1
|
Wu C, Jiang ML, Pang T, Zhang CJ. Role of regulatory T cells in pathogenesis and therapeutics of myasthenia gravis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:267-281. [DOI: 10.1016/b978-0-443-13947-5.00036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Is Myasthenia Gravis a Real Complication of the COVID-19 Vaccine? A Case Report-Based Systematic Review. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:5009450. [PMID: 36164665 PMCID: PMC9509275 DOI: 10.1155/2022/5009450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Background Myasthenia gravis (MG) is a neuromuscular, autoimmune disease that causes weakness by impairing neuromuscular transmission. According to reports, vaccines can lead to autoimmunity in different ways, and COVID-19 vaccines are suggested to trigger MG. We conducted this systematic review to assess MG patients after the COVID-19 vaccination. Methods We collected 231 studies from four databases from inception to 26 March 2022. Results 4 case studies were selected from 231 research studies, and data were extracted based on inclusion criteria. In all cases, MG was reported following COVID-19 vaccination. Symptoms such as muscle weakness, numbness, and ptosis were common. The MG was confirmed through RNST, MRC, NCS, and AchR-binding antibody titer tests. Conclusion Although all cases of MG were diagnosed following appropriate tests, the sample size was small; therefore, further investigation is required to demonstrate the possible association between MG and COVID-19 vaccination.
Collapse
|
3
|
Chen K, Li Y, Yang H. Poor responses and adverse outcomes of myasthenia gravis after thymectomy: Predicting factors and immunological implications. J Autoimmun 2022; 132:102895. [PMID: 36041292 DOI: 10.1016/j.jaut.2022.102895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Myasthenia gravis (MG) has been recognized as a series of heterogeneous but treatable autoimmune conditions. As one of the indispensable therapies, thymectomy can achieve favorable prognosis especially in early-onset generalized MG patients with seropositive acetylcholine receptor antibody. However, poor outcomes, including worsening or relapse of MG, postoperative myasthenic crisis and even post-thymectomy MG, are also observed in certain scenarios. The responses to thymectomy may be associated with the general characteristics of patients, disease conditions of MG, autoantibody profiles, native or ectopic thymic pathologies, surgical-related factors, pharmacotherapy and other adjuvant modalities, and the presence of comorbidities and complications. However, in addition to these variations among individuals, pathological remnants and the abnormal immunological milieu and responses potentially represent major mechanisms that underlie the detrimental neurological outcomes after thymectomy. We underscore these plausible risk factors and discuss the immunological implications therein, which may be conducive to better managing the indications for thymectomy, to avoiding modifiable risk factors of poor responses and adverse outcomes, and to developing post-thymectomy preventive and therapeutic strategies for MG.
Collapse
Affiliation(s)
- Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Iaiza A, Tito C, Ganci F, Sacconi A, Gallo E, Masciarelli S, Fontemaggi G, Fatica A, Melis E, Petrozza V, Venuta F, Marino M, Blandino G, Fazi F. Long Non-Coding RNAs in the Cell Fate Determination of Neoplastic Thymic Epithelial Cells. Front Immunol 2022; 13:867181. [PMID: 35529877 PMCID: PMC9073009 DOI: 10.3389/fimmu.2022.867181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Thymic Epithelial Tumors (TETs) arise from epithelial cells of the thymus and are very rare neoplasms comprising Thymoma, Thymic carcinoma, and Thymic Neuroendocrine tumors that still require in-depth molecular characterization. Long non-coding RNAs (lncRNAs) are emerging as relevant gene expression modulators involved in the deregulation of several networks in almost all types of human cancer, including TETs. LncRNAs act at different control levels in the regulation of gene expression, from transcription to translation, and modulate several pathways relevant to cell fate determination under normal and pathological conditions. The activity of lncRNAs is strongly dependent on their expression, localization, and post-transcriptional modifications. Starting from our recently published studies, this review focuses on the involvement of lncRNAs in the acquisition of malignant traits by neoplastic thymic epithelial cells, and describes the possible use of these molecules as targets for the design of novel therapeutic approaches specific for TET. Furthermore, the involvement of lncRNAs in myasthenia gravis (MG)-related thymoma, which is still under investigation, is discussed.
Collapse
Affiliation(s)
- Alessia Iaiza
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
- Department of Life Science and Public Health, Histology and Embryology Unit, Catholic University of the Sacred Hearth, Rome, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Enrico Melis
- Thoracic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Petrozza
- Pathology Unit, ICOT, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, Sapienza University of Rome, Rome, Italy
| | - Mirella Marino
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Francesco Fazi, ; Giovanni Blandino, ; Mirella Marino,
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Francesco Fazi, ; Giovanni Blandino, ; Mirella Marino,
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Francesco Fazi, ; Giovanni Blandino, ; Mirella Marino,
| |
Collapse
|
5
|
Payet CA, You A, Fayet OM, Dragin N, Berrih-Aknin S, Le Panse R. Myasthenia Gravis: An Acquired Interferonopathy? Cells 2022; 11:cells11071218. [PMID: 35406782 PMCID: PMC8997999 DOI: 10.3390/cells11071218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/12/2023] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by antibodies against components of the neuromuscular junction, particularly the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG patients. In early-onset AChR-MG and thymoma-associated MG, an interferon type I (IFN-I) signature is clearly detected in the thymus. The origin of this chronic IFN-I expression in the thymus is not yet defined. IFN-I subtypes are normally produced in response to viral infection. However, genetic diseases called interferonopathies are associated with an aberrant chronic production of IFN-I defined as sterile inflammation. Some systemic autoimmune diseases also share common features with interferonopathies. This review aims to analyze the pathogenic role of IFN-I in these diseases as compared to AChR-MG in order to determine if AChR-MG could be an acquired interferonopathy.
Collapse
Affiliation(s)
- Cloé A Payet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Axel You
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Nadine Dragin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
6
|
Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21:163-175. [DOI: 10.1016/s1474-4422(21)00357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
|
7
|
Bortone F, Scandiffio L, Cavalcante P, Mantegazza R, Bernasconi P. Epstein-Barr Virus in Myasthenia Gravis: Key Contributing Factor Linking Innate Immunity with B-Cell-Mediated Autoimmunity. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epstein-Barr virus (EBV), a common human herpes virus latently infecting most of the world’s population with periodic reactivations, is the main environmental factor suspected to trigger and/or sustain autoimmunity by its ability to disrupt B-cell tolerance checkpoints. Myasthenia gravis (MG) is a prototypic autoimmune disorder, mostly caused by autoantibodies to acetylcholine receptor (AChR) of the neuromuscular junction, which cause muscle weakness and fatigability. Most patients display hyperplastic thymus, characterized by ectopic germinal center formation, chronic inflammation, exacerbated Toll-like receptor activation, and abnormal B-cell activation. After an overview on MG clinical features and intra-thymic pathogenesis, in the present chapter, we describe our main findings on EBV presence in MG thymuses, including hyperplastic and thymoma thymuses, in relationship with innate immunity activation and data from other autoimmune conditions. Our overall data strongly indicate a critical contribution of EBV to innate immune dysregulation and sustained B-cell-mediated autoimmune response in the pathological thymus of MG patients.
Collapse
|
8
|
Li H, Liu S, Han J, Li S, Gao X, Wang M, Zhu J, Jin T. Role of Toll-Like Receptors in Neuroimmune Diseases: Therapeutic Targets and Problems. Front Immunol 2021; 12:777606. [PMID: 34790205 PMCID: PMC8591135 DOI: 10.3389/fimmu.2021.777606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are a class of proteins playing a key role in innate and adaptive immune responses. TLRs are involved in the development and progression of neuroimmune diseases via initiating inflammatory responses. Thus, targeting TLRs signaling pathway may be considered as a potential therapy for neuroimmune diseases. However, the role of TLRs is elusive and complex in neuroimmune diseases. In addition to the inadequate immune response of TLRs inhibitors in the experiments, the recent studies also demonstrated that partial activation of TLRs is conducive to the production of anti-inflammatory factors and nervous system repair. Exploring the mechanism of TLRs in neuroimmune diseases and combining with developing the emerging drug may conquer neuroimmune diseases in the future. Herein, we provide an overview of the role of TLRs in several neuroimmune diseases, including multiple sclerosis, neuromyelitis optica spectrum disorder, Guillain-Barré syndrome and myasthenia gravis. Emerging difficulties and potential solutions in clinical application of TLRs inhibitors will also be discussed.
Collapse
Affiliation(s)
- Haixia Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Shengxian Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyan Gao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meng Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Serum irisin levels in patients with myasthenia gravis. Neurol Sci 2021; 43:2785-2790. [PMID: 34709479 DOI: 10.1007/s10072-021-05652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Myasthenia gravis (MG) is an autoimmune disorder whose main symptoms are muscle weakness and fatigue. Irisin is a novel skeletal muscle-derived myokine participating in several physiological and pathological processes. The initial objective of the project was to explore serum levels of irisin in patients with MG, as well as its correlation with disease severity. METHODS We retrospectively evaluated serum levels of irisin in 77 MG patients and 57 healthy controls (HCs) by enzyme-linked immunosorbent assay. Further, clinical parameters were measured properly. RESULTS Serum irisin levels were significantly elevated in MG patients compared with HCs (p < 0.001). Furthermore, serum irisin levels were associated with the myasthenia gravis activities of daily living score in ocular myasthenia gravis (OMG) patients (r = 0.476, p = 0.004), but there was no relationship to be considered of any relevant value in generalized myasthenia gravis (GMG) patients. Acetylcholine receptor antibody-positive MG patients had higher serum irisin levels compared with HCs. Thymoma, endotracheal intubation, or intensive care unit treatments subsequently were not found to have effect on serum levels of irisin, but tendencies of increase were observed in negative ones. CONCLUSIONS Serum irisin levels were elevated in patients with MG, suggesting its possible involvement in MG. And irisin is expected to be a signal to evaluate the activities of daily living of OMG patients, while its effect needs further study.
Collapse
|
10
|
Zhou Q, Zhou R, Yang H, Yang H. To Be or Not To Be Vaccinated: That Is a Question in Myasthenia Gravis. Front Immunol 2021; 12:733418. [PMID: 34603311 PMCID: PMC8485039 DOI: 10.3389/fimmu.2021.733418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness and abnormal fatigability due to the antibodies against postsynaptic receptors. Despite the individual discrepancy, patients with MG share common muscle weakness, autoimmune dysfunction, and immunosuppressive treatment, which predispose them to infections that can trigger or exacerbate MG. Vaccination, as a mainstay of prophylaxis, is a major management strategy. However, the past years have seen growth in vaccine hesitancy, owing to safety and efficacy concerns. Ironically, vaccines, serving as an essential and effective means of defense, may induce similar immune cross-reactivity to what they are meant to prevent. Herein, we outline the progress in vaccination, review the current status, and postulate the clinical association among MG, vaccination, and immunosuppression. We also address safety and efficacy concerns of vaccination in MG, in relation to COVID-19. Since only a handful of studies have reported vaccination in individuals with MG, we further review the current clinical studies and guidelines in rheumatic diseases. Overall, our reviews offer a reference to guide future vaccine clinical decision-making and improve the management of MG patients.
Collapse
Affiliation(s)
| | | | | | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Handunnetthi L, Knezevic B, Kasela S, Burnham KL, Milani L, Irani SR, Fang H, Knight JC. Genomic Insights into Myasthenia Gravis Identify Distinct Immunological Mechanisms in Early and Late Onset Disease. Ann Neurol 2021; 90:455-463. [PMID: 34279044 PMCID: PMC8581766 DOI: 10.1002/ana.26169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The purpose of this study was to identify disease relevant genes and explore underlying immunological mechanisms that contribute to early and late onset forms of myasthenia gravis. METHODS We used a novel genomic methodology to integrate genomewide association study (GWAS) findings in myasthenia gravis with cell-type specific information, such as gene expression patterns and promotor-enhancer interactions, in order to identify disease-relevant genes. Subsequently, we conducted additional genomic investigations, including an expression quantitative analysis of 313 healthy people to provide mechanistic insights. RESULTS We identified several genes that were specifically linked to early onset myasthenia gravis including TNIP1, ORMDL3, GSDMB, and TRAF3. We showed that regulators of toll-like receptor 4 signaling were enriched among these early onset disease genes (fold enrichment = 3.85, p = 6.4 × 10-3 ). In contrast, T-cell regulators CD28 and CTLA4 were exclusively linked to late onset disease. We identified 2 causal genetic variants (rs231770 and rs231735; posterior probability = 0.98 and 0.91) near the CTLA4 gene. Subsequently, we demonstrated that these causal variants result in low expression of CTLA4 (rho = -0.66, p = 1.28 × 10-38 and rho = -0.52, p = 7.01 × 10-22 , for rs231735 and rs231770, respectively). INTERPRETATION The disease-relevant genes identified in this study are a unique resource for many disciplines, including clinicians, scientists, and the pharmaceutical industry. The distinct immunological pathways linked to early and late onset myasthenia gravis carry important implications for drug repurposing opportunities and for future studies of drug development. ANN NEUROL 2021;90:455-463.
Collapse
Affiliation(s)
- Lahiru Handunnetthi
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Bogdan Knezevic
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Silva Kasela
- Estonian Genome Centre, Institute of GenomicsUniversity of TartuTartuEstonia
| | | | - Lili Milani
- Estonian Genome Centre, Institute of GenomicsUniversity of TartuTartuEstonia
| | - Sarosh R. Irani
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Hai Fang
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | | |
Collapse
|
12
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
13
|
Detection of Microbiota from Human Thymus of Myasthenia Gravis. Indian J Surg 2020. [DOI: 10.1007/s12262-020-02202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
14
|
Li N, Wang L, Cao N, Zhang L, Han X, Yang L. Early pregnancy affects the expression of toll-like receptor pathway in ovine thymus. Reprod Biol 2020; 20:547-554. [DOI: 10.1016/j.repbio.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
|
15
|
Cron MA, Guillochon É, Kusner L, Le Panse R. Role of miRNAs in Normal and Myasthenia Gravis Thymus. Front Immunol 2020; 11:1074. [PMID: 32587589 PMCID: PMC7297979 DOI: 10.3389/fimmu.2020.01074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
The thymus, a primary lymphoid organ, provides a complex environment essential for the generation of the T-cell repertoire. Thymic alterations occur during life either in the context of thymic involution upon aging or the pathophysiological context of Myasthenia Gravis (MG). These changes involve complicated regulatory networks, in which microRNAs (miRNAs) are key players. Here, we analyzed the role of miRNAs in thymocyte maturation and differentiation sustained by thymic epithelial cells. We compared data from the literature regarding the role of mouse thymic miRNAs and original data obtained from a human thymic miRnome study. We identified a set of highly expressed miRNAs defined as ThymiRs and investigated miRNA expression in infants as compared to adults to determine those associated with human thymic involution. Thymic changes are also frequently observed in MG, an autoimmune disease which results in the production of anti-acetylcholine receptor (AChR) antibodies that lead to muscle weaknesses. Alterations such as thymoma in late-onset MG patients and hyperplasia with ectopic germinal centers (GCs) in early-onset (EOMG) patients are found. Thymic miRNA expression has been studied in AChR-MG patients both in thymoma-associated MG (TAMG) and EOMG, and their function through their mRNA targets investigated. Most of the dysregulated thymic miRNAs in EOMG are associated with GC development, such as miR-7, miR-24, miR-139, miR-143, miR-145, miR-146, miR-150, miR-452, miR-548 or thymic inflammation, such as miR-125b, miR-146, or miR-29. Understanding these pathways may provide therapeutic targets or biomarkers of disease manifestations.
Collapse
Affiliation(s)
- Mélanie A Cron
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Émilie Guillochon
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Linda Kusner
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
16
|
Wang L, Zhang L. Emerging Roles of Dysregulated MicroRNAs in Myasthenia Gravis. Front Neurosci 2020; 14:507. [PMID: 32508584 PMCID: PMC7253668 DOI: 10.3389/fnins.2020.00507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Myasthenia gravis (MG) is a rare acquired autoimmune neuromuscular disease. Autoantibodies, cellular immunity, complement, and cytokines are involved in the pathogenesis of MG. It is characterized by the dysfunction of neuromuscular junction transmission and skeletal muscle weakness. MicroRNAs (miRNAs) are non-coding small molecule ribonucleic acids that regulate various biological processes (e.g., development, differentiation, and immunity) at the transcriptional and post-transcriptional levels of gene expression. miRNAs play an important regulatory role in the pathogenesis of autoimmune diseases, including MG. In recent studies, the functional mechanisms underlying the role of miRNAs in the pathogenesis of MG have received increasing attention. miRNAs are highly stable and have high specificity in peripheral body fluids. Therefore, the miRNAs in body fluids may represent promising biomarkers for determining the prognosis of MG and the efficacy of treatment. This article reviews the role of miRNAs in the pathogenesis of MG, highlights the potential of miRNAs as new biomarkers for the diagnosis of MG, and deepens our understanding of disease processes.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Bortone F, Scandiffio L, Marcuzzo S, Bonanno S, Frangiamore R, Motta T, Antozzi C, Mantegazza R, Cavalcante P, Bernasconi P. miR-146a in Myasthenia Gravis Thymus Bridges Innate Immunity With Autoimmunity and Is Linked to Therapeutic Effects of Corticosteroids. Front Immunol 2020; 11:142. [PMID: 32210951 PMCID: PMC7075812 DOI: 10.3389/fimmu.2020.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor (TLR)-mediated innate immune responses are critically involved in the pathogenesis of myasthenia gravis (MG), an autoimmune disorder affecting neuromuscular junction mainly mediated by antiacetylcholine receptor antibodies. Considerable evidence indicate that uncontrolled TLR activation and chronic inflammation significantly contribute to hyperplastic changes and germinal center (GC) formation in the MG thymus, ultimately leading to autoantibody production and autoimmunity. miR-146a is a key modulator of innate immunity, whose dysregulation has been associated with autoimmune diseases. It acts as inhibitor of TLR pathways, mainly by targeting the nuclear factor kappa B (NF-κB) signaling transducers, interleukin 1 receptor associated kinase 1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6); miR-146a is also able to target c-REL, inducible T-cell costimulator (ICOS), and Fas cell surface death receptor (FAS), known to regulate B-cell function and GC response. Herein, we investigated the miR-146a contribution to the intrathymic MG pathogenesis. By real-time PCR, we found that miR-146a expression was significantly downregulated in hyperplastic MG compared to control thymuses; contrariwise, IRAK1, TRAF6, c-REL, and ICOS messenger RNA (mRNA) levels were upregulated and negatively correlated with miR-146a levels. Microdissection experiments revealed that miR-146a deficiency in hyperplastic MG thymuses was not due to GCs, but restricted to the GC-surrounding medulla, characterized by IRAK1 overexpression. We also showed higher c-REL and ICOS mRNA levels, and lower FAS mRNA levels, in GCs than in the remaining medulla, according to the contribution of these molecules in GC formation. By double immunofluorescence, an increased proportion of IRAK1-expressing dendritic cells and macrophages was found in hyperplastic MG compared to control thymuses, along with GC immunoreactivity for c-REL. Interestingly, in corticosteroid-treated MG patients intrathymic miR-146a and mRNA target levels were comparable to those of controls, suggesting that immunosuppressive therapy may restore the microRNA (miRNA) levels. Indeed, an effect of prednisone on miR-146a expression was demonstrated in vitro on peripheral blood cells. Serum miR-146a levels were lower in MG patients compared to controls, indicating dysregulation of the circulating miRNA. Our overall findings strongly suggest that defective miR-146a expression could contribute to persistent TLR activation, lack of inflammation resolution, and hyperplastic changes in MG thymuses, thus linking TLR-mediated innate immunity to B-cell-mediated autoimmunity. Furthermore, they unraveled a new mechanism of action of corticosteroids in inducing control of autoimmunity in MG via miR-146a.
Collapse
Affiliation(s)
- Federica Bortone
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Letizia Scandiffio
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Bonanno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rita Frangiamore
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Teresio Motta
- Department of Pathological Anatomy, ASST-Bergamo Est Ospedale Bolognini Seriate, Bergamo, Italy
| | - Carlo Antozzi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Cavalcante
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
18
|
Fiorillo AA, Heier CR, Huang YF, Tully CB, Punga T, Punga AR. Estrogen Receptor, Inflammatory, and FOXO Transcription Factors Regulate Expression of Myasthenia Gravis-Associated Circulating microRNAs. Front Immunol 2020; 11:151. [PMID: 32153563 PMCID: PMC7046803 DOI: 10.3389/fimmu.2020.00151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate important intracellular biological processes. In myasthenia gravis (MG), a disease-specific pattern of elevated circulating miRNAs has been found, and proposed as potential biomarkers. These elevated miRNAs include miR-150-5p, miR-21-5p, and miR-30e-5p in acetylcholine receptor antibody seropositive (AChR+) MG and miR-151a-3p, miR-423-5p, let-7a-5p, and let-7f-5p in muscle-specific tyrosine kinase antibody seropositive (MuSK+) MG. In this study, we examined the regulation of each of these miRNAs using chromatin immunoprecipitation sequencing (ChIP-seq) data from the Encyclopedia of DNA Elements (ENCODE) to gain insight into the transcription factor pathways that drive their expression in MG. Our aim was to look at the transcription factors that regulate miRNAs and then validate some of those in vivo with cell lines that have sufficient expression of these transcription factors This analysis revealed several transcription factor families that regulate MG-specific miRNAs including the Forkhead box or the FOXO proteins (FoxA1, FoxA2, FoxM1, FoxP2), AP-1, interferon regulatory factors (IRF1, IRF3, IRF4), and signal transducer and activator of transcription proteins (Stat1, Stat3, Stat5a). We also found binding sites for nuclear factor of activated T-cells (NFATC1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), early growth response factor (EGR1), and the estrogen receptor 1 (ESR1). AChR+ MG miRNAs showed a stronger overall regulation by the FOXO transcription factors, and of this group, miR-21-5p, let-7a, and let 7f were found to possess ESR1 binding sites. Using a murine macrophage cell line, we found activation of NF-κB -mediated inflammation by LPS induced expression of miR-21-5p, miR-30e-5p, miR-423-5p, let-7a, and let-7f. Pre-treatment of cells with the anti-inflammatory drugs prednisone or deflazacort attenuated induction of inflammation-induced miRNAs. Interestingly, the activation of inflammation induced packaging of the AChR+-specific miRNAs miR-21-5p and miR-30e-5p into exosomes, suggesting a possible mechanism for the elevation of these miRNAs in MG patient serum. In conclusion, our study summarizes the regulatory transcription factors that drive expression of AChR+ and MuSK+ MG-associated miRNAs. Our findings of elevated miR-21-5p and miR-30e-5p expression in immune cells upon inflammatory stimulation and the suppressive effect of corticosteroids strengthens the putative role of these miRNAs in the MG autoimmune response.
Collapse
Affiliation(s)
- Alyson A Fiorillo
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, United States.,Genomics & Precision Medicine, The George Washington University, Washington, DC, United States
| | - Christopher R Heier
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, United States.,Genomics & Precision Medicine, The George Washington University, Washington, DC, United States
| | - Yu-Fang Huang
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Christopher B Tully
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, United States
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Jiang XH, Chen Y, Ding YY, Qiu H, Zhou DY, Qiu CL. Effect of Grilled Nux Vomica on Differential RNA Expression Profile of Gastrocnemius Muscle and Toll‑Like Receptor 4 (TLR-4)/Nuclear Factor kappa B (NF-κB) Signaling in Experimental Autoimmune Myasthenia Gravis Rats. Med Sci Monit 2020; 26:e919150. [PMID: 32052794 PMCID: PMC7034401 DOI: 10.12659/msm.919150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is a progressive autoimmune disorder caused by the production of antibodies directed against acetylcholine receptors (AChRs), resulting in muscle weakness and fatigue. This study aimed to explore the effect and mechanism of grilled nux vomica (GNV) in experimental autoimmune myasthenia gravis (EAMG) rats. MATERIAL AND METHODS Rat 97-116 peptides were used to mediate disease in the EAMG model in SPF female Lewis rats. The treatment groups received grilled nux vomica (75 mg/kg, 150 mg/kg, and 225 mg/kg). The autoantibody and inflammatory cytokines levels were measured by enzyme-linked immunosorbent assay (ELISA). RNA profiling was performed on high-dose and model group rats. Profiling results and TLR-4/NF-kappaB signaling were validated by q-PCR and Western blot analysis. RESULTS The results showed that GNV could attenuate the symptoms of EAMG rats. There was a decreased level of AChR-ab, IFN-γ, TNF-alpha, IL-2, IL-4, and IL-17 levels, and an increased level of TGF-ß1. In total, 235 differentially expressed genes (DEGs), consisting of 175 upregulated DEGs and 60 downregulated DEGs, were identified. Functional annotation demonstrated that DEGs were largely associated with leukocyte cell-cell adhesion, NF-kappa B signaling pathway, muscle contraction, and cardiac muscle contraction pathway. Rac2, Itgb2, Lcp2, Myl3, and Tnni1 were considered as hub genes with a higher degree value in the protein-protein interaction (PPI) network. The q-PCR and Western blot results of hub genes were consistent with RNA profiles. GNV treatment also significantly reduced the TLR-4 and NF-kappaB p65 protein expression in EAMG rats. CONCLUSIONS These results indicate that grilled nux vomica ameliorates EAMG by depressing the TLR-4/NF-kappaB signaling pathway, and hub genes may serve as potential targets for MG treatment.
Collapse
Affiliation(s)
- Xu Hong Jiang
- Department of Emergency Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Yi Chen
- Department of Emergency Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Yang Yang Ding
- Department of Emergency Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Hui Qiu
- Department of Traditional Chinese Medicine (TCM), Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Di Yi Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Chang Lin Qiu
- Department of Neurology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
20
|
Lefeuvre CMJ, Payet CA, Fayet OM, Maillard S, Truffault F, Bondet V, Duffy D, de Montpreville V, Ghigna MR, Fadel E, Mansuet-Lupo A, Alifano M, Validire P, Gossot D, Behin A, Eymard B, Berrih-Aknin S, Le Panse R. Risk factors associated with myasthenia gravis in thymoma patients: The potential role of thymic germinal centers. J Autoimmun 2020; 106:102337. [DOI: 10.1016/j.jaut.2019.102337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
|
21
|
Rinaldi E, Consonni A, Cordiglieri C, Sacco G, Crasà C, Fontana A, Morelli L, Elli M, Mantegazza R, Baggi F. Therapeutic Effect of Bifidobacterium Administration on Experimental Autoimmune Myasthenia Gravis in Lewis Rats. Front Immunol 2019; 10:2949. [PMID: 31956324 PMCID: PMC6951413 DOI: 10.3389/fimmu.2019.02949] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Beneficial effects of probiotics on gut microbiota homeostasis and inflammatory immune responses suggested the investigation of their potential clinical efficacy in experimental models of autoimmune diseases. Indeed, administration of two bifidobacteria and lactobacilli probiotic strains prevented disease manifestations in the Lewis rat model of Myasthenia Gravis (EAMG). Here, we demonstrate the clinical efficacy of therapeutic administration of vital bifidobacteria (i.e., from EAMG onset). The mechanisms involved in immunomodulation were investigated with ex vivo and in vitro experiments. Improvement of EAMG symptoms was associated to decreased anti-rat AChR antibody levels, and differential expression of TGFβ and FoxP3 immunoregulatory transcripts in draining lymph nodes and spleen of treated-EAMG rats. Exposure of rat bone marrow-derived dendritic cells to bifidobacteria or lactobacilli strains upregulated toll-like receptor 2 mRNA expression, a key molecule involved in bacterium recognition via lipotheicoic acid. Live imaging experiments of AChR-specific effector T cells, co-cultured with BMDCs pre-exposed to bifidobacteria, demonstrated increased percentages of motile effector T cells, suggesting a hindered formation of TCR-peptide-MHC complex. Composition of gut microbiota was studied by 16S rRNA gene sequencing, and α and β diversity were determined in probiotic treated EAMG rats, with altered ratios between Tenericutes and Verrucomicrobia (phylum level), and Ruminococcaceae and Lachnospiraceae (family level). Moreover, the relative abundance of Akkermansia genus was found increased compared to healthy and probiotic treated EAMG rats. In conclusion, our findings confirms that the administration of vital bifidobacteria at EAMG onset has beneficial effects on disease progression; this study further supports preclinical research in human MG to evaluate probiotic efficacy as supplementary therapy in MG.
Collapse
Affiliation(s)
- Elena Rinaldi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Consonni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Cordiglieri
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Grazia Sacco
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Crasà
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marina Elli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fulvio Baggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The current article reviews the recent advances in the field of myasthenia gravis, which span from autoantibody profiling and pathogenic mechanisms to therapy innovation. The overview is highlighting specifically the data and the needs of targeted treatments in the light of precision medicine in myasthenia gravis. RECENT FINDINGS Novel data published recently further increased our knowledge on myasthenia gravis. The use of cell-based assays has greatly improved autoantibody detection in myasthenia gravis patients, and the mechanisms of action of these antibodies have been described. The role of Toll-like receptor activation in the generation of thymic alterations and anti-acetylcholine receptor autosensitization has been further investigated implementing our understanding on the relationships between innate immunity and autoimmunity. Additional studies have been focused on the alterations of T-cell/B-cell regulatory mechanisms in thymus and peripheral blood of myasthenia gravis patients. microRNAs and genetic factors are also emerging as key biomarkers in myasthenia gravis pathogenesis and prediction of drug efficacy in individual patients. SUMMARY The recent immunological and pathological findings in myasthenia gravis promise to improve myasthenia gravis treatment, via the development of more precise and personalized therapies.
Collapse
|
23
|
Li S, Cao Y, Li L, Zhang H, Lu X, Bo C, Kong X, Liu Z, Chen L, Liu P, Jiao Y, Wang J, Ning S, Wang L. Building the drug-GO function network to screen significant candidate drugs for myasthenia gravis. PLoS One 2019; 14:e0214857. [PMID: 30947317 PMCID: PMC6448860 DOI: 10.1371/journal.pone.0214857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease. In recent years, considerable evidence has indicated that Gene Ontology (GO) functions, especially GO-biological processes, have important effects on the mechanisms and treatments of different diseases. However, the roles of GO functions in the pathogenesis and treatment of MG have not been well studied. This study aimed to uncover the potential important roles of risk-related GO functions and to screen significant candidate drugs related to GO functions for MG. Based on MG risk genes, 238 risk GO functions and 42 drugs were identified. Through constructing a GO function network, we discovered that positive regulation of NF-kappaB transcription factor activity (GO:0051092) may be one of the most important GO functions in the mechanism of MG. Furthermore, we built a drug-GO function network to help evaluate the latent relationship between drugs and GO functions. According to the drug-GO function network, 5 candidate drugs showing promise for treating MG were identified. Indeed, 2 out of 5 candidate drugs have been investigated to treat MG. Through functional enrichment analysis, we found that the mechanisms between 5 candidate drugs and associated GO functions may involve two vital pathways, specifically hsa05332 (graft-versus-host disease) and hsa04940 (type I diabetes mellitus). More interestingly, most of the processes in these two pathways were consistent. Our study will not only reveal a new perspective on the mechanisms and novel treatment strategies of MG, but also will provide strong support for research on GO functions.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhaojun Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lixia Chen
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Peifang Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yang Jiao
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (LW); (SN); (JW)
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (LW); (SN); (JW)
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (LW); (SN); (JW)
| |
Collapse
|
24
|
Nanini HF, Bernardazzi C, Castro F, de Souza HSP. Damage-associated molecular patterns in inflammatory bowel disease: From biomarkers to therapeutic targets. World J Gastroenterol 2018; 24:4622-4634. [PMID: 30416310 PMCID: PMC6224468 DOI: 10.3748/wjg.v24.i41.4622] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
The chronic inflammatory process underlying inflammatory bowel disease (IBD), comprising Crohn’s disease and ulcerative colitis, derives from the interplay of several components in a genetically susceptible host. These components include environmental elements and gut microbiota a dysbiosis. For decades, immune abnormalities have been investigated as critically important in IBD pathogenesis, and attempts to develop effective therapies have predominantly targeted the immune system. Nevertheless, immune events represent only one of the constituents contributing to IBD pathogenesis within the context of the complex cellular and molecular network underlying chronic intestinal inflammation. These factors need to be appreciated within the milieu of non-immune components. Damage-associated molecular patterns (DAMPs), which are essentially endogenous stress proteins expressed or released as a result of cell or tissue damage, have been shown to act as direct pro-inflammatory mediators. Excessive or persistent signalling mediated by such molecules can underlie several chronic inflammatory disorders, including IBD. The release of endogenous DAMPs amplifies the inflammatory response driven by immune and non-immune cells and promotes epigenetic reprogramming in IBD. The effects determine pathologic changes, which may sustain chronic intestinal inflammation and also underlie specific disease phenotypes. In addition to highlighting the potential use of DAMPs such as calprotectin as biomarkers, research on DAMPs may reveal novel mechanistic associations in IBD pathogenesis and is expected to uncover putative therapeutic targets.
Collapse
Affiliation(s)
- Hayandra Ferreira Nanini
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Claudio Bernardazzi
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Fernando Castro
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Heitor Siffert Pereira de Souza
- Serviço de Gastroenterologia e Laboratório Multidisciplinar de Pesquisa, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro, RJ 22281-100, Brazil
| |
Collapse
|
25
|
Consonni A, Cordiglieri C, Rinaldi E, Marolda R, Ravanelli I, Guidesi E, Elli M, Mantegazza R, Baggi F. Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget 2018; 9:22269-22287. [PMID: 29854277 PMCID: PMC5976463 DOI: 10.18632/oncotarget.25170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Probiotics beneficial effects on the host are associated with regulation of the intestinal microbial homeostasis and with modulation of inflammatory immune responses in the gut and in periphery. In this study, we investigated the clinical efficacy of two lactobacillus and two bifidobacterium probiotic strains in experimental autoimmune myasthenia gravis (EAMG) and experimental autoimmune encephalomyelitis (EAE) models, induced in Lewis rats. Treatment with probiotics led to less severe disease manifestation in both models; ex vivo analyses showed preservation of neuromuscular junction in EAMG and myelin content in EAE spinal cord. Immunoregulatory transcripts were found differentially expressed in gut associated lymphoid tissue and in peripheral immunocompetent organs. Feeding EAMG animals with probiotics resulted in increased levels of Transforming Growth Factor-β (TGFβ) in serum, and increased percentages of regulatory T cells (Treg) in peripheral blood leukocyte. Exposure of immature dendritic cells to probiotics induced their maturation toward an immunomodulatory phenotype, and secretion of TGFβ. Our data showed that bifidobacteria and lactobacilli treatment effectively modulates disease symptoms in EAMG and EAE models, and support further investigations to evaluate their use in autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Consonni
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Chiara Cordiglieri
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Rinaldi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Roberta Marolda
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Ilaria Ravanelli
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Guidesi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Marina Elli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Fulvio Baggi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| |
Collapse
|
26
|
Cavalcante P, Barzago C, Baggi F, Antozzi C, Maggi L, Mantegazza R, Bernasconi P. Toll-like receptors 7 and 9 in myasthenia gravis thymus: amplifiers of autoimmunity? Ann N Y Acad Sci 2018; 1413:11-24. [PMID: 29363775 DOI: 10.1111/nyas.13534] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
Pathogen infections and dysregulated Toll-like receptor (TLR)-mediated innate immune responses are suspected to play key roles in autoimmunity. Among TLRs, TLR7 and TLR9 have been implicated in several autoimmune conditions, mainly because of their ability to promote abnormal B cell activation and survival. Recently, we provided evidence of Epstein-Barr virus (EBV) persistence and reactivation in the thymus of myasthenia gravis (MG) patients, suggesting an involvement of EBV in the intrathymic pathogenesis of the disease. Considerable data highlight the existence of pathogenic crosstalk among EBV, TLR7, and TLR9: EBV elicits TLR7/9 signaling, which in turn can enhance B cell dysfunction and autoimmunity. In this article, after a brief summary of data demonstrating TLR activation in MG thymus, we provide an overview on the contribution of TLR7 and TLR9 to autoimmune diseases and discuss our recent findings indicating a pivotal role for these two receptors, along with EBV, in driving, perpetuating, and/or amplifying intrathymic B cell dysregulation and autoimmune responses in MG. Development of therapeutic approaches targeting TLR7 and TLR9 signaling could be a novel strategy for treating the chronic inflammatory autoimmune process in myasthenia gravis.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Claudia Barzago
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Fulvio Baggi
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Carlo Antozzi
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Lorenzo Maggi
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Renato Mantegazza
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Pia Bernasconi
- Neurology IV, Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", Milan, Italy
| |
Collapse
|
27
|
Zhang P, Yang CL, Liu RT, Li H, Zhang M, Zhang N, Yue LT, Wang CC, Dou YC, Duan RS. Toll-like receptor 9 antagonist suppresses humoral immunity in experimental autoimmune myasthenia gravis. Mol Immunol 2018; 94:200-208. [PMID: 29331804 DOI: 10.1016/j.molimm.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/28/2023]
Abstract
Recent studies have demonstrated the important role of toll-like receptor 9 (TLR9) signalling in autoimmune diseases, but its role in myasthenia gravis (MG) has not been fully established. We show herein that blocking TLR9 signalling via the suppressive oligodeoxynucleotide (ODN) H154 alleviated the symptoms of experimental autoimmune myasthenia gravis (EAMG). With the downregulation of dendritic cells (DCs), TLR9 interruption reduced follicular helper T cells (Tfh) and germinal centre (GC) B cells, leading to decreased antibody production. In addition, TLR9+ B cells as well as total B cells in the spleen were inhibited by H154. These findings highlight the critical role of TLR9 in EAMG and suggest that the inhibition of the TLR9 pathway might be a potential pharmacological strategy for the treatment of myasthenia gravis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Ru-Tao Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Na Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Long-Tao Yue
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Cong-Cong Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|
28
|
Cron MA, Maillard S, Villegas J, Truffault F, Sudres M, Dragin N, Berrih-Aknin S, Le Panse R. Thymus involvement in early-onset myasthenia gravis. Ann N Y Acad Sci 2017; 1412:137-145. [DOI: 10.1111/nyas.13519] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Mélanie A. Cron
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Solène Maillard
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - José Villegas
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Frédérique Truffault
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Muriel Sudres
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Nadine Dragin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Sonia Berrih-Aknin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Rozen Le Panse
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| |
Collapse
|
29
|
Cavalcante P, Marcuzzo S, Franzi S, Galbardi B, Maggi L, Motta T, Ghislandi R, Buzzi A, Spinelli L, Novellino L, Baggi F, Antozzi C, Conforti F, De Pas TM, Barberis M, Bernasconi P, Mantegazza R. Epstein-Barr virus in tumor-infiltrating B cells of myasthenia gravis thymoma: an innocent bystander or an autoimmunity mediator? Oncotarget 2017; 8:95432-95449. [PMID: 29221139 PMCID: PMC5707033 DOI: 10.18632/oncotarget.20731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
The thymus plays a key role in myasthenia gravis (MG), a B cell-mediated autoimmune disorder affecting neuromuscular junction. Most MG patients have thymic abnormalities, including hyperplasia and thymoma, a neoplasm of thymic epithelial cells. Epstein-Barr virus (EBV) is associated with autoimmune diseases and tumors. Recently, we showed EBV persistence and reactivation in hyperplastic MG thymuses, suggesting that EBV might contribute to intra-thymic B cell dysregulation in MG patients. Here, we investigated EBV involvement in thymoma-associated MG, by searching for EBV markers in MG (n=26) and non-MG (n=14) thymomas. EBV DNA and EBV-encoded small nuclear RNA (EBER) 1 transcript were detected in 14/26 (53.8%) and 22/26 (84.6%) MG thymomas, and only in 3 of 14 (21.4%) non-MG thymomas. Latent EBNA2 and late gp350/220 lytic transcripts were undetectable in all, but one, thymomas, and early lytic BZLF1 transcript was absent in all samples, suggesting that early infection events and EBV reactivation were very rare in thymomas. EBER1 and 2-positive cells were detected in MG, but not in non-MG, thymomas, as well as cells expressing EBV latency proteins (EBNA1, LMP1, LMP2A), that were mainly of B cell phenotype, indicating EBV association with MG rather than with thymoma. Toll-like receptor (TLR) 3 transcriptional levels were higher in MG than non-MG thymomas and positively correlated with EBER1 levels, suggesting a role for EBERs in TLR3 activation. Our findings show that EBV is commonly present in thymoma-infiltrating B cells of myasthenic patients, indicating a contribution of EBV to B cell-mediated autoreactivity in MG associated with thymic tumor.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Sara Franzi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Barbara Galbardi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Teresio Motta
- Department of Pathological Anatomy, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Raffaella Ghislandi
- Department of Pathological Anatomy, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Antonella Buzzi
- Department of Pathological Anatomy, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Luisella Spinelli
- Department of General Surgery, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Lorenzo Novellino
- Department of General Surgery, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Fulvio Baggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Carlo Antozzi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Fabio Conforti
- Unit of Sarcomas and Thymomas, European Institute of Oncology, 20136 Milan, Italy
| | | | - Massimo Barberis
- Histopathology and Molecular Diagnostics Unit, European Institute of Oncology, 20136 Milan, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| |
Collapse
|
30
|
Li HP, Chen PG, Liu FT, Zhu HS, Jiao XQ, Zhong K, Guo YJ, Zha GM, Han LQ, Lu WF, Wang YY, Yang GY. Characterization and anti-inflammation role of swine IFITM3 gene. Oncotarget 2017; 8:73579-73589. [PMID: 29088728 PMCID: PMC5650283 DOI: 10.18632/oncotarget.20568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
IFITM3 is involved in cell adhesion, apoptosis, immune, and antivirus activity. Furthermore, IFITM3 gene has been considered as a preferential marker for inflammatory diseases, and positive correlation to pathological grades. Therefore, we assumed that IFITM3 was regulated by different signal pathways. To better understand IFITM3 function in inflammatory response, we cloned swine IFITM3 gene, and detected IFITM3 distribution in tissues, as well as characterized this gene. Results indicated that the length of swine IFITM3 gene was 438 bp, encoding 145 amino acids. IFITM3 gene expression abundance was higher in spleen and lungs. Moreover, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, finally obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited time-dependent effect for LPS treatment. To further demonstrate the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling molecules. However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells. In conclusion, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation.
Collapse
Affiliation(s)
- He-Ping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Pei-Ge Chen
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fu-Tao Liu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Shui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xian-Qin Jiao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yu-Jie Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guang-Ming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Li-Qiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wei-Fei Lu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Robinet M, Villeret B, Maillard S, Cron MA, Berrih-Aknin S, Le Panse R. Use of Toll-Like Receptor Agonists to Induce Ectopic Lymphoid Structures in Myasthenia Gravis Mouse Models. Front Immunol 2017; 8:1029. [PMID: 28970832 PMCID: PMC5609563 DOI: 10.3389/fimmu.2017.01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. MG symptoms are characterized by muscle weaknesses. The thymus of MG patients is very often abnormal and possesses all the characteristics of tertiary lymphoid organs such as neoangiogenesis processes, overexpression of inflammatory cytokines and chemokines, and infiltration of B lymphocytes leading to ectopic germinal center (GC) development. We previously demonstrated that injections of mice with polyinosinic–polycytidylic acid [Poly(I:C)], a synthetic double-stranded RNA mimicking viral infection, induce thymic changes and trigger MG symptoms. Upon Poly(I:C) injections, we observed increased thymic expressions of α-AChR, interferon-β and chemokines such as CXCL13 and CCL21 leading to B-cell recruitment. However, these changes were only transient. In order to develop an experimental MG model associated with thymic GCs, we used Poly(I:C) in the classical experimental autoimmune MG model induced by immunizations with purified AChR emulsified in complete Freund’s adjuvant. We observed that Poly(I:C) strongly favored the development of MG as almost all mice displayed MG symptoms. Nevertheless, we did not observe any ectopic GC development. We next challenged mice with Poly(I:C) together with other toll-like receptor (TLR) agonists known to be involved in GC development and that are overexpressed in MG thymuses. Imiquimod and CpG oligodeoxynucleotides that activate TLR7 and TLR9, respectively, did not induce thymic changes. In contrast, lipopolysaccharide that activates TLR4 potentiated Poly(I:C) effects and induced a significant expression of CXCL13 mRNA in the thymus associated with a higher recruitment of B cells that induced over time thymic B-lymphoid structures. Altogether, these data suggest that tertiary lymphoid genesis in MG thymus could result from a combined activation of TLR signaling pathways.
Collapse
Affiliation(s)
- Marieke Robinet
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Bérengère Villeret
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Solène Maillard
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Mélanie A Cron
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| |
Collapse
|
32
|
Trop-Steinberg S, Azar Y. Is Myc an Important Biomarker? Myc Expression in Immune Disorders and Cancer. Am J Med Sci 2017; 355:67-75. [PMID: 29289266 DOI: 10.1016/j.amjms.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/17/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023]
Abstract
The proto-oncogene Myc serves as a paradigm for understanding the dynamics of transcriptional regulation. Myc protein has been linked to immune dysfunction, cancer development and neoplastic transformation. We review recent research regarding functions of Myc as an important modulator in immune disorders, postallogeneic hematopoietic stem cell transplantation (HSCT) and several cancers. Myc overexpression has been repeatedly linked to immune disorders and specific cancers, such as myasthenia gravis, psoriasis, pemphigus vulgaris, atherosclerosis, long-term allogeneic survival among HSCT patients, (primary) inflammatory breast cancer, (primary) ovarian carcinoma and hematological malignancies: acute myeloid leukemia, chronic myelogenous leukemia, Hodgkin's lymphoma and diffuse large B-cell lymphoma. However, decreased expression of Myc has been observed in HSCT patients who did not survive. Understanding impaired or inappropriate expression of Myc may present a path for the discovery of new targets for therapeutic applications.
Collapse
Affiliation(s)
- Shivtia Trop-Steinberg
- Faculty of Life and Health Sciences (ST-S), JCT Lev Academic Institute, Jerusalem, Israel.
| | - Yehudit Azar
- Department of Bone Marrow Transplantation (YA), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
33
|
Increased expression of P2X7 receptor in peripheral blood mononuclear cells correlates with clinical severity and serum levels of Th17-related cytokines in patients with myasthenia gravis. Clin Neurol Neurosurg 2017; 157:88-94. [PMID: 28458152 DOI: 10.1016/j.clineuro.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 04/08/2017] [Accepted: 04/15/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES P2X7R is a well-documented activator of innate and adaptive immune responses. We aimed to measure the expression levels of P2X7R in peripheral blood mononuclear cells (PBMCs) from patients with myasthenia gravis (MG) and to investigate whether the expression of P2X7R is associated with pathogenesis of MG. PATIENTS AND METHODS A total of 32 patients with MG (12 generalized MG (GMG) and 20 Ocular MG (OMG) and 22 healthy donors were recruited in this study. The quantitative MG score was used to evaluate the clinical severity. Real-time PCR and western blot were used to measure the levels of P2X7R expressed in PBMCs. Serum Th17-related cytokines (IL-1β, IL-6, IL-17 and IL-21) were tested by ELISA. PBMCs from MG patients were purified and challenged by LPS with or without a selective P2X7R inhibitor (BBG). RESULTS Our results showed that the expression of P2X7R mRNA and protein in PBMCs was increased in MG patients compared with healthy controls, with higher expression in generalized patients (GMG) than in ocular patients (OMG). In addition, P2X7R expression presents a significantly positive correlation with clinical severity and serum levels of IL-1β, IL-6, IL-17 and IL-21 in MG. In cultured MG PBMC, LPS challenge led to up-regulated P2X7R expression accompanied with increased production of IL-1β, IL-6, IL-17 and IL-21. Importantly, P2X7R blockade with BBG significantly attenuates the LPS-induced production of cytokines. CONCLUSION P2X7R expression was up-regulated in MG and LPS-P2X7R axis may be involved in the pathogenesis of MG by promoting Th17 immune response.
Collapse
|
34
|
Zhang H, He F, Shi M, Wang W, Tian X, Kang J, Han W, Wu R, Zhou L, Hu M, Li X, Mi F, Zhao G, Jia H. Toll-Like Receptor 4-Myeloid Differentiation Primary Response Gene 88 Pathway Is Involved in the Inflammatory Development of Polymyositis by Mediating Interferon-γ and Interleukin-17A in Humans and Experimental Autoimmune Myositis Mouse Model. Front Neurol 2017; 8:132. [PMID: 28446897 PMCID: PMC5388689 DOI: 10.3389/fneur.2017.00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Toll-like receptor 4 (TLR4) is one of the key players in the development of many autoimmune diseases. To determine the possible role of TLR4 in polymyositis (PM) development, we collected muscle samples from PM patients and mice subjected to an experimental autoimmune myositis (EAM) model. METHODS We measured TLR4-MyD88 pathway-related factors, interferon-γ (IFN-γ), and interleukin-17A (IL-17A) in EAM mice and PM patients. Then, we observed the changes of above factors and the inflammatory development of EAM mice with TLR4 antagonist TAK-242, IFN-γ, or IL-17A antibody treatment. RESULTS The expression of TLR4, MyD88, and NF-κB was significantly upregulated in the muscle tissues both in 22 patients with PM and in the EAM model. As expected, increased levels of various cytokines, such as IL-1β, IL-6, IL-10, IL-12, tumor necrosis factor-α, TGF-β, IFN-γ, and IL-17A, were evident in the serum of EAM mice. Moreover, mRNA expression levels of IFN-γ and IL-17A were significantly increased in both PM patients and EAM mice. Consistently, the levels of these factors were positively correlated with the degree of muscle inflammation in EAM mice. However, when EAM mice were treated with TLR4 antagonist TAK-242, the expression of IFN-γ and IL-17A was decreased. When the cytokines were neutralized by anti-IFN-γ or anti-IL-17A antibody, the inflammatory development of EAM exacerbated or mitigated. CONCLUSION The present study provided the important evidence that the TLR4-MyD88 pathway may be involved in the immune mechanisms of PM by mediating IFN-γ and IL-17A.
Collapse
Affiliation(s)
- Hongya Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fangyuan He
- Department of Neurology, Xi'an Children's Hospital, Xi'an, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenxiu Wang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaojia Tian
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Juan Kang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjuan Han
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Wu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Linfu Zhou
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengmeng Hu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaobo Li
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fang Mi
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongge Jia
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
35
|
Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp (Warsz) 2017; 65:401-420. [PMID: 28331940 DOI: 10.1007/s00005-017-0462-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
Acute thymic involution (ATI) is usually regarded as a virulence trait. It is caused by several infectious agents (bacteria, viruses, parasites, fungi) and other factors, including stress, pregnancy, malnutrition and chemotherapy. However, the complex mechanisms that operate during ATI differ substantially from each other depending on the causative agent. For instance, a transient reduction in the size and weight of the thymus and depletion of populations of T cell subsets are hallmarks of ATI in many cases, whereas severe disruption of the anatomical structure of the organ is also associated with some factors, including fungal, parasitic and viral infections. However, growing evidence shows that ATI may be therapeutically halted or reversed. In this review, we highlight the current progress in this field with respect to numerous pathological factors and discuss the possible mechanisms. Moreover, these new observations also show that ATI can be mechanistically reversed.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.,Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan.,University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
36
|
Review on Toll-Like Receptor Activation in Myasthenia Gravis: Application to the Development of New Experimental Models. Clin Rev Allergy Immunol 2017; 52:133-147. [PMID: 27207173 DOI: 10.1007/s12016-016-8549-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abnormal toll-like receptor (TLR) activation and uncontrolled resolution of inflammation are suspected to play a key role in the development of autoimmune diseases. Acquired myasthenia gravis (MG) is an invalidating neuromuscular disease leading to muscle weaknesses. MG is mainly mediated by anti-acetylcholine receptor (AChR) autoantibodies, and thymic hyperplasia characterized by ectopic germinal centers is a common feature in MG. An abnormal expression of certain TLRs is observed in the thymus of MG patients associated with the overexpression of interferon (IFN)-β, the orchestrator of thymic changes in MG. Experimental models have been developed for numerous autoimmune diseases. These models are induced by animal immunization with a purified antigen solubilized in complete Freund's adjuvant (CFA) containing heat-inactivated mycobacterium tuberculosis (MTB). Sensitization against the antigen is mainly due to the activation of TLR signaling pathways by the pathogen motifs displayed by MTB, and attempts have been made to substitute the use of CFA by TLR agonists. AChR emulsified in CFA is used to induce the classical experimental autoimmune MG model (EAMG). However, the TLR4 activator lipopolysaccharide (LPS) has proved to be efficient to replace MTB and induce a sensitization against purified AChR. Poly(I:C), the well-known TLR3 agonist, is also able by itself to induce MG symptoms in mice associated with early thymic changes as observed in human MG. In this review, we discuss the abnormal expression of TLRs in MG patients and we describe the use of TLR agonists to induce EAMG in comparison with other autoimmune experimental models.
Collapse
|
37
|
Lopomo A, Berrih-Aknin S. Autoimmune Thyroiditis and Myasthenia Gravis. Front Endocrinol (Lausanne) 2017; 8:169. [PMID: 28751878 PMCID: PMC5508005 DOI: 10.3389/fendo.2017.00169] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Autoimmune diseases (AIDs) are the result of specific immune responses directed against structures of the self. In normal conditions, the molecules recognized as "self" are tolerated by immune system, but when the self-tolerance is lost, the immune system could react against molecules from the body, causing the loss of self-tolerance, and subsequently the onset of AID that differs for organ target and etiology. Autoimmune thyroid disease (ATD) is caused by the development of autoimmunity against thyroid antigens and comprises Hashimoto's thyroiditis and Graves disease. They are frequently associated with other organ or non-organ specific AIDs, such as myasthenia gravis (MG). In fact, ATD seems to be the most associated pathology to MG. The etiology of both diseases is multifactorial and it is due to genetic and environmental factors, and each of them has specific characteristics. The two pathologies show many commonalities, such as the organ-specificity with a clear pathogenic effect of antibodies, the pathological mechanisms, such as deregulation of the immune system and the implication of the genetic predisposition. They also show some differences, such as the mode of action of the antibodies and therapies. In this review that focuses on ATD and MG, the common features and the differences between the two diseases are discussed.
Collapse
Affiliation(s)
- Angela Lopomo
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics, University of Pisa, Pisa, Italy
| | - Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France
- INSERM U974, Paris, France
- AIM, Institute of Myology, Paris, France
- *Correspondence: Sonia Berrih-Aknin,
| |
Collapse
|
38
|
Abstract
Our PubMed search for peer-reviewed articles published in the 2014 solar year retrieved a significantly higher number of hits compared to 2013 with a net 28 % increase. Importantly, full articles related to autoimmunity constitute approximately 5 % of immunology articles. We confirm that our understanding of autoimmunity is becoming a translational paradigm with pathogenetic elements rapidly followed by new treatment options. Furthermore, numerous clinical and pathogenetic elements and features are shared among autoimmune diseases, and this is well illustrated in the recent literature. More specifically, the past year witnessed critical revisions of our understanding and management of antiphospholipid syndrome with new exciting data on the pathogenicity of the serum anti-beta2 glycoprotein autoantibody, a better understanding of the current and new treatments for rheumatoid arthritis, and new position papers on important clinical questions such as vaccinations in patients with autoimmune disease, comorbidities, or new classification criteria. Furthermore, data confirming the important connections between innate immunity and autoimmunity via toll-like receptors or the critical role of T regulatory cells in tolerance breakdown and autoimmunity perpetuation were also reported. Lastly, genetic and epigenetic data were provided to confirm that the mosaic of autoimmunity warrants a susceptible individual background which may be geographically determined and contribute to the geoepidemiology of diseases. The 2014 literature in the autoimmunity world should be cumulatively regarded as part of an annus mirabilis in which, on a different level, the 2014 Annual Meeting of the American College of Rheumatology in Boston was attended by over 16,000 participants with over selected 3000 abstracts.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, via A. Manzoni 56, 20089 Rozzano, Milan, Italy. .,BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
39
|
Affiliation(s)
- Sonia Berrih-Aknin
- INSERM U974; Paris France
- CNRS FRE3617; Paris France
- Sorbonne University; UPMC Univ Paris 06; Paris France
- AIM; Institute of Myology; Paris France
| |
Collapse
|
40
|
A novel infection- and inflammation-associated molecular signature in peripheral blood of myasthenia gravis patients. Immunobiology 2016; 221:1227-36. [PMID: 27387891 DOI: 10.1016/j.imbio.2016.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Myasthenia gravis (MG) is a T-cell dependent autoimmune disorder of the neuromuscular junction, characterised by muscle weakness and fatigability. Autoimmunity is thought to initiate in the thymus of acetylcholine receptor (AChR)-positive MG patients; however, the molecular mechanisms linking intra-thymic MG pathogenesis with autoreactivity via the circulation to the muscle target organ are poorly understood. Using whole-transcriptome sequencing, we compared the transcriptional profile of peripheral blood mononuclear cells from AChR-early onset MG (AChR-EOMG) patients with healthy controls: 178 coding transcripts and 229 long non-coding RNAs, including 11 pre-miRNAs, were differentially expressed. Among the 178 coding transcripts, 128 were annotated of which 17% were associated with the 'infectious disease' functional category and 46% with 'inflammatory disease' and 'inflammatory response-associated' categories. Validation of selected transcripts by qPCR indicated that of the infectious disease-related transcripts, ETF1, NFKB2, PLK3, and PPP1R15A were upregulated, whereas CLC and IL4 were downregulated in AChR-EOMG patients; in the 'inflammatory' categories, ABCA1, FUS, and RELB were upregulated, suggesting a contribution of these molecules to immunological dysfunctions in MG. Data selection and validation were also based on predicted microRNA-mRNA interactions. We found that miR-612, miR-3654, and miR-3651 were increased, whereas miR-612-putative AKAp12 and HRH4 targets and the miR-3651-putative CRISP3 target were downregulated in AChR-EOMG, also suggesting altered immunoregulation. Our findings reveal a novel peripheral molecular signature in AChR-EOMG, reflecting a critical involvement of inflammatory- and infectious disease-related immune responses in disease pathogenesis.
Collapse
|
41
|
Mantegazza R, Cordiglieri C, Consonni A, Baggi F. Animal models of myasthenia gravis: utility and limitations. Int J Gen Med 2016; 9:53-64. [PMID: 27019601 PMCID: PMC4786081 DOI: 10.2147/ijgm.s88552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease caused by the immune attack of the neuromuscular junction. Antibodies directed against the acetylcholine receptor (AChR) induce receptor degradation, complement cascade activation, and postsynaptic membrane destruction, resulting in functional reduction in AChR availability. Besides anti-AChR antibodies, other autoantibodies are known to play pathogenic roles in MG. The experimental autoimmune MG (EAMG) models have been of great help over the years in understanding the pathophysiological role of specific autoantibodies and T helper lymphocytes and in suggesting new therapies for prevention and modulation of the ongoing disease. EAMG can be induced in mice and rats of susceptible strains that show clinical symptoms mimicking the human disease. EAMG models are helpful for studying both the muscle and the immune compartments to evaluate new treatment perspectives. In this review, we concentrate on recent findings on EAMG models, focusing on their utility and limitations.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Chiara Cordiglieri
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Alessandra Consonni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Fulvio Baggi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| |
Collapse
|
42
|
Choi J, Selmi C, Leung PSC, Kenny TP, Roskams T, Gershwin ME. Chemokine and chemokine receptors in autoimmunity: the case of primary biliary cholangitis. Expert Rev Clin Immunol 2016; 12:661-72. [PMID: 26821815 DOI: 10.1586/1744666x.2016.1147956] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemokines represent a major mediator of innate immunity and play a key role in the selective recruitment of cells during localized inflammatory responses. Beyond critical extracellular mediators of leukocyte trafficking, chemokines and their cognate receptors are expressed by a variety of resident and infiltrating cells (monocytes, lymphocytes, NK cells, mast cells, and NKT cells). Chemokines represent ideal candidates for mechanistic studies (particularly in murine models) to better understand the pathogenesis of chronic inflammation and possibly become biomarkers of disease. Nonetheless, therapeutic approaches targeting chemokines have led to unsatisfactory results in rheumatoid arthritis, while biologics against pro-inflammatory cytokines are being used worldwide with success. In this comprehensive review we will discuss the evidence supporting the involvement of chemokines and their specific receptors in mediating the effector cell response, utilizing the autoimmune/primary biliary cholangitis setting as a paradigm.
Collapse
Affiliation(s)
- Jinjung Choi
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA.,b Division of Rheumatology , CHA University Medical Center , Bundang , Korea
| | - Carlo Selmi
- c Rheumatology and Clinical Immunology , Humanitas Research Hospital , Rozzano , Italy.,d BIOMETRA Department , University of Milan , Milano , Italy
| | - Patrick S C Leung
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA
| | - Thomas P Kenny
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA
| | - Tania Roskams
- e Translational Cell and Tissue Research , University of Leuven , Leuven , Belgium
| | - M Eric Gershwin
- a Division of Rheumatology, Allergy and Clinical Immunology , University of California Davis , Davis , CA , USA
| |
Collapse
|
43
|
Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology 2015; 221:516-27. [PMID: 26723518 DOI: 10.1016/j.imbio.2015.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022]
Abstract
Considerable data implicate the thymus as the main site of autosensitization to the acetylcholine receptor in myasthenia gravis (MG), a B-cell-mediated autoimmune disease affecting the neuromuscular junction. We recently demonstrated an active Epstein-Barr virus (EBV) infection in the thymus of MG patients, suggesting that EBV might contribute to the onset or maintenance of the autoimmune response within MG thymus, because of its ability to activate and immortalize autoreactive B cells. EBV has been reported to elicit and modulate Toll-like receptor (TLR) 7- and TLR9-mediated innate immune responses, which are known to favor B-cell dysfunction and autoimmunity. Aim of this study was to investigate whether EBV infection is associated with altered expression of TLR7 and TLR9 in MG thymus. By real-time PCR, we found that TLR7 and TLR9 mRNA levels were significantly higher in EBV-positive MG compared to EBV-negative normal thymuses. By confocal microscopy, high expression levels of TLR7 and TLR9 proteins were observed in B cells and plasma cells of MG thymic germinal centers (GCs) and lymphoid infiltrates, where the two receptors co-localized with EBV antigens. An increased frequency of Ki67-positive proliferating B cells was found in MG thymuses, where we also detected proliferating cells expressing TLR7, TLR9 and EBV antigens, thus supporting the idea that EBV-associated TLR7/9 signaling may promote abnormal B-cell activation and proliferation. Along with B cells and plasma cells, thymic epithelium, plasmacytoid dendritic cells and macrophages exhibited enhanced TLR7 and TLR9 expression in MG thymus; TLR7 was also increased in thymic myeloid dendritic cells and its transcriptional levels positively correlated with those of interferon (IFN)-β. We suggested that TLR7/9 signaling may be involved in antiviral type I IFN production and long-term inflammation in EBV-infected MG thymuses. Our overall findings indicate that EBV-driven TLR7- and TLR9-mediated innate immune responses may participate in the intra-thymic pathogenesis of MG.
Collapse
|
44
|
Jeong HN, Lee JH, Suh BC, Choi YC. Serum interleukin-27 expression in patients with myasthenia gravis. J Neuroimmunol 2015; 288:120-2. [DOI: 10.1016/j.jneuroim.2015.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022]
|
45
|
TIPE2 Play a Negative Role in TLR4-Mediated Autoimmune T Helper 17 Cell Responses in Patients with Myasthenia Gravis. J Neuroimmune Pharmacol 2015; 10:635-44. [PMID: 26500105 DOI: 10.1007/s11481-015-9638-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/18/2015] [Indexed: 02/01/2023]
|
46
|
Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors--From microbial recognition to autoimmunity: A comprehensive review. Autoimmun Rev 2015; 15:1-8. [PMID: 26299984 DOI: 10.1016/j.autrev.2015.08.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) constitute an important mechanism in the activation of innate immune cells including monocytes, macrophages and dendritic cells. Macrophage activation by TLRs is pivotal in the initiation of the rapid expression of pro-inflammatory cytokines TNF, IL-1β and IL-6 while promoting Th17 responses, all of which play critical roles in autoimmunity. Surprisingly, in inflammatory arthritis, activation of specific TLRs can not only induce but also inhibit cellular processes associated with bone destruction. The intercellular and intracellular orchestration of signals from different TLRs, their endogenous or microbial ligands and accessory molecules determine the activating or inhibitory responses. Herein, we review the TLR-mediated activation of innate immune cells in their activation and differentiation to osteoclasts and the capacity of these signals to contribute to bone destruction in arthritis. Detailed understanding of the opposing mechanisms of TLRs in the induction and suppression of cellular processes in arthritis may pave the way to develop novel therapies to treat autoimmunity.
Collapse
Affiliation(s)
| | - M Eric Gerswhin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, CA, 95817, USA.
| |
Collapse
|
47
|
Yang WY, Shao Y, Lopez-Pastrana J, Mai J, Wang H, Yang XF. Pathological conditions re-shape physiological Tregs into pathological Tregs. BURNS & TRAUMA 2015; 3. [PMID: 26623425 PMCID: PMC4662545 DOI: 10.1186/s41038-015-0001-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4+FOXP3+ regulatory T cells (Tregs) are a subset of CD4 T cells that play an essential role in maintaining peripheral immune tolerance, controlling acute and chronic inflammation, allergy, autoimmune diseases, and anti-cancer immune responses. Over the past 20 years, significant progress has been made since Tregs were first characterized in 1995. Many concepts and principles regarding Tregs generation, phenotypic features, subsets (tTregs, pTregs, iTregs, and iTreg35), tissue specificity (central Tregs, effector Tregs, and tissue resident Tregs), homeostasis (highly dynamic and apoptotic), regulation of Tregs by receptors for PAMPs and DAMPs, Treg plasticity (re-differentiation to other CD4 T helper cell subsets, Th1, Th2, Tfh and Th17), and epigenetic regulation of Tregs phenotypes and functions have been innovated. In this concise review, we want to briefly analyze these eight new progresses in the study of Tregs. We have also proposed for the first time a novel concept that "physiological Tregs" have been re-shaped into "pathological Tregs" in various pathological environments. Continuing of the improvement in our understanding on this important cellular component about the immune tolerance and immune suppression, would lead to the future development of novel therapeutics approaches for acute and chronic inflammatory diseases, allergy, allogeneic transplantation-related immunity, sepsis, autoimmune diseases, and cancers.
Collapse
Affiliation(s)
- William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jahaira Lopez-Pastrana
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jietang Mai
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A ; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| |
Collapse
|
48
|
Inflammasomes and human autoimmunity: A comprehensive review. J Autoimmun 2015; 61:1-8. [PMID: 26005048 DOI: 10.1016/j.jaut.2015.05.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/03/2015] [Indexed: 12/20/2022]
Abstract
Inflammasomes are multi-protein complexes composed of a NOD-like receptor (NLR)/an AIM-like receptor (ALR), the adapter molecule apoptosis-associated speck-like protein that contains a CARD (ASC), and caspase-1. Active caspase-1 cleaves pro-IL-1β and pro-IL-18 to IL-1β and IL-18, resulting in inflammation. Genetic mutations in inflammasomes were first recognized to result in autoinflammatory diseases, which are characterized by the absence of both autoantibodies and autoreactive-T/B cells. However, there is increasing attention being placed on genetic polymorphisms that are involved in the components of inflammasomes, and these have implications for innate immunity and the natural history of autoimmune diseases. For example, while the NOD-like receptor family, pyrin domain containing 1 (NLRP1) haplotypes contributes to susceptibility to developing vitiligo; there are other single nucleotide polymorphisms (SNPs) that alters the susceptibility and severity of rheumatoid arthritis (RA) and juvenile idiopathic arthritis. Indeed, there are multiple factors that contribute to lowering the threshold of immunity and inflammasomes play a key role in this threshold. For example, IL-1β and IL-18 further perpetuate Th17 responses and endothelial cell damage, which potentiate a number of autoimmune diseases, including synovitis in RA, cardiovascular disease, and systemic lupus erythematosus (SLE). There is also increasing data on the role of innate immunity in experimental autoimmune encephalomyelitis (EAE), in lupus nephritis, and in a variety of autoimmune pathologies in which activation of the innate immune system is the driver for the adaptive system. Indeed, it is likely that the chronic pathology of autoimmunity is mediated in part by otherwise innocent bystander cells, augmented by inflammasomes.
Collapse
|
49
|
Xu H, Zhang M, Li XL, Li H, Yue LT, Zhang XX, Wang CC, Wang S, Duan RS. Low and high doses of ursolic acid ameliorate experimental autoimmune myasthenia gravis through different pathways. J Neuroimmunol 2015; 281:61-7. [PMID: 25867469 DOI: 10.1016/j.jneuroim.2015.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/08/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by fatigable muscle weakness. Ursolic acid (UA) is a pentacyclic triterpenoid with anti-inflammatory and immunomodulatory properties, especially inhibiting IL-17. We found that UA ameliorated the symptoms of experimental autoimmune myasthenia gravis (EAMG), a rat model of MG. Although both the low and high doses of UA shifted Th17 to Th2 cytokines, other mechanisms were dose dependent. The low dose enhanced Fas-mediated apoptosis, whereas the high dose up-regulated Treg cells and reduced the concentrations of IgG2b antibodies. These findings suggest a new strategy to treat EAMG and even human MG.
Collapse
Affiliation(s)
- Hua Xu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China; Department of Neurology, Taian City Central Hospital, Taian 271000, PR China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Xiao-Li Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Long-Tao Yue
- Central Laboratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Xin-Xin Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Cong-Cong Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Shan Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|
50
|
Systems biology of myasthenia gravis, integration of aberrant lncRNA and mRNA expression changes. BMC Med Genomics 2015; 8:13. [PMID: 25889429 PMCID: PMC4380247 DOI: 10.1186/s12920-015-0087-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background A novel class of transcripts, long non-coding RNAs (lncRNAs), has recently emerged as a key player in several biological processes, and important roles for these molecules have been reported in a number of complex human diseases, such as autoimmune diseases, neurological disorders, and various cancers. However, the aberrant lncRNAs implicated in myasthenia gravis (MG) remain unknown. The aim of the present study was to explore the abnormal expression of lncRNAs in peripheral blood mononuclear cells (PBMCs) and examine mRNA regulatory relationship networks among MG patients with or without thymoma. Methods Microarray assays were performed, and the outstanding differences between lncRNAs or mRNA expression were verified through RT-PCR. The lncRNAs functions were annotated for the target genes using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway. The potential regulatory relationships between the lncRNAs and target genes were analyzed using the ‘cis’ and ‘trans’ model. Outstanding lncRNAs were organized to generate a TF-lncRNA-gene network using Cytoscape software. Results The lncRNA and mRNA expression profile analysis revealed subsets of differentially expressed genes in MG patients with or without thymoma. A total of 12 outstanding dysregulated expression lncRNAs, such as lncRNA oebiotech_11933, were verified through real-time PCR. Several GO terms including the cellular response to interferon-γ, platelet degranulation, chemokine receptor binding and cytokine interactions were very important in MG pathogenesis. The chromosome locations of some lncRNAs and associated co-expression genes were demonstrated using ‘cis’ analysis. The results of the ‘trans’ analysis revealed that some TFs (i.e., CTCF, TAF1and MYC) regulate lncRNA and gene expression. The outstanding lncRNAs in each group were implicated in the regulation of the TF-lncRNA-target gene network. Conclusion The results of the present study provide a perspective on lncRNA expression in MG. We identify a subset of aberrant lncRNAs and mRNAs as potential biomarkers for the diagnosis of MG. The GO and KEGG pathway analysis provides an annotation to determine the functions of these lncRNAs. The results of the ‘cis’ and ‘trans’ analyses provide information concerning the modular regulation of lncRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0087-z) contains supplementary material, which is available to authorized users.
Collapse
|