast culture was analyzed by assessing biomass production and determining metabolic activity. Furthermore, the mixed biofilm effect on this cell culture was observed with several microscopy techniques. The single and mixed biofilm was higher on the limbo-corneal fibroblast monolayer than on abiotic surfaces. The A. fumigatus biofilm on the human limbo-corneal fibroblast culture showed a considerable decrease compared to the S. aureus biofilm on the limbo-corneal fibroblast monolayer. Moreover, the mixed biofilm had a lower density than that of the single biofilm. Antibiosis between A. fumigatus and S. aureus persisted during the challenge to limbo-corneal fibroblasts, but it seems that the fungus was more effectively inhibited. Conclusion This is the first report of mixed fungal–bacterial biofilm production and morphological characterization on the limbo-corneal fibroblast monolayer. Three antibiosis behaviors were observed between fungi, bacteria, and limbo-corneal fibroblasts. The mycophagy effect over A. fumigatus by S. aureus was exacerbated on the limbo-corneal fibroblast monolayer. During fungal–bacterial interactions, it appears that limbo-corneal fibroblasts showed some phagocytic activity, demonstrating tripartite relationships during coinfection.
Collapse
Affiliation(s)
- Adrián Ramírez-Granillo
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Luis Antonio Bautista-Hernández
- Ocular Microbiology and Proteomics Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Víctor Manuel Bautista-De Lucío
- Ocular Microbiology and Proteomics Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Fátima Sofía Magaña-Guerrero
- Cell Biology and Amniotic Membrane Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Alfredo Domínguez-López
- Cell Biology and Amniotic Membrane Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Itzel Margarita Córdova-Alcántara
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Néstor O Pérez
- Research and Development Department Probiomed SA de CV, Tenancingo Edo de Mex, Mexico
| | - María de Los Angeles Martínez-Rivera
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| |
Collapse
|
16
|
Shivva V, Boswell CA, Rafidi H, Kelley RF, Kamath AV, Crowell SR. Antibody Format and Serum Disposition Govern Ocular Pharmacokinetics of Intravenously Administered Protein Therapeutics. Front Pharmacol 2021; 12:601569. [PMID: 34025395 PMCID: PMC8138871 DOI: 10.3389/fphar.2021.601569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/15/2021] [Indexed: 11/28/2022] Open
Abstract
Protein therapeutics have witnessed tremendous use and application in recent years in treatment of various diseases. Predicting efficacy and safety during drug discovery and translational development is a key factor for successful clinical development of these therapies. In general, drug related toxicities are predominantly driven by pharmacokinetic (PK) exposure at off-target sites. This work explores the ocular PK of intravenously administered protein therapeutics to understand impact of antibody format on off-site exposure. Species matched non-binding rabbit antibody proteins (rabFab and rabIgG) were intravenously administered to male New Zealand White rabbits at a single 1 mg bolus dose and exposure was measured up to 3 weeks. As anticipated based on absence of FcRn recycling, rabFab has relatively fast systemic PK (CL–943 mL/day and t1/2–1.93 days) compared to rabIgG (CL–18.5 mL/day and t1/2–8.93 days). Similarly, rabFab has lower absolute ocular exposure in ocular compartments (e.g., vitreous and aqueous humor) compared to rabIgG, despite higher relative exposures (measured as percent tissue partition in ocular tissues relative to serum, based on Cmax and AUC). In general, percent tissue partition based on AUC (in aqueous and vitreous humor) relative to serum exposure were 10.4 and 8.62 for rabFab respectively and 1.11 and 0.64 for rabIgG respectively. This work emphasizes size and format based ocular exposure of intravenously administered protein therapeutics. Findings from this work enable prediction of format based ocular exposure for systemically administered antibody based therapeutics and aid in selection of molecule format for clinical candidate to minimize ocular exposure.
Collapse
Affiliation(s)
- Vittal Shivva
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - C Andrew Boswell
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - Hanine Rafidi
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - Robert F Kelley
- Pharmaceutical Development, Genentech, South San Francisco, CA, United States
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - Susan R Crowell
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| |
Collapse
|
17
|
Femtosecond laser-assisted stromal keratophakia for keratoconus: A systemic review and meta-analysis. Int Ophthalmol 2021; 41:1965-1979. [PMID: 33609200 DOI: 10.1007/s10792-021-01745-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Femtosecond lasers have revived the possibility of stromal keratophakia or tissue additive keratoplasty, a technique originally introduced by Prof. Jose Ignacio Barraquer in the 1960s. The surgical technique offers a unique solution to treat keratoconus. In the current study, we reviewed and performed a meta-analysis of the clinical outcomes of the femtosecond laser-assisted stromal keratophakia in the treatment of keratoconus. METHODS This is a systematic review and meta-analysis of the estimated outcome difference between pre- and post-lenticule implantations. RESULTS A total of related 10 studies were found in the literature. No studies reported adverse events, such as persistent haze or graft rejection, at last patients' visits. We further narrowed down the article selection in accordance to our inclusion criteria to report the composite outcomes (9 studies) and meta-analysis (4 studies). In the composite analysis, we demonstrated that lenticule implantation in keratoconus and post-LASIK ectasia patients appeared to expand the stromal volume of the thin corneas, flattened the cones, and significantly improved uncorrected visual acuity (UCVA), best-corrected visual acuity (BCVA) and spherical equivalent (SE). The meta-analysis showed that the random estimated UCVA, BCVA, SE and mean keratometry (Km) differences following the lenticule implantation was -0.214 (95% CI: -0.367 to 0.060; p = 0.006), -0.169 (-0.246 to 0.091; p < 0.001), -2.294 D (-3.750 to -0.839 D; p = 0.002), and 2.909 D (0.805 to 5.012 D; p = 0.007), respectively. CONCLUSIONS Femtosecond laser-assisted stromal keratophakia is a feasible technique to correct the refractive aberrations, expand corneal volume and regularize corneal curvature in patients with keratoconus. However, there is a need to standardize the technique (e.g., whether to crosslink or not or to use convex or concave lenticules) and to formulate a mathematical model that accounts for the long-term epithelial thickness changes and stromal remodeling to determine the shape or profile of the lenticules, in order to improve the efficacy of the keratophakia further.
Collapse
|
18
|
Development and optimization of a personalized fibrin membrane derived from the plasma rich in growth factors technology. Exp Eye Res 2020; 203:108402. [PMID: 33326809 DOI: 10.1016/j.exer.2020.108402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE To develop and characterize a new type of plasma rich in growth factors (PRGF) membrane for patients in which immune system is involved in the disease etiology. METHODS Blood from three healthy donors was collected to obtain the different fibrin membranes by PRGF technology. PRGF obtained volumes were activated and divided into two groups: PRGF membrane (mPRGF) obtained after incubation at 37 °C for 30 min (control); and is-mPRGF: mPRGF obtained after incubation for 30 min at 56 °C. The concentration of several growth factors, proteins, immunoglobulin E and the complement activity was determined in the different mPRGF. The proliferative potential of heat-inactivated mPRGF were assayed on keratocytes (HK) and conjunctival fibroblasts (HConF). In addition, morphological and physical features of the inactivated mPRGF were evaluated in contrast to the control mPRGF. RESULTS Heat-inactivation of the mPRGF preserves the content of most of the growth factors involved in the ocular wound healing while reducing drastically the content of IgE and the complement activity. The heat-inactivated mPRGF conserve the morphological and physical characteristics of the fibrin meshwork in comparison with the control mPRGF. Furthermore, no significant differences were found in the biological activity of the control mPRGF regarding the heat-inactivated mPRGF (is-mPRGF) in any of both ocular cell types evaluated. CONCLUSIONS The heat-inactivation of the PRGF membranes (is-mPRGF) reduces drastically the content of IgE and complement activity while preserving the content of most of the proteins and morphogens involved in ocular wound healing. Furthermore, the morphological and physical features of the immunosafe mPRGF were also preserved after heat-inactivation.
Collapse
|
19
|
Lidgerwood GE, Senabouth A, Smith-Anttila CJA, Gnanasambandapillai V, Kaczorowski DC, Amann-Zalcenstein D, Fletcher EL, Naik SH, Hewitt AW, Powell JE, Pébay A. Transcriptomic Profiling of Human Pluripotent Stem Cell-derived Retinal Pigment Epithelium over Time. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 19:223-242. [PMID: 33307245 PMCID: PMC8602392 DOI: 10.1016/j.gpb.2020.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cell (hPSC)-derived progenies are immature versions of cells, presenting a potential limitation to the accurate modelling of diseases associated with maturity or age. Hence, it is important to characterise how closely cells used in culture resemble their native counterparts. In order to select appropriate time points of retinal pigment epithelium (RPE) cultures that reflect native counterparts, we characterised the transcriptomic profiles of the hPSC-derived RPE cells from 1- and 12-month cultures. We differentiated the human embryonic stem cell line H9 into RPE cells, performed single-cell RNA-sequencing of a total of 16,576 cells to assess the molecular changes of the RPE cells across these two culture time points. Our results indicate the stability of the RPE transcriptomic signature, with no evidence of an epithelial–mesenchymal transition, and with the maturing populations of the RPE observed with time in culture. Assessment of Gene Ontology pathways revealed that as the cultures age, RPE cells upregulate expression of genes involved in metal binding and antioxidant functions. This might reflect an increased ability to handle oxidative stress as cells mature. Comparison with native human RPE data confirms a maturing transcriptional profile of RPE cells in culture. These results suggest that long-term in vitro culture of RPE cells allows the modelling of specific phenotypes observed in native mature tissues. Our work highlights the transcriptional landscape of hPSC-derived RPE cells as they age in culture, which provides a reference for native and patient samples to be benchmarked against.
Collapse
Affiliation(s)
- Grace E Lidgerwood
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia.
| | - Anne Senabouth
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Casey J A Smith-Anttila
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Vikkitharan Gnanasambandapillai
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Dominik C Kaczorowski
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Daniela Amann-Zalcenstein
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shalin H Naik
- Single Cell Open Research Endeavour, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alex W Hewitt
- Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, Australia
| | - Joseph E Powell
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia; UNSW Cellular Genomics Futures Institute, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alice Pébay
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
20
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
21
|
Peng L, Zhong J, Xiao Y, Wang B, Li S, Deng Y, He D, Yuan J. Therapeutic effects of an anti-IL-6 antibody in fungal keratitis: Macrophage inhibition and T cell subset regulation. Int Immunopharmacol 2020; 85:106649. [DOI: 10.1016/j.intimp.2020.106649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
|
22
|
Liu J, Liu D. Sirtuin 6 protects human retinal pigment epithelium cells from LPS-induced inflammation and apoptosis partly by regulating autophagy. Biosci Biotechnol Biochem 2020; 84:2062-2068. [PMID: 32619399 DOI: 10.1080/09168451.2020.1788377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lipopolysaccharides (LPS)-induced retinal inflammation is an important factor in retinal diseases. This study was aimed to investigate the effect of Sirt6 on LPS-induced retinal injury. ARPE-19 cells were incubated with LPS to induce inflammation. The cell viability was determined using CCK-8 assay. The mRNA level and protein expression of corresponding genes was detected using qRT-PCR and western blot, respectively. The production of inflammatory cytokines was measured using ELISA kit. The levels of oxidative stress-related factors were measured using their detection kits. Cell apoptosis was observed using TUNEL assay. The results showed that Sirt6 was downregulated after LPS treatment. Sirt6 strengthened LPS-induced autophagy by promoting the expression of LC3II/I, beclin1 and ATG5. Sirt6 treatment significantly inhibited LPS-induced inflammation, oxidative stress and cell apoptosis, which was then partly abolished by 3 MA. These results suggest Sirt6 to be an important regulator for LPS-induced inflammation, oxidative stress, and apoptosis partly by regulating cell autophagy.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Ophthalmology, Jinzhou He Eye Specialist Hospital , Jinzhou, P.R. China.,Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University , Jinzhou, P.R. China
| | - Dan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University , Jinzhou, P.R. China
| |
Collapse
|
23
|
Rullo J, Bae S, Far PM, Hazimi AA, Gupta V, Bal M, Hopman WM, Irrcher I, Urton T, Bona M, Campbell R, Gonder T, Sharma S. Measuring intraocular antibodies in eyes treated with anti-vascular endothelial growth factor. Can J Ophthalmol 2020; 55:263-271. [PMID: 32253011 DOI: 10.1016/j.jcjo.2019.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To characterize the total intraocular aqueous humour antibody profiles in cases receiving anti-vascular endothelial growth factor (anti-VEGF) for retinal vascular disease compared with controls without retinal pathology. DESIGN Cross-sectional. PARTICIPANTS 93 aqueous humour samples: 22 eyes undergoing cataract surgery (controls) and 71 eyes receiving intravitreal injections (IVI) (cases) for macular edema or neovascularization. METHODS Antibody isotyping of aqueous humour was performed using Milliplex MAP Human Isotyping Multiplex Assay. Cases and controls were compared for several outcome measures. RESULTS The primary outcome measure was total mean antibody isotype concentration quantified in the aqueous humour. Secondary outcomes included comparing aqueous humour concentrations with visual acuity, number of IVI received, type of anti-VEGF agent injected, and persistence intra-/subretinal fluid post injection. Mean immunoglobulin M (IgM) concentrations in cases were 19-fold higher compared with controls. Aqueous immunoglobulin G (IgG)1,2,3,4 and immunoglobulin A (IgA) were 2-4-fold higher in cases compared with controls. Disease-specific trends were observed, with diabetic retinopathy (DR) eyes containing the highest amounts of aqueous antibodies. Total number of injections correlated with higher titres of IgG1 (p < 0.001), IgG2 (p < 0.009), and IgG3 (p < 0.001) in all cases analyzed with the strongest correlations seen in DR eyes (r = 0.77, p < 0.001). Presence of aqueous humour antibodies correlated with worse post-IVI best-corrected visual acuity; IgG1 (p < 0.01), IgG2 (p < 0.005), IgG3 (p < 0.01), and IgA (p < 0.003) in all cases analyzed, with the strongest correlations seen in DR eyes (r = 0.74, p < 0.001). CONCLUSIONS Intraocular antibodies are present in the aqueous humour at significantly higher concentrations in eyes receiving IVIs for retinal vascular diseases compared with controls.
Collapse
Affiliation(s)
- Jacob Rullo
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont..
| | - Steven Bae
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Parsa Mehraban Far
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Amro Al Hazimi
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Vasudha Gupta
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Manpartap Bal
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Wilma M Hopman
- Kingston Health Sciences Center, Kingston General Hospital Research Institute, Kingston, Ont
| | - Isabella Irrcher
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Todd Urton
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Mark Bona
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Robert Campbell
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Tom Gonder
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont
| | - Sanjay Sharma
- Department of Ophthalmology, Kingston Health Sciences Center, Queen's University, Kingston, Ont.; Department of Epidemiology, Queen's University, Kingston, Ont
| |
Collapse
|
24
|
Mursalin MH, Coburn PS, Livingston E, Miller FC, Astley R, Flores-Mireles AL, Callegan MC. Bacillus S-Layer-Mediated Innate Interactions During Endophthalmitis. Front Immunol 2020; 11:215. [PMID: 32117322 PMCID: PMC7028758 DOI: 10.3389/fimmu.2020.00215] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Bacillus endophthalmitis is a severe intraocular infection. Hallmarks of Bacillus endophthalmitis include robust inflammation and rapid loss of vision. We reported that the absence of Bacillus surface layer protein (SLP) significantly blunted endophthalmitis severity. Here, we further investigated SLP in the context of Bacillus-retinal cell interactions and innate immune pathways to explore the mechanisms by which SLP contributes to intraocular inflammation. We compared phenotypes of Wild-type (WT) and SLP deficient (ΔslpA) Bacillus thuringiensis by analyzing bacterial adherence to and phagocytosis by human retinal Muller cells and phagocytosis by mouse neutrophils. Innate immune receptor activation by the Bacillus envelope and purified SLP was analyzed using TLR2/4 reporter cell lines. A synthetic TLR2/4 inhibitor was used as a control for this receptor activation. To induce endophthalmitis, mouse eyes were injected intravitreally with 100 CFU WT or ΔslpA B. thuringiensis. A group of WT infected mice was treated intravitreally with a TLR2/4 inhibitor at 4 h postinfection. At 10 h postinfection, infected eyes were analyzed for viable bacteria, inflammation, and retinal function. We observed that B. thuringiensis SLPs contributed to retinal Muller cell adherence, and protected this pathogen from Muller cell- and neutrophil-mediated phagocytosis. We found that B. thuringiensis envelope activated TLR2 and, surprisingly, TLR4, suggesting the presence of a surface-associated TLR4 agonist in Bacillus. Further investigation showed that purified SLP from B. thuringiensis activated TLR4, as well as TLR2 in vitro. Growth of WT B. thuringiensis was significantly higher and caused greater inflammation in untreated eyes than in eyes treated with the TLR2/4 inhibitor. Retinal function analysis also showed greater retention of A-wave and B-wave function in infected eyes treated with the TLR2/4 inhibitor. The TLR2/4 inhibitor was not antibacterial in vitro, and did not cause inflammation when injected into uninfected eyes. Taken together, these results suggest a potential role for Bacillus SLP in host-bacterial interactions, as well as in endophthalmitis pathogenesis via TLR2- and TLR4-mediated pathways.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Erin Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Roger Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
25
|
Engelbrecht C, Sardinha LR, Rizzo LV. Cytokine and Chemokine Concentration in the Tear of Patients with Age-Related Cataract. Curr Eye Res 2020; 45:1101-1106. [PMID: 31928443 DOI: 10.1080/02713683.2020.1715445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE The present study measured 41 soluble mediators in the tear of 19 patients with age-related cataract and 32 healthy adults as controls. MATERIALS AND METHODS This was a prospective, case-control study in which, using multiple immunoassays, we measured in tear samples the following molecules: EGF, FGF-2, Eotaxin, TGF-α, G-CSF, Flt-3L, GM-CSF, Fractalkine, IFN-α2, IFN-γ, GRO, IL-10, MCP-3, IL-12p40, MDC, IL-12p70, PDGF-AA, IL-13, PDGF-AB/BB, IL-15, sCD40L, IL-17a, IL-1ra, IL-1α, IL-9, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, RANTES, TNFα, TNFβ, VEGF. Statistical analyses were done by multiple adjusted models and p values were corrected by the Benjamini and Hochberg method. RESULTS We did not find significant differences in the amount of the tested molecules in the tear fluid between cataract patients and controls. Correlation analyses relative to age were carried out for both groups. Analysis of MCP-1 tear levels revealed a direct correlation with age for normal healthy controls as well as for cataract patients. But IL-6 tear levels correlated with age only in the group of cataract patients. In addition, IL1-ra tear levels correlated with cataract nuclear grade; higher grades were associated with higher IL-1ra concentrations. CONCLUSIONS Our results suggest that ocular aging is accompanied by increased production of IL-6 and MCP-1, which can be measured in tear fluid. ABBREVIATIONS AMD: Age-Related Macular Degeneration; EGF: Epidermal growth factor; Eotaxin: Eosinophil chemotactic proteins; FasL: Fas ligand; FGF-2: Basic fibroblast growth factor 2; Flt-3L: Fms related tyrosine kinase 3 ligand; G-CSF: Granulocyte colony stimulating factor; GM-CSF: Granulocyte macrophage colony stimulating factor; GRO: Growth regulated protein; HGF: Human growth factor; ICAM-1: Intercellular adhesion molecule-1; IFNα2: Interferon alpha 2; IFNγ: Interferon gamma; IL: Interleukin; IL-1ra: Interleukin-1 receptor antagonist; IL-12p40: Interleukin-12 subunit p40; IL-12p70: Interleukin-12 subunit p70; IP-10: Interferon gamma-induced protein 10; MCP-1: Monocyte chemotactic protein 1; MCP-3: Monocyte chemotactic protein 3; MDC: Macrophage derived chemokine; MIG: Monokine induced by gamma interferon; MIP-1α: Macrophage inflammatory proteins 1 alpha; MIP-1β: Macrophage inflammatory proteins 1 beta; MMPs: Matrix metalloproteinases; MMP-9: Matrix metalloproteinase 9; PAI1: Plasminogen activator inhibitor 1; PDGF-AA: Platelet-derived growth factor subunit AA; PDGF-AB/BB: Platelet-derived growth factor subunit AB and BB; PIGF: Placenta growth factor; RANTES: Regulated on activation, normal T cell expressed and secreted; SAA: Serum amyloid A; sCD40L: Soluble CD40 ligand; sTNF-RII: Soluble tumor necrosis factor receptor; TBUT Tear breakup time; TGF-α: Transforming growth factor alpha; TGF-β: Transforming growth factor beta; TNFα: Tumor necrosis factor alpha; TNFβ: Tumor necrosis factor beta; VCAM: Vascular cell adhesion molecule; VEGF: Vascular endothelium growth factor.
Collapse
|
26
|
Immunological considerations and concerns as pertinent to whole eye transplantation. Curr Opin Organ Transplant 2019; 24:726-732. [PMID: 31689262 DOI: 10.1097/mot.0000000000000713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW The advent of clinical vascularized composite allotransplantation (VCA), offers hope for whole eye transplantation (WET) in patients with devastating vison loss that fails or defies current treatment options. Optic nerve regeneration and reintegration remain the overarching hurdles to WET. However, the realization of WET may indeed be limited by our lack of understanding of the singular immunological features of the eye as pertinent to graft survival and functional vision restoration in the setting of transplantation. RECENT FINDINGS Like other VCA, such as the hand or face, the eye includes multiple tissues with distinct embryonic lineage and differential antigenicity. The ultimate goal of vision restoration through WET requires optimal immune modulation of the graft for successful optic nerve regeneration. Our team is exploring barriers to our understanding of the immunology of the eye in the context of WET including the role of immune privilege and lymphatic drainage on rejection, as well as the effects ischemia, reperfusion injury and rejection on optic nerve regeneration. SUMMARY Elucidation of the unique immunological responses in the eye and adnexa after WET will provide foundational clues that will help inform therapies that prevent immune rejection without hindering optic nerve regeneration or reintegration.
Collapse
|
27
|
Lidgerwood GE, Hewitt AW, Pébay A. Human pluripotent stem cells for the modelling of diseases of the retina and optic nerve: toward a retina in a dish. Curr Opin Pharmacol 2019; 48:114-119. [PMID: 31590110 DOI: 10.1016/j.coph.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
Human pluripotent stem cells can be differentiated into specific, relevant cell types of interest including the cells of the retina and optic nerve. These cells can then be used to study fundamental biology as well as disease modelling and subsequent screening of potential treatments. Many models of differentiation and modelling have relied on two-dimensional monocultures of specific cell types, which are not representative of the complexity of the human retina and optic nerve. Hence, more complex models of the human retina and optic nerve are required. Three-dimensional organoids and emerging cell culture methods may provide more physiologically relevant models to study developmental biology and pathology of the retina and optic nerve.
Collapse
Affiliation(s)
- Grace E Lidgerwood
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia; Department of Surgery, The University of Melbourne, Parkville, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Alex W Hewitt
- Department of Surgery, The University of Melbourne, Parkville, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Alice Pébay
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia; Department of Surgery, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
28
|
Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Lipopolysaccharide-Induced Autophagy Mediates Retinal Pigment Epithelium Cells Survival. Modulation by the Phospholipase D Pathway. Front Cell Neurosci 2019; 13:154. [PMID: 31327962 PMCID: PMC6497095 DOI: 10.3389/fncel.2019.00154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation and oxidative stress are common factors involved in the pathogenesis of retinal diseases, such as aged-related macular degeneration (AMD) and diabetic retinopathy (DR). Autophagy is a catabolic process essential to cell survival in response to stress. This process is highly active in retinal pigment epithelium (RPE) cells. Our previous findings demonstrated that lipopolysaccharide (LPS) induces an inflammatory response of RPE cells that implies classical phospholipases D (PLD1 and 2) activation, cyclooxygenase-2 (COX-2) expression, prostaglandin E2 (PGE2) production and reduced cell viability. In this work, we studied the autophagic process and its modulation by the PLD pathway in D407 and ARPE-19 RPE cells exposed to LPS. LPS (10 μg/ml or 25 μg/ml) exposure for 24 h increased light chain 3B-II (LC3B-II) content (an autophagy marker) and LC3B-positive punctate structures in both RPE cell lines studied. Next, the drug bafilomycin A1 (BAF, 50 nM) was used to block the autophagic flux. In cells pre-incubated with BAF, LC3B-II and sequestosome 1 (SQSTM1/p62) levels and autophagosome-like structures were increased by LPS, demonstrating that the inflammatory injury increases the autophagic process in RPE cells. To study the role of the PLD pathway, cells were pre-incubated for 1 h with selective PLD1 (VU0359595) or PLD2 (VU0285655-1) inhibitors prior to LPS addition. Under control condition, LC3B-positive punctate structures were increased in cells pre-incubated with PLD2 inhibitor while with PLD1 inhibitor were increased in cells exposed to LPS. MTT reduction assays showed that early autophagy inhibitors, 3-methyladenin (3-MA) or LY294002, enhanced the loss in cell viability induced by LPS exposure for 48 h. On the contrary, the inhibition of PLD1 and PLD2 prevented the loss in cell viability induced by LPS. In conclusion, our results show that even though LPS treatment promotes an inflammatory response in RPE cells, it also triggers the activation of the autophagic process which in turn may serve as a protective mechanism for the cells. In addition, we demonstrate that the PLD pathway modulates the autophagic process in RPE cells. Our findings contribute to the knowledge of the molecular basis of retinal inflammatory and degenerative diseases and open new avenues for potential therapeutic exploration.
Collapse
Affiliation(s)
- Vicente Bermúdez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Paula Estefanía Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Norma María Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melina Valeria Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
29
|
Lee S, Kang IK, Kim JH, Jung BK, Park K, Chang H, Lee JY, Lee H. Relationship Between Neutralizing Antibodies Against Adeno-Associated Virus in the Vitreous and Serum: Effects on Retinal Gene Therapy. Transl Vis Sci Technol 2019; 8:14. [PMID: 31016068 PMCID: PMC6467092 DOI: 10.1167/tvst.8.2.14] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/26/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose We determine the prevalence of neutralizing antibodies (NAbs) to adeno-associated virus (AAV) in the vitreous humor and serum of patients with vitreoretinal diseases and investigate the relationship between NAb titers in the vitreous humor and serum. Methods We analyzed NAbs to AAV serotypes 2, 5, 8, and 9 via in vitro neutralization in the vitreous humor and serum from 32 patients requiring vitrectomy for vitreoretinal diseases. The blood-retinal barrier (BRB) was evaluated for integrity based on preoperative examinations, with vitreous hemorrhage (VH) on funduscopy or dye leakage on fluorescein angiography observed indicating disruption. Results NAb levels were much lower in the vitreous humor than in the serum regardless of serotype. Patients with VH had higher levels of NAbs in the vitreous humor than those without VH. The NAb ratio (ratio between NAb titers in the serum and vitreous humor) was much lower in patients with epiretinal membrane with than in those without leakage. A significantly lower NAb ratio was noticed in patients with than in those without BRB disruptions. Conclusions The NAb ratio between levels in serum and vitreous humor varies according to the condition of the BRB. Therefore, in addition to measuring the serum NAb level, physicians should examine BRB integrity when planning retinal gene therapy. Translational Relevance This study provides substantial basis for retinal gene therapy using AAVs and how maintenance of BRB integrity in target diseases should be considered.
Collapse
Affiliation(s)
- Suhwan Lee
- Department of Ophthalmology, Kangwon National University Hospital, Kangwon National University Graduate School of Medicine, Chuncheon, Korea
| | - Im Kyeung Kang
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Bok Kyoung Jung
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keerang Park
- Biopharmaceutical R&D Center, Chungbuk Health & Science University, Cheongju-si, Chungbuk, Korea
| | | | - Joo Yong Lee
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea.,Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Orive G, Santos-Vizcaino E, Pedraz JL, Hernandez RM, Vela Ramirez JE, Dolatshahi-Pirouz A, Khademhosseini A, Peppas NA, Emerich DF. 3D cell-laden polymers to release bioactive products in the eye. Prog Retin Eye Res 2019; 68:67-82. [PMID: 30342088 DOI: 10.1016/j.preteyeres.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
|
31
|
The Management of Acute Anterior Uveitis Complicating Spondyloarthritis: Present and Future. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9460187. [PMID: 30406148 PMCID: PMC6204187 DOI: 10.1155/2018/9460187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Spondyloarthropathies (SpA) encompass a group of chronic inflammatory diseases sharing common genetic and clinical features, including the association with HLA-B27 antigen, the involvement of both the axial and the peripheral skeleton, the presence of dactylitis, enthesitis, and typical extra-articular manifestations such as psoriasis, inflammatory bowel disease, and acute anterior uveitis (AAU). The latter is commonly reported as a noninfectious acute inflammation of the anterior uveal tract and its adjacent structures. AAU may affect more than 20% of SpA patients representing the most common extra-articular manifestation of the disease. Considering the potential consequences of untreated AAU, early diagnosis and aggressive treatment are crucial to avoid complications of remittent or chronic eye inflammation, such as visual loss and blindness. The management of SpA has dramatically improved over the last decades due to the development of new treat-to-target strategies and to the introduction of biologic disease modifying antirheumatic drugs (bDMARDs), particularly tumor necrosis factor alpha inhibitors (TNFis), currently used for the treatment of nonresponder patients to conventional synthetic agents. Along with the improvement of musculoskeletal features of SpA, bDMARDs provided an additional effect also in the management of AAU in those patients who are failures to topical and systemic conventional therapies. Nowadays, five TNFis, one interleukin-17, and one interleukin 12/23 blocker are licensed for the treatment of SpA, with different proven efficacy in preventing and treating ocular involvement. The aim of this review is to summarize the current options and to analyze the future perspectives for the management of SpA-associated AAU.
Collapse
|
32
|
Cortesi F, Delfanti G, Casorati G, Dellabona P. The Pathophysiological Relevance of the iNKT Cell/Mononuclear Phagocyte Crosstalk in Tissues. Front Immunol 2018; 9:2375. [PMID: 30369933 PMCID: PMC6194905 DOI: 10.3389/fimmu.2018.02375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
CD1d-restricted Natural Killer T (NKT) cells are regarded as sentinels of tissue integrity by sensing local cell stress and damage. This occurs via recognition of CD1d-restricted lipid antigens, generated by stress-related metabolic changes, and stimulation by inflammatory cytokines, such as IL-12 and IL-18. Increasing evidence suggest that this occurs mainly upon NKT cell interaction with CD1d-expressing cells of the Mononuclear Phagocytic System, i.e., monocytes, macrophages and DCs, which patrol parenchymatous organs and mucosae to maintain tissue homeostasis and immune surveillance. In this review, we discuss critical examples of this crosstalk, presenting the known underlying mechanisms and their effects on both cell types and the environment, and suggest that the interaction with CD1d-expressing mononuclear phagocytes in tissues is the fundamental job of NKT cells.
Collapse
Affiliation(s)
- Filippo Cortesi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Fan Q, Maranville JC, Fritsche L, Sim X, Cheung CMG, Chen LJ, Gorski M, Yamashiro K, Ahn J, Laude A, Dorajoo R, Lim TH, Teo YY, Blaustein RO, Yoshimura N, Park KH, Pang CP, Tai ES, Khor CC, Wong TY, Runz H, Cheng CY. HDL-cholesterol levels and risk of age-related macular degeneration: a multiethnic genetic study using Mendelian randomization. Int J Epidemiol 2018; 46:1891-1902. [PMID: 29025108 PMCID: PMC5837540 DOI: 10.1093/ije/dyx189] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Background Dyslipidemia, particularly high-density lipoprotein cholesterol (HDL-C), has recently been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss. However, epidemiological studies have yielded conflicting results. Methods We investigated the causal role of plasma lipid levels in AMD in multiethnic populations comprising 16 144 advanced AMD cases and 17 832 controls of European descent, together with 2219 cases and 5275 controls of Asian descent, using Mendelian randomization in three models. Model 1 is a conventional meta-analysis which does not account for pleiotropy of instrumental variable (IV) effects. Model 2 is a univariate, inverse variance weighted regression analysis that accounts for potential unbalanced pleiotropy using MR-Egger method. Finally, Model 3 is a multivariate regression analysis that addresses pleiotropy by MR-Egger method and by adjusting for effects on other lipid traits. Results A 1 standard deviation (SD) higher HDL-cholesterol level was associated with an odds ratio (OR) for AMD of 1.17 (95% confidence interval: 1.07–1.29) in Europeans (P = 6.88 × 10–4) and of 1.58 (1.24–2.00) in Asians (P = 2.92 × 10–4) in Model 3. The corresponding OR estimates were 1.30 (1.09–1.55) in Europeans (P = 3.18 × 10–3) and 1.42 (1.11—1.80) in Asians (P = 4.42 × 10–3) in Model 1, and 1.21 (1.11–1.31) in Europeans (P = 3.12 × 10–5) and 1.51 (1.20–1.91) in Asians (P = 7.61 × 10–4) in Model 2. Conversely, neither LDL-C (Europeans: OR = 0.96, P = 0.272; Asians: OR = 1.02, P = 0.874; Model 3) nor triglyceride levels (Europeans: OR = 0.91, P = 0.102; Asians: OR = 1.06, P = 0.613) were associated with AMD. We also assessed the association between lipid levels and polypoidal choroidal vasculopathy (PCV) in Asians, a subtype of AMD, and found a similar trend for association of PCV with HDL-C levels. Conclusions Our study shows that high levels of plasma HDL-C are causally associated with an increased risk for advanced AMD in European and Asian populations, implying that strategies reducing HDL-C levels may be useful to prevent and treat AMD.
Collapse
Affiliation(s)
- Qiao Fan
- Center for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | | | - Lars Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University Bundang Hospital, Gyeonggi, Korea
| | - Augustinus Laude
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Tock Han Lim
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore
| | | | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyu-Hyung Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Gyeonggi, Korea
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Department of Medicine, National University Health System and National University of Singapore, Singapore
| | - Chiea Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Tien Yin Wong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Singapore Eye Research Institute, Singapore National Eye Center, Singapore.,Clinical Sciences, Duke-NUS Medical School, Singapore
| | - Heiko Runz
- Merck Research Laboratories, Kenilworth, NJ, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore.,Clinical Sciences, Duke-NUS Medical School, Singapore
| |
Collapse
|
34
|
The Spleen as an Optimal Site for Islet Transplantation and a Source of Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19051391. [PMID: 29735923 PMCID: PMC5983746 DOI: 10.3390/ijms19051391] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023] Open
Abstract
This review demonstrates the unique potential of the spleen as an optimal site for islet transplantation and as a source of mesenchymal stem cells. Islet transplantation is a cellular replacement therapy used to treat severe diabetes mellitus; however, its clinical outcome is currently unsatisfactory. Selection of the most appropriate transplantation site is a major factor affecting the clinical success of this therapy. The spleen has long been studied as a candidate site for islet transplantation. Its advantages include physiological insulin drainage and regulation of immunity, and it has recently also been shown to contribute to the regeneration of transplanted islets. However, the efficacy of transplantation in the spleen is lower than that of intraportal transplantation, which is the current representative method of clinical islet transplantation. Safer and more effective methods of islet transplantation need to be established to allow the spleen to be used for clinical transplantation. The spleen is also of interest as a mesenchymal stem cell reservoir. Splenic mesenchymal stem cells contribute to the repair of damaged tissue, and their infusion may thus be a promising therapy for autoimmune diseases, including type 1 diabetes mellitus and Sjogren’s syndrome.
Collapse
|
35
|
Shoyombo I, Aiyagari V, Stutzman SE, Atem F, Hill M, Figueroa SA, Miller C, Howard A, Olson DM. Understanding the Relationship Between the Neurologic Pupil Index and Constriction Velocity Values. Sci Rep 2018; 8:6992. [PMID: 29725074 PMCID: PMC5934377 DOI: 10.1038/s41598-018-25477-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022] Open
Abstract
The pupillary light reflex (PLR) describes the response when light hits the retina and sends a signal (cranial nerve II) to the Edinger-Westphal Nucleus which via cranial nerve III results in pupillary constriction. The Neurological Pupil indexTM (NPi) and pupil constriction velocity (CV) are two distinct variables that can be observed and measured using a pupillometer. We examine NPi and CV in 27,462 pupil readings (1,617 subjects). NPi values <3.0 and a CV < 0.8 mm/sec were considered abnormal. Regression was used to clarify the effect of pupil size and repeated measures. An odds ratio of abnormal CV given normal NPi (and vice versa) was computed using the glimmixed (SAS) regression. Of 27,462 readings, 49.2% revealed bilaterally normal NPi wtih brisk CV, and 10.8% revealed bilaterally abnormal NPi and slow CV; 9.1% with unilaterally normal NPi and brisk CV where the opposite pupil had an abnormal NPi and slow CV. The remaining 30.9% revealed that one or both PLR had either a normal NPi with slow CV, or abnormal NPi with brisk CV. Brisk CV does not rule out an abnormal PLR; slow CV does not rule in abnormal PLR. Practitioners should consider these implications when interpreting pupillometry readings.
Collapse
Affiliation(s)
- Ifeoluwa Shoyombo
- School of Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Venkatesh Aiyagari
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Sonja E Stutzman
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - Folefac Atem
- Department of Biostatistics, University of Texas Southwestern, Dallas, TX, USA
| | - Michelle Hill
- Neurocritical Care, Riverside Methodist Hospital, Columbus, OH, USA
| | - Stephen A Figueroa
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Chad Miller
- Neurocritical Care, Riverside Methodist Hospital, Columbus, OH, USA
| | - Amber Howard
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - DaiWai M Olson
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA. .,Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, USA.
| |
Collapse
|
36
|
Valero Y, Boughlala B, Arizcun M, Patel S, Fiksdal IU, Esteban MÁ, De Juan J, Meseguer J, Chaves-Pozo E, Cuesta A. Genes related to cell-mediated cytotoxicity and interferon response are induced in the retina of European sea bass upon intravitreal infection with nodavirus. FISH & SHELLFISH IMMUNOLOGY 2018; 74:627-636. [PMID: 29414318 DOI: 10.1016/j.fsi.2018.01.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 06/08/2023]
Abstract
Viral diseases are responsible for high rates of mortality and subsequent economic losses in modern aquaculture. The nervous necrosis virus (NNV) produces viral encephalopathy and retinopathy (VER), which affects the central nervous system, is considered one of the most serious viral diseases in marine aquaculture. Although some studies have localized NNV in the retina cells, none has dealt with immunity in the retina. Thus, for the first time, we intravitreally infected healthy specimens of European sea bass (Dicentrarchus labrax) with NNV with the aim of characterizing the immune response in the retina. Ultrastructural analysis detected important retinal injuries and structure degradation, including pycnosis, hydropic degeneration and vacuolization in some cell layers as well as myelin sheaths in the optic nerve fibres. Immunohistochemistry demonstrated that NNV replicated in the eyes. Regarding retinal immunity, NNV infection elicited the transcription of genes encoding proteins involved in the interferon (IFN) and cell-mediated cytotoxicity (CMC) responses as well as B and T cell markers, demonstrating that viral replication influences innate and adaptive responses. Further studies are needed to understand the retina immunity and whether the main retinal function, vision, is affected by nodavirus.
Collapse
Affiliation(s)
- Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Bassima Boughlala
- Departamento de Biotecnología, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, 03080, Alicante, Spain
| | - Marta Arizcun
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Sonal Patel
- Diseases and Pathogen Transmission, Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway
| | - Ingrid U Fiksdal
- Diseases and Pathogen Transmission, Institute of Marine Research, Nordnesgaten 50, 5005, Bergen, Norway
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Joaquín De Juan
- Departamento de Biotecnología, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, 03080, Alicante, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860, Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
37
|
Abstract
The eye has become a useful site for the investigation and understanding of local and systemic immune responses. The ease of access and transparency of the cornea permits direct visualization of ocular structures, blood vessels, and lymphatic vessels, allowing for the tracking of normal and pathological biological processes in real time. As a window to the immune system, we have used the eye to dissect the mechanisms of corneal inflammatory reactions that include innate and adaptive immune responses. We have identified that the ocular microenvironment regulates these immune responses by recruiting different populations of inflammatory cells to the cornea through local production of selected chemokines. Moreover, crosstalk between T cells and macrophages is a common and crucial step in the development of ocular immune responses to corneal alloantigens. This review summarizes the data generated by our group using intravital fluorescent confocal microscopy to capture the tempo, magnitude, and function of innate and adaptive corneal immune responses.
Collapse
Affiliation(s)
- Victor L Perez
- *the Department of Ophthalmology, Bascom Palmer Eye Institute; and †the Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
38
|
Bai L, Liang W, Chen M, Cissé Y, Liu J, Su Y, Yu J, Liu Q. Effect of lentivirus-mediated gene silencing, targeting toll-like receptor 2, on corneal allograft transplantation in rats. Mol Immunol 2017; 91:97-104. [DOI: 10.1016/j.molimm.2017.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022]
|
39
|
Manthey AL, Chiu K, So KF. Effects of Lycium barbarum on the Visual System. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:1-27. [PMID: 28807155 DOI: 10.1016/bs.irn.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lycium barbarum (wolfberry, gogi berry, gouqizi, ) is one of the most widely used Chinese herbal medicines (CHMs) and is also one of the most scientifically studied. Indeed, the polysaccharide component of this berry (LBP) has been shown to have antioxidant, antiinflammatory, antiexcitotoxic, and antiapoptotic properties. These properties make it a particularly useful treatment option for the ocular environment. Although there are a handful of studies investigating the use of LBP to treat diseases affecting the lens, the vast majority of the published literature investigating LBP in the visual system focus on the retina. In this chapter, we have described what is currently understood concerning the effects of LBP treatment on various retinal diseases, including glaucoma, ischemia/reperfusion, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. We then describe the functions attributed to LBP using other cellular contexts to elucidate the full mechanisms this CHM utilizes in the retina. By making connections between what is known about the function of LBP in a variety of tissues and its function as a therapy for retinal degenerative diseases, we hope to further emphasize the continued use of this CHM in clinical medicine in addition to providing a platform for additional study.
Collapse
Affiliation(s)
| | - Kin Chiu
- The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| | - Kwok-Fai So
- The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration and Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
40
|
Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci Rep 2017; 7:199. [PMID: 28298640 PMCID: PMC5428026 DOI: 10.1038/s41598-017-00241-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
Retinitis pigmentosa (RP) is one of hereditary retinal diseases characterized by the loss of photoreceptors. Cell transplantation has been clinically applied to treat RP patients. Human retinal progenitor cells (HRPCs) and human bone marrow-derived mesenchymal stem cells (HBMSCs) are the two commonly and practically used stem cells for transplantation. Since combined transplantation could be a promising way to integrate the advantages of both stem cell types, we transplanted HRPCs and HBMSCs into the subretinal space (SRS) of Royal College of Surgeons (RCS) rats. We report that HRPCs/HBMSCs combined transplantation maintains the electroretinogram results much better than HRPCs or HBMSCs single transplantations. The thickness of outer nuclear layer also presented a better outcome in the combined transplantation. Importantly, grafted cells in the combination migrated better, both longitudinally and latitudinally, than single transplantation. The photoreceptor differentiation of grafted cells in the retina of RCS rats receiving combined transplantation also showed a higher ratio than single transplantation. Finally, activation of microglia and the gliosis of Müller cells were more effectively suppressed in combined transplantation, indicating better immunomodulatory and anti-gliosis effects. Taken together, combining the transplantation of HRPCs and HBMSCs is a more effective strategy in stem cell-based therapy for retinal degenerative diseases.
Collapse
|
41
|
Delic NC, Lyons JG, Di Girolamo N, Halliday GM. Damaging Effects of Ultraviolet Radiation on the Cornea. Photochem Photobiol 2017; 93:920-929. [PMID: 27935054 DOI: 10.1111/php.12686] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023]
Abstract
The cornea sits at the anterior aspect of the eye and, like the skin, is highly exposed to ultraviolet radiation (UVR). The cornea blocks a significant proportion of UVB from reaching the posterior structures of the eye. However, UVA can penetrate the full thickness of the cornea, even reaching the anterior portion of the lens. Epidemiological data indicate that UVR is a contributing factor for a multitude of diseases of the cornea including pterygium, photokeratitis, climatic droplet keratopathy and ocular surface squamous neoplasia (OSSN), although the pathogenic mechanisms of each require further elucidation. UVR is a well-known genotoxic agent, and its effects have been well characterized in organs such as the skin. However, we are only beginning to identify its effects on the cornea, such as the UVR signature C → T and CC → TT transversions identified by sequencing and increased proliferative and shedding rates in response to UVR exposure. Alarmingly, a single low-dose exposure of UVR to the cornea is sufficient to elicit genetic, molecular and cellular changes, supporting the consideration of using protective measures, such as wearing sunglasses when outdoors. The aim of this review was to describe the adverse effects of UVR on the cornea.
Collapse
Affiliation(s)
- Naomi C Delic
- Discipline of Dermatology, Bosch Institute, University of Sydney, Camperdown, NSW, Australia.,Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Camperdown, NSW, Australia
| | - J Guy Lyons
- Discipline of Dermatology, Bosch Institute, University of Sydney, Camperdown, NSW, Australia.,Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Camperdown, NSW, Australia.,Sydney Head and Neck Cancer Institute, Cancer Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nick Di Girolamo
- Department of Pathology, School of Medical Sciences, University of New South Wales, Randwick, NSW, Australia
| | - Gary M Halliday
- Discipline of Dermatology, Bosch Institute, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
42
|
|
43
|
Tenconi PE, Giusto NM, Salvador GA, Mateos MV. Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response. Int J Biochem Cell Biol 2016; 81:67-75. [DOI: 10.1016/j.biocel.2016.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022]
|
44
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
45
|
Abstract
Eye involvement represents a common finding in patients with systemic autoimmune diseases, particularly rheumatoid arthritis, Sjogren syndrome, seronegative spondyloarthropathy, and antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. The eye is a privileged immune site but commensal bacteria are found on the ocular surface. The eye injury may be inflammatory, vascular or infectious, as well as iatrogenic, as in the case of hydroxychloroquine, chloroquine, corticosteroids, and bisphosphonates. Manifestations may affect different components of the eye, with episcleritis involving the episclera, a thin layer of tissue covering the sclera; scleritis being an inflammation of the sclera potentially leading to blindness; keratitis, referring to corneal inflammation frequently associated with scleritis; and uveitis as the inflammation of the uvea, including the iris, ciliary body, and choroid, subdivided into anterior, posterior, or panuveitis. As blindness may result from the eye involvement, clinicians should be aware of the possible manifestations and their management also independent of the ophthalmologist opinion as the therapeutic approach generally points to the underlying diseases. In some cases, the eye involvement may have a diagnostic implication, as for episcleritis in rheumatoid arthritis, or acute anterior uveitis in seronegative spondyloarthritis. Nonetheless, some conditions lack specificity, as in the case of dry eye which affects nearly 30 % of the general population. The aim of this review is to elucidate to non-ophthalmologists the major ocular complications of rheumatic diseases and their specific management and treatment options.
Collapse
Affiliation(s)
- Elena Generali
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Cantarini
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, Siena, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy.
- BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
46
|
Sen D, SoRelle ED, Liba O, Dalal R, Paulus YM, Kim TW, Moshfeghi DM, de la Zerda A. High-resolution contrast-enhanced optical coherence tomography in mice retinae. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:66002. [PMID: 27264492 PMCID: PMC4893203 DOI: 10.1117/1.jbo.21.6.066002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/02/2016] [Indexed: 05/14/2023]
Abstract
Optical coherence tomography (OCT) is a noninvasive interferometric imaging modality providing anatomical information at depths of millimeters and a resolution of micrometers. Conventional OCT images limit our knowledge to anatomical structures alone, without any contrast enhancement. Therefore, here we have, for the first time, optimized an OCT-based contrast-enhanced imaging system for imaging single cells and blood vessels in vivo inside the living mouse retina at subnanomolar sensitivity. We used bioconjugated gold nanorods (GNRs) as exogenous OCT contrast agents. Specifically, we used anti-mouse CD45 coated GNRs to label mouse leukocytes and mPEG-coated GNRs to determine sensitivity of GNR detection in vivo inside mice retinae. We corroborated OCT observations with hyperspectral dark-field microscopy of formalin-fixed histological sections. Our results show that mouse leukocytes that otherwise do not produce OCT contrast can be labeled with GNRs leading to significant OCT intensity equivalent to a 0.5 nM GNR solution. Furthermore, GNRs injected intravenously can be detected inside retinal blood vessels at a sensitivity of ∼0.5 nM, and GNR-labeled cells injected intravenously can be detected inside retinal capillaries by enhanced OCT contrast. We envision the unprecedented resolution and sensitivity of functionalized GNRs coupled with OCT to be adopted for longitudinal studies of retinal disorders.
Collapse
Affiliation(s)
- Debasish Sen
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Molecular Imaging Program at Stanford, 299 Campus Drive, Stanford, California 94305, United States
| | - Elliott D. SoRelle
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Biophysics Program, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Department of Electrical Engineering, 299 Campus Drive, Stanford, California 94305, United States
| | - Orly Liba
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Molecular Imaging Program at Stanford, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Department of Electrical Engineering, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Bio-X Program, 299 Campus Drive, Stanford, California, 94305, United States
| | - Roopa Dalal
- Stanford University, Department of Ophthalmology, 300 Pasteur Drive, Palo Alto, California 94304, United States
| | - Yannis M. Paulus
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
| | - Tae-Wan Kim
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
| | - Darius M. Moshfeghi
- Stanford University, Bio-X Program, 299 Campus Drive, Stanford, California, 94305, United States
- Stanford University, Department of Ophthalmology, Stanford Byers Eye Institute, 2452 Watson Court, Palo Alto, California 94303, United States
| | - Adam de la Zerda
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Molecular Imaging Program at Stanford, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Biophysics Program, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Department of Electrical Engineering, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Bio-X Program, 299 Campus Drive, Stanford, California, 94305, United States
- Address all correspondence to: Adam de la Zerda, E-mail:
| |
Collapse
|
47
|
Mac Nair CE, Schlamp CL, Montgomery AD, Shestopalov VI, Nickells RW. Retinal glial responses to optic nerve crush are attenuated in Bax-deficient mice and modulated by purinergic signaling pathways. J Neuroinflammation 2016; 13:93. [PMID: 27126275 PMCID: PMC4850653 DOI: 10.1186/s12974-016-0558-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/20/2016] [Indexed: 01/14/2023] Open
Abstract
Background Retinal ganglion cell (RGC) soma death is a consequence of optic nerve damage, including in optic neuropathies like glaucoma. The activation of the innate immune network in the retina after nerve damage has been linked to RGC pathology. Since the eye is immune privileged, innate immune functions are the responsibility of the glia, specifically the microglia, astrocytes, and Müller cells that populate the retina. Glial activation, leading to the production of inflammatory cytokines, is a hallmark feature of retinal injury resulting from optic nerve damage and purported to elicit secondary degeneration of RGC somas. Methods A mouse model of optic nerve crush (ONC) was used to study retinal glial activation responses. RGC apoptosis was blocked using Bax-deficient mice. Glial activation responses were monitored by quantitative PCR and immunofluorescent labeling in retinal sections of activation markers. ATP signaling pathways were interrogated using P2X receptor agonists and antagonists and Pannexin 1 (Panx1)-deficient mice with RGC-specific deletion. Results ONC induced activation of both macroglia and microglia in the retina, and both these responses were dramatically muted if RGC death was blocked by deletion of the Bax gene. Macroglial, but not microglial, activation was modulated by purinergic receptor activation. Release of ATP after optic nerve damage was not mediated by PANX1 channels in RGCs. Conclusions RGC death in response to ONC plays a principal stimulatory role in the retinal glial activation response. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0558-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caitlin E Mac Nair
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, 571A Medical Sciences-1300 University Ave, Madison, WI, 53706, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, 3170-10K/L MFCB, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, 571A Medical Sciences-1300 University Ave, Madison, WI, 53706, USA
| | - Angela D Montgomery
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, 571A Medical Sciences-1300 University Ave, Madison, WI, 53706, USA
| | - Valery I Shestopalov
- Department of Ophthalmology, University of Miami Miller School of Medicine, 900 N.W. 17th Street, Miami, FL, 33136, USA.,Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, 900 N.W. 17th Street, Miami, FL, 33136, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, 571A Medical Sciences-1300 University Ave, Madison, WI, 53706, USA.
| |
Collapse
|
48
|
Chiang J(PW, Gorin MB. Challenges confronting precision medicine in the context of inherited retinal disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1152159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
de Andrade FA, Fiorot SHS, Benchimol EI, Provenzano J, Martins VJ, Levy RA. The autoimmune diseases of the eyes. Autoimmun Rev 2016; 15:258-71. [DOI: 10.1016/j.autrev.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023]
|
50
|
Anaphylaxis to polymyxin B-trimethoprim eye drops. Ann Allergy Asthma Immunol 2016; 116:372. [PMID: 26922212 DOI: 10.1016/j.anai.2016.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 11/24/2022]
|