1
|
Ngwa C, Misrani A, Manyam KV, Xu Y, Qi S, Sharmeen R, Lee J, Wu LJ, McCullough L, Liu F. Escape of Kdm6a from X Chromosome Is Detrimental to Ischemic Brains via IRF5 Signaling. Transl Stroke Res 2025:10.1007/s12975-024-01321-1. [PMID: 39752046 DOI: 10.1007/s12975-024-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice. However, the underlying mechanisms remain unclear. We hypothesized that Kdm6a/5c demethylate H3K27Me3/H3K4Me3 in microglia, respectively, and mediate the transcription of interferon regulatory factor 5 (IRF5) and IRF4, leading to microglial pro-inflammatory responses and exacerbated stroke injury. Aged (17-20 months) Kdm6a/5c microglial conditional knockout (CKO) female mice (one allele of the gene) were subjected to a 60-min middle cerebral artery occlusion (MCAO). Gene floxed females (two alleles) and males (one allele) were included as controls. Infarct volume and behavioral deficits were quantified 3 days after stroke. Immune responses including microglial activation and infiltration of peripheral leukocytes in the ischemic brain were assessed by flow cytometry. Epigenetic modification of IRF5/4 by Kdm6a/5c was analyzed by CUT&RUN assay. The demethylation of H3K27Me3 by kdm6a increased IRF5 transcription; meanwhile, Kdm5c demethylated H3K4Me3 to repress IRF5. Both Kdm6afl/fl and Kdm5cfl/fl mice had worse stroke outcomes compared to fl/y and CKO mice. Gene floxed females showed more robust expression of CD68 in microglia and elevated brain and plasma levels of IL-1β or TNF-α, after stroke. We concluded that IRF5 signaling plays a critical role in mediating the deleterious effect of Kdm6a, whereas Kdm5c's effect is independent of IRF5.
Collapse
Affiliation(s)
- Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Afzal Misrani
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Kanaka Valli Manyam
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Yan Xu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Long-Jun Wu
- IMM-Center for Neuroimmunology and Glial Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX, 77030, USA
| | - Louise McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Yang SG, Wang XW, Li CP, Huang T, Qian C, Li Q, Zhao L, Zhou SY, Saijilafu, Liu CM, Zhou FQ. Roles of Kdm6a and Kdm6b in regulation of mammalian neural regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557354. [PMID: 37745499 PMCID: PMC10515817 DOI: 10.1101/2023.09.12.557354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Epigenetic regulation of neuronal transcriptomic landscape is emerging to be a key coordinator of mammalian neural regeneration. Here we investigated roles of two histone 3 lysine 27 (H3K27) demethylases Kdm6a/b in controlling neuroprotection and axon regeneration. Deleting either Kdm6a or Kdm6b led to enhanced sensory axon regeneration in PNS, whereas in the CNS only deleting Kdm6a in retinal ganglion cells (RGCs) significantly enhanced optic nerve regeneration. Moreover, both Kdm6a and Kdm6b functioned to regulate RGC survival but with different mechanisms. Mechanistically, Kdm6a regulates RGC regeneration via distinct pathway from that of Pten and co-deleting Kdm6a and Pten resulted in long distance optic nerve regeneration passing the optic chiasm. In addition, RNA-seq profiling revealed that Kdm6a deletion switched the RGC transcriptomics into a developmental-like state and suppressed several known repressors of neural regeneration. Klf4 was identified as a direct downstream target of Kdm6a-H3K27me3 signaling in both sensory neurons and RGCs to regulate axon regeneration. These findings not only revealed different roles of Kdm6a and Kdm6b in regulation of neural regeneration and their underlying mechanisms, but also identified Kdm6a-mediated histone demethylation signaling as a novel epigenetic target for supporting CNS neural regeneration.
Collapse
|
3
|
Feng M, Chai C, Hao X, Lai X, Luo Y, Zhang H, Tang W, Gao N, Pan G, Liu X, Wang Y, Xiong W, Wu Q, Wang J. Inherited KDM6A A649T facilitates tumor-immune escape and exacerbates colorectal signet-ring cell carcinoma outcomes. Oncogene 2024; 43:1757-1768. [PMID: 38622203 DOI: 10.1038/s41388-024-03029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
Childhood onset of colorectal signet-ring cell carcinoma (CR-SRCC) is extremely rare and featured as highly malignant with poor prognosis. Here we reported a CR-SRCC case of 11-year-old boy with a novel inherited X-linked KDM6AA694T mutation. The H3K27me3 demethylase KDM6A was frequently mutated in varieties of tumors and acts as a tumor suppressor. In vivo H3K27me3 demethylation assay demonstrated that KDM6AA694T had dampened H3K27me3 demethylase activity. Overexpression of KDM6AA694T in SRCC cell line KATO3 promoted cell proliferation, invasion and migration, which were further confirmed in vivo by constructing orthotopic tumor growth and lung metastasis model. Besides, expression of KDM6AA694T in immune cells suppresses inflammatory macrophage response and effector T cell response. In conclusion, we characterized a novel inherited KDM6AA694T mutant from a childhood-onset SRCC case and demonstrated that the mutant with impaired H3K27me3 demethylase activity could potentiate tumor malignancy and suppress antitumor immunity.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Chengwei Chai
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Department of Pediatric General Surgery, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
| | - Xiaodong Hao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China
| | - Xiaojiang Lai
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yuanyuan Luo
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hong Zhang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wenzhu Tang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ningxin Gao
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Guihong Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaojie Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Wenjing Xiong
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Qiang Wu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Jun Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Clotet-Freixas S, Zaslaver O, Kotlyar M, Pastrello C, Quaile AT, McEvoy CM, Saha AD, Farkona S, Boshart A, Zorcic K, Neupane S, Manion K, Allen M, Chan M, Chen X, Arnold AP, Sekula P, Steinbrenner I, Köttgen A, Dart AB, Wicklow B, McGavock JM, Blydt-Hansen TD, Barrios C, Riera M, Soler MJ, Isenbrandt A, Lamontagne-Proulx J, Pradeloux S, Coulombe K, Soulet D, Rajasekar S, Zhang B, John R, Mehrotra A, Gehring A, Puhka M, Jurisica I, Woo M, Scholey JW, Röst H, Konvalinka A. Sex differences in kidney metabolism may reflect sex-dependent outcomes in human diabetic kidney disease. Sci Transl Med 2024; 16:eabm2090. [PMID: 38446901 DOI: 10.1126/scitranslmed.abm2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/24/2024] [Indexed: 03/08/2024]
Abstract
Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD.
Collapse
Affiliation(s)
- Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Olga Zaslaver
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Andrew T Quaile
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Division of Nephrology, Tallaght University Hospital, Dublin D24, Ireland
- Trinity Kidney Centre, Trinity College Dublin, Dublin D8, Ireland
| | - Aninda D Saha
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katarina Zorcic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Slaghaniya Neupane
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kieran Manion
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Maya Allen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Michael Chan
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Xuqi Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA 90095, USA
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79085, Germany
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79085, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79085, Germany
| | - Allison B Dart
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Brandy Wicklow
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Jon M McGavock
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Clara Barrios
- Kidney Research Group, Hospital del Mar Medical Research Institute, IMIM, Barcelona 08003, Spain
| | - Marta Riera
- Kidney Research Group, Hospital del Mar Medical Research Institute, IMIM, Barcelona 08003, Spain
| | - María José Soler
- Hospital Universitari Vall d'Hebron, Division of Nephrology Autonomous University of Barcelona, Barcelona 08035, Spain
| | - Amandine Isenbrandt
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jérôme Lamontagne-Proulx
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Solène Pradeloux
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Coulombe
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
| | - Denis Soulet
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Shravanthi Rajasekar
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aman Mehrotra
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava 845 10, Slovakia
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medicine, Division of Endocrinology, University Health Network, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - James W Scholey
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON M5S 3H2, Canada
| | - Hannes Röst
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
5
|
Vivarelli F, Morosini C, Rullo L, Losapio LM, Lacorte A, Sangiorgi S, Ghini S, Fagiolino I, Franchi P, Lucarini M, Candeletti S, Canistro D, Romualdi P, Paolini M. Effects of unburned tobacco smoke on inflammatory and oxidative mediators in the rat prefrontal cortex. Front Pharmacol 2024; 15:1328917. [PMID: 38333013 PMCID: PMC10851081 DOI: 10.3389/fphar.2024.1328917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Although the Food and Drug Administration has authorized the marketing of "heat-not-burn" (HnB) electronic cigarettes as a modified risk tobacco product (MRTP), toxicological effects of HnB smoke exposure on the brain are still unexplored. Here, paramagnetic resonance of the prefrontal cortex (PFC) of HnB-exposed rats shows a dramatic increase in reactive radical species (RRS) yield coupled with an inflammatory response mediated by NF-κB-target genes including TNF-α, IL-1β, and IL-6 and the downregulation of peroxisome proliferator-activated receptor (PPAR) alpha and gamma expression. The PFC shows higher levels of 8-hydroxyguanosine, a marker of DNA oxidative damage, along with the activation of antioxidant machinery and DNA repair systems, including xeroderma pigmentosum group C (XPC) protein complex and 8-oxoguanine DNA glycosylase 1. HnB also induces the expression of drug-metabolizing enzymes such as CYP1A1, CYP2A6, CYP2B6, and CYP2E, particularly involved in the biotransformation of nicotine and several carcinogenic agents such as aldehydes and polycyclic aromatic hydrocarbons here recorded in the HnB stick smoke. Taken together, these effects, from disruption of redox homeostasis, inflammation, PPAR manipulation along with enhanced bioactivation of neurotoxicants, and upregulation of cMYC protooncogene to impairment of primary cellular defense mechanisms, suggest a possible increased risk of brain cancer. Although the HnB device reduces the emission of tobacco toxicants, our findings indicate that its consumption may carry a risk of potential adverse health effects, especially in non-smokers so far. Further studies are needed to fully understand the long-term effects of these devices.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Antonio Lacorte
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Stefano Sangiorgi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Severino Ghini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | | | - Paola Franchi
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Marco Lucarini
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Song YQ, Yang GJ, Ma DL, Wang W, Leung CH. The role and prospect of lysine-specific demethylases in cancer chemoresistance. Med Res Rev 2023; 43:1438-1469. [PMID: 37012609 DOI: 10.1002/med.21955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Histone methylation plays a key function in modulating gene expression, and preserving genome integrity and epigenetic inheritance. However, aberrations of histone methylation are commonly observed in human diseases, especially cancer. Lysine methylation mediated by histone methyltransferases can be reversed by lysine demethylases (KDMs), which remove methyl marks from histone lysine residues. Currently, drug resistance is a main impediment for cancer therapy. KDMs have been found to mediate drug tolerance of many cancers via altering the metabolic profile of cancer cells, upregulating the ratio of cancer stem cells and drug-tolerant genes, and promoting the epithelial-mesenchymal transition and metastatic ability. Moreover, different cancers show distinct oncogenic addictions for KDMs. The abnormal activation or overexpression of KDMs can alter gene expression signatures to enhance cell survival and drug resistance in cancer cells. In this review, we describe the structural features and functions of KDMs, the KDMs preferences of different cancers, and the mechanisms of drug resistance resulting from KDMs. We then survey KDM inhibitors that have been used for combating drug resistance in cancer, and discuss the opportunities and challenges of KDMs as therapeutic targets for cancer drug resistance.
Collapse
Affiliation(s)
- Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
7
|
Peng W, Xie Y, Luo Z, Liu Y, Xu J, Li C, Qin T, Lu H, Hu J. UTX deletion promotes M2 macrophage polarization by epigenetically regulating endothelial cell-macrophage crosstalk after spinal cord injury. J Nanobiotechnology 2023; 21:225. [PMID: 37454119 DOI: 10.1186/s12951-023-01986-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Macrophages polarized to the M2 subtype after spinal cord injury (SCI) are beneficial for promoting neurological recovery. The crosstalk between endothelial cells (ECs) and macrophages is crucial for the imbalance between proinflammatory and pro-resolving responses caused by macrophage heterogeneity; however, this crosstalk is strengthened post-SCI, leading to inflammatory cascades and second damage. As a powerful means to regulate gene expression, epigenetic regulation of the interaction between immune cells and ECs in SCI is still largely unknown. Our previous research demonstrated that the histone demethylase UTX deletion in ECs (UTX-/- ECs) promotes neurological recovery, while the precise mechanism is unrevealed. Here, we discovered that UTX-/- ECs polarize macrophages toward the M2 subtype post-SCI. Macrophage deficiency could block the neurological recovery caused by the knockdown of UTX. The exosomes from UTX-/- ECs mediate this crosstalk. In addition, we found UTX, H3K27, and miR-467b-3p/Sfmbt2 promoters forming a regulatory complex that upregulates the miR-467b-3p in UTX-/- ECs. And then, miR-467b-3p transfers to macrophages by exosomes and activates the PI3K/AKT/mTOR signaling by decreasing PTEN expression, finally polarizing macrophage to the M2 subtype. This study reveals a mechanism by epigenetic regulation of ECs-macrophages crosstalk and identifies potential targets, which may provide opportunities for treating SCI.
Collapse
Affiliation(s)
- Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Spine Surgery, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Qu L, Yin T, Zhao Y, Lv W, Liu Z, Chen C, Liu K, Shan S, Zhou R, Li X, Dong H. Histone demethylases in the regulation of immunity and inflammation. Cell Death Discov 2023; 9:188. [PMID: 37353521 DOI: 10.1038/s41420-023-01489-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogens or danger signals trigger the immune response. Moderate immune response activation removes pathogens and avoids excessive inflammation and tissue damage. Histone demethylases (KDMs) regulate gene expression and play essential roles in numerous physiological processes by removing methyl groups from lysine residues on target proteins. Abnormal expression of KDMs is closely associated with the pathogenesis of various inflammatory diseases such as liver fibrosis, lung injury, and autoimmune diseases. Despite becoming exciting targets for diagnosing and treating these diseases, the role of these enzymes in the regulation of immune and inflammatory response is still unclear. Here, we review the underlying mechanisms through which KDMs regulate immune-related pathways and inflammatory responses. In addition, we also discuss the future applications of KDMs inhibitors in immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lihua Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Tong Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yijin Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenting Lv
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ziqi Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kejun Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoqing Li
- Biological Targeted Therapy Key Laboratory in Hubei, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China.
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Fan J, Li Q, Liang J, Chen Z, Chen L, Lai J, Chen Q. Regulation of IFNβ expression: focusing on the role of its promoter and transcription regulators. Front Microbiol 2023; 14:1158777. [PMID: 37396372 PMCID: PMC10309559 DOI: 10.3389/fmicb.2023.1158777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
IFNβ is a single-copy gene without an intron. Under normal circumstances, it shows low or no expression in cells. It is upregulated only when the body needs it or is stimulated. Stimuli bind to the pattern recognition receptors (PRRs) and pass via various signaling pathways to several basic transcriptional regulators, such as IRFs, NF-кB, and AP-1. Subsequently, the transcriptional regulators enter the nucleus and bind to regulatory elements of the IFNβ promoter. After various modifications, the position of the nucleosome is altered and the complex is assembled to activate the IFNβ expression. However, IFNβ regulation involves a complex network. For the study of immunity and diseases, it is important to understand how transcription factors bind to regulatory elements through specific forms, which elements in cells are involved in regulation, what regulation occurs during the assembly of enhancers and transcription complexes, and the possible regulatory mechanisms after transcription. Thus, this review focuses on the various regulatory mechanisms and elements involved in the activation of IFNβ expression. In addition, we discuss the impact of this regulation in biology.
Collapse
Affiliation(s)
- Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Jiadi Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Junzhong Lai
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
10
|
Chen LJ, Xu XY, Zhong XD, Liu YJ, Zhu MH, Tao F, Li CY, She QS, Yang GJ, Chen J. The role of lysine-specific demethylase 6A (KDM6A) in tumorigenesis and its therapeutic potentials in cancer therapy. Bioorg Chem 2023; 133:106409. [PMID: 36753963 DOI: 10.1016/j.bioorg.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Li-Juan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qiu-Sheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467044, Henan, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Ma X, Chen X, Duan Z, Wu Y, Shu J, Wu P, Zhao Y, Wang X, Wang Y. Circadian rhythm disruption exacerbates the progression of macrophage dysfunction and alveolar bone loss in periodontitis. Int Immunopharmacol 2023; 116:109796. [PMID: 36731157 DOI: 10.1016/j.intimp.2023.109796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Macrophages are highly implicated in the progression of periodontitis, while circadian rhythm disruption (CRD) promotes the inflammatory response of macrophages in many diseases. However, the effects of CRD on periodontitis and the role of macrophages in this process remain unclear. Histone lysinedemethylase6a (Kdm6a), a histone demethylase, has recently been identified as a key regulator of macrophage-induced inflammation. Here, we established an experimental periodontitis model by injecting lipopolysaccharide (LPS) derived from Porphyromonas gingivalis with or without periodontal ligation in mice exposed to an 8-h time shift jet-lag schedule every 3 days. By histomorphometry, tartrate acid phosphatase (TRAP) staining, RT-qPCR, ELISA, immunohistochemistry and immunofluorescence analysis, we found that CRD promoted the inflammatory response, alveolar bone resorption, macrophage infiltration and Kdm6a expression in macrophages. Macrophage-specific Kdm6a knockout mice were further used to elucidate the effects of Kdm6a deficiency on periodontitis. Kdm6a deletion in macrophages rescued periodontal tissue inflammation, osteoclastogenesis, and alveolar bone loss in a mouse model of periodontitis. These findings suggest that CRD may intensify periodontitis by increasing the infiltration and activation of macrophages. Kdm6a promotes the inflammatory response in macrophages, which may participate in aggravated periodontitis via CRD.
Collapse
Affiliation(s)
- Xueying Ma
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Xin Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghua Duan
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Yuqiong Wu
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Jiaen Shu
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Pei Wu
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuhua Wang
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China.
| |
Collapse
|
12
|
Zhang MQ, Wang CC, Pang XB, Shi JZ, Li HR, Xie XM, Wang Z, Zhang HD, Zhou YF, Chen JW, Han ZY, Zhao LL, He YY. Role of macrophages in pulmonary arterial hypertension. Front Immunol 2023; 14:1152881. [PMID: 37153557 PMCID: PMC10154553 DOI: 10.3389/fimmu.2023.1152881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Chen-Chen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hao-Ran Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Zhe Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Feng Zhou
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ji-Wang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| |
Collapse
|
13
|
Li W, Zhang Y, Lv J, Zhang Y, Bai J, Zhen L, He X. MicroRNA-137-mediated lysine demethylase 4A regulates the recovery of spinal cord injury via the SFRP4-Wnt/β-Catenin axis. Int J Neurosci 2023; 133:37-50. [PMID: 33499717 DOI: 10.1080/00207454.2021.1881093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Spinal cord injury (SCI) causes great harm to the normal life of patients. Histone demethylase is involved in many biological processes, including SCI. Hence, this study explored the role and mechanism of histone lysine demethylase 4A (KDM4A) in SCI. METHODS The acute SCI (ASCI) rat model was established after spinal compression and the SCI neuronal model was induced via treating PC12 cells with lipopolysaccharide (LPS). KDM4A expression during SCI was detected. The microRNA (miRNA) targeting KDM4A was predicted and verified. The miRNA and KDM4A expression patterns were intervened in LPS-stimulated PC12 cells to evaluate their combined effects on neuronal cells in SCI. The downstream pathways of KDM4A were predicted, and SFRP4 and H3K9me3 expressions were determined. After the intervention of SFRP4 in LPS-treated cells, β-Catenin expression and the effect of SFRP4 on neuronal cells in SCI were detected. Finally, the effectiveness of the miR-137/KDM4A/SFRP4/Wnt/β-Catenin axis was verified in vivo. RESULTS KDM4A was abnormally elevated in SCI. miR-137 targeted KDM4A. miR-137 effectively inhibited the apoptosis of LPS-challenged PC12 cells, which could be reversed after overexpressing KDM4A. KDM4A promoted SFRP4 expression through demethylation of H3K9me3. Overexpression of SFRP4 blocked the Wnt/β-Catenin pathway and promoted apoptosis of LPS-stimulated cells. In vivo, miR-137 overexpression remarkably improved SCI symptoms, accompanied by obviously increased β-Catenin expression and notably decreased KDM4A and SFRP4 expressions, while overexpressed KDM4A treatment showed the opposite trend in the presence of miR-137. CONCLUSION We demonstrated that miR-137 targeted KDM4A and then downregulated SFRP4 to ameliorate SCI in a Wnt/β-Catenin-dependent manner.
Collapse
Affiliation(s)
- Wei Li
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Ying Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jianrui Lv
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Yong Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jie Bai
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Luming Zhen
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Xijing He
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
14
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
15
|
Montalvo-Martínez L, Cruz-Carrillo G, Maldonado-Ruiz R, Trujillo-Villarreal LA, Cardenas-Tueme M, Viveros-Contreras R, Ortiz-López R, Camacho-Morales A. Transgenerational Susceptibility to Food Addiction-Like Behavior in Rats Associates to a Decrease of the Anti-Inflammatory IL-10 in Plasma. Neurochem Res 2022; 47:3093-3103. [PMID: 35767136 DOI: 10.1007/s11064-022-03660-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Maternal nutritional programming by energy-dense foods leads to the transgenerational heritance of addiction-like behavior. Exposure to energy-dense foods also activates systemic and central inflammation in the offspring. This study aimed to characterize pro- and anti-inflammatory cytokine profiles in blood and their correlation to the transgenerational heritance of the addiction-like behavior in rats. F1 offspring of male Wistar diagnosed with addiction-like behavior were mated with virgin females to generate the F2 and the F3 offspring, respectively. Diagnosis of addiction-like behavior was performed by the operant training schedule (FR1, FR5 and PR) and pro- and anti-inflammatory cytokine profiles in blood were measured by multiplex platform. Multiple linear models between behavior, fetal programming by diet and pro- and anti-inflammatory cytokine profiles were performed. We found that the addiction-like behavior found in the F1 male offspring exposed to energy-dense food (cafeteria, CAF) diet during fetal programing is transgenerational inherited to the F2 and F3 generations. Blood from addiction-like behavior subjects of F2 and F3 generations exposed to CAF diet during maternal programming showed decrease in the anti-inflammatory IL-10 in the plasma. Conversely, decreased levels of the pro-inflammatory MCP-1 was identified in non-addiction-like subjects. No changes were found in plasmatic TNF-α levels in the F2 and F3 offspring of non-addiction-like and addiction-like subjects. Finally, biological modeling between IL-10 or MCP-1 plasma levels and prenatal diet exposure on operant training responses confirmed an association of decreased IL-10 levels on addiction-like behavior in the F2 and F3 generations. Globally, we identified decreased anti-inflammatory IL-10 cytokine in the blood of F2 and F3 offspring subjects diagnosed with addiction-like behavior for food rewards.
Collapse
Affiliation(s)
- Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Luis A Trujillo-Villarreal
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Marcela Cardenas-Tueme
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | | | - Rocío Ortiz-López
- Institute for Obesity Research. Escuela de Medicina y Ciencias de la Salud, Instituto Tecnológico de Estudios Superiores Monterrey, Monterrey, NL, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Monterrey, NL, Mexico.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, S/N, C.P. 64460, Monterrey, NL, Mexico.
| |
Collapse
|
16
|
Hachiya R, Tanaka M, Itoh M, Suganami T. Molecular mechanism of crosstalk between immune and metabolic systems in metabolic syndrome. Inflamm Regen 2022; 42:13. [PMID: 35490239 PMCID: PMC9057063 DOI: 10.1186/s41232-022-00198-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is currently considered as a molecular basis of metabolic syndrome. Particularly, obesity-induced inflammation in adipose tissue is the origin of chronic inflammation of metabolic syndrome. Adipose tissue contains not only mature adipocytes with large lipid droplets, but also a variety of stromal cells including adipocyte precursors, vascular component cells, immune cells, and fibroblasts. However, crosstalk between those various cell types in adipose tissue in obesity still remains to be fully understood. We focus on two innate immune receptors, Toll-like receptor 4 (TLR4) and macrophage-inducible C-type lectin (Mincle). We provided evidence that adipocyte-derived saturated fatty acids (SFAs) activate macrophage TLR4 signaling pathway, thereby forming a vicious cycle of inflammatory responses during the development of obesity. Intriguingly, the TLR4 signaling pathway is modulated metabolically and epigenetically: SFAs augment TLR4 signaling through the integrated stress response and chromatin remodeling, such as histone methylation, regulates dynamic transcription patterns downstream of TLR4 signaling. Another innate immune receptor Mincle senses cell death, which is a trigger of chronic inflammatory diseases including obesity. Macrophages form a histological structure termed “crown-like structure (CLS)”, in which macrophages surround dead adipocytes to engulf cell debris and residual lipids. Mincle is exclusively expressed in macrophages forming the CLS in obese adipose tissue and regulates adipocyte death-triggered adipose tissue fibrosis. In addition to adipose tissue, we found a structure similar to CLS in the liver of nonalcoholic steatohepatitis (NASH) and the kidney after acute kidney injury. This review article highlights the recent progress of the crosstalk between immune and metabolic systems in metabolic syndrome, with a focus on innate immune receptors.
Collapse
Affiliation(s)
- Rumi Hachiya
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.,Department of Pediatrics, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michiko Itoh
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
17
|
Wan L, Li W, Meng Y, Hou Y, Chen M, Xu B. Inflammatory Immune-Associated eRNA: Mechanisms, Functions and Therapeutic Prospects. Front Immunol 2022; 13:849451. [PMID: 35514959 PMCID: PMC9063412 DOI: 10.3389/fimmu.2022.849451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid development of multiple high-throughput sequencing technologies has made it possible to explore the critical roles and mechanisms of functional enhancers and enhancer RNAs (eRNAs). The inflammatory immune response, as a fundamental pathological process in infectious diseases, cancers and immune disorders, coordinates the balance between the internal and external environment of the organism. It has been shown that both active enhancers and intranuclear eRNAs are preferentially expressed over inflammation-related genes in response to inflammatory stimuli, suggesting that enhancer transcription events and their products influence the expression and function of inflammatory genes. Therefore, in this review, we summarize and discuss the relevant inflammatory roles and regulatory mechanisms of eRNAs in inflammatory immune cells, non-inflammatory immune cells, inflammatory immune diseases and tumors, and explore the potential therapeutic effects of enhancer inhibitors affecting eRNA production for diseases with inflammatory immune responses.
Collapse
Affiliation(s)
- Lilin Wan
- Medical School, Southeast University, Nanjing, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yuan Meng
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Zhao Z, Zhang Y, Gao D, Zhang Y, Han W, Xu X, Song Q, Zhao C, Yang J. Inhibition of Histone H3 Lysine-27 Demethylase Activity Relieves Rheumatoid Arthritis Symptoms via Repression of IL6 Transcription in Macrophages. Front Immunol 2022; 13:818070. [PMID: 35371061 PMCID: PMC8965057 DOI: 10.3389/fimmu.2022.818070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) occurs in about 5 per 1,000 people and can lead to severe joint damage and disability. However, the knowledge of pathogenesis and treatment for RA remains limited. Here, we found that histone demethylase inhibitor GSK-J4 relieved collagen induced arthritis (CIA) symptom in experimental mice model, and the underlying mechanism is related to epigenetic transcriptional regulation in macrophages. The role of epigenetic regulation has been introduced in the process of macrophage polarization and the pathogenesis of inflammatory diseases. As a repressive epigenetic marker, tri-methylation of lysine 27 on histone H3 (H3K27me3) was shown to be important for transcriptional gene expression regulation. Here, we comprehensively analyzed H3K27me3 binding promoter and corresponding genes function by RNA sequencing in two differentially polarized macrophage populations. The results revealed that H3K27me3 binds on the promoter regions of multiple critical cytokine genes and suppressed their transcription, such as IL6, specifically in M-CSF derived macrophages but not GM-CSF derived counterparts. Our results may provide a new approach for the treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Zhan Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Danling Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenwei Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
19
|
Abstract
Significance: Epigenetic dysregulation plays an important role in the pathogenesis and development of autoimmune diseases. Oxidative stress is associated with autoimmunity and is also known to alter epigenetic mechanisms. Understanding the interplay between oxidative stress and epigenetics will provide insights into the role of environmental triggers in the development of autoimmunity in genetically susceptible individuals. Recent Advances: Abnormal DNA and histone methylation patterns in genes and pathways involved in interferon and tumor necrosis factor signaling, cellular survival, proliferation, metabolism, organ development, and autoantibody production have been described in autoimmunity. Inhibitors of DNA and histone methyltransferases showed potential therapeutic effects in animal models of autoimmune diseases. Oxidative stress can regulate epigenetic mechanisms via effects on DNA damage repair mechanisms, cellular metabolism and the local redox environment, and redox-sensitive transcription factors and pathways. Critical Issues: Studies looking into oxidative stress and epigenetics in autoimmunity are relatively limited. The number of available longitudinal studies to explore the role of DNA methylation in the development of autoimmune diseases is small. Future Directions: Exploring the relationship between oxidative stress and epigenetics in autoimmunity will provide clues for potential preventative measures and treatment strategies. Inception cohorts with longitudinal follow-up would help to evaluate epigenetic marks as potential biomarkers for disease development, progression, and treatment response in autoimmunity. Antioxid. Redox Signal. 36, 423-440.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Han Z, Li W. Enhancer RNA: What we know and what we can achieve. Cell Prolif 2022; 55:e13202. [PMID: 35170113 PMCID: PMC9055912 DOI: 10.1111/cpr.13202] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Enhancers are important cis-acting elements that can regulate gene transcription and cell fate alongside promoters. In fact, many human cancers and diseases are associated with the malfunction of enhancers. Recent studies have shown that enhancers can produce enhancer RNAs (eRNAs) by RNA polymerase II. In this review, we discuss eRNA production, characteristics, functions and mechanics. eRNAs can determine chromatin accessibility, histone modification and gene expression by constructing a 'chromatin loop', thereby bringing enhancers to their target gene. eRNA can also be involved in the phase separation with enhancers and other proteins. eRNAs are abundant, and importantly, tissue-specific in tumours, various diseases and stem cells; thus, eRNAs can be a potential target for disease diagnosis and treatment. As eRNA is produced from the active transcription of enhancers and is involved in the regulation of cell fate, its manipulation will influence cell function, and therefore, it can be a new target for biological therapy.
Collapse
Affiliation(s)
- Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Interplay between Prokineticins and Histone Demethylase KDM6A in a Murine Model of Bortezomib-Induced Neuropathy. Int J Mol Sci 2021; 22:ijms222111913. [PMID: 34769347 PMCID: PMC8584499 DOI: 10.3390/ijms222111913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy-induced neuropathy (CIN) is a major adverse effect associated with many chemotherapeutics, including bortezomib (BTZ). Several mechanisms are involved in CIN, and recently a role has been proposed for prokineticins (PKs), a chemokine family that induces proinflammatory/pro-algogen mediator release and drives the epigenetic control of genes involved in cellular differentiation. The present study evaluated the relationships between epigenetic mechanisms and PKs in a mice model of BTZ-induced painful neuropathy. To this end, spinal cord alterations of histone demethylase KDM6A, nuclear receptors PPARα/PPARγ, PK2, and pro-inflammatory cytokines IL-6 and IL-1β were assessed in neuropathic mice treated with the PK receptors (PKRs) antagonist PC1. BTZ treatment promoted a precocious upregulation of KDM6A, PPARs, and IL-6, and a delayed increase of PK2 and IL-1β. PC1 counteracted allodynia and prevented the increase of PK2 and of IL-1β in BTZ neuropathic mice. The blockade of PKRs signaling also opposed to KDM6A increase and induced an upregulation of PPAR gene transcription. These data showed the involvement of epigenetic modulatory enzymes in spinal tissue phenomena associated with BTZ painful neuropathy and underline a role of PKs in sustaining the increase of proinflammatory cytokines and in exerting an inhibitory control on the expression of PPARs through the regulation of KDM6A gene expression in the spinal cord.
Collapse
|
22
|
Lee YE, Lee J, Lee YS, Jang JJ, Woo H, Choi HI, Chai YG, Kim TK, Kim T, Kim LK, Choi SS. Identification and Functional Characterization of Two Noncoding RNAs Transcribed from Putative Active Enhancers in Hepatocellular Carcinoma. Mol Cells 2021; 44:658-669. [PMID: 34588321 PMCID: PMC8490203 DOI: 10.14348/molcells.2021.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Enhancers have been conventionally perceived as cis-acting elements that provide binding sites for trans-acting factors. However, recent studies have shown that enhancers are transcribed and that these transcripts, called enhancer RNAs (eRNAs), have a regulatory function. Here, we identified putative eRNAs by profiling and determining the overlap between noncoding RNA expression loci and eRNA-associated histone marks such as H3K27ac and H3K4me1 in hepatocellular carcinoma (HCC) cell lines. Of the 132 HCC-derived noncoding RNAs, 74 overlapped with the eRNA loci defined by the FANTOM consortium, and 65 were located in the proximal regions of genes differentially expressed between normal and tumor tissues in TCGA dataset. Interestingly, knockdown of two selected putative eRNAs, THUMPD3-AS1 and LINC01572, led to downregulation of their target mRNAs and to a reduction in the proliferation and migration of HCC cells. Additionally, the expression of these two noncoding RNAs and target mRNAs was elevated in tumor samples in the TCGA dataset, and high expression was associated with poor survival of patients. Collectively, our study suggests that noncoding RNAs such as THUMPD3-AS1 and LINC01572 (i.e., putative eRNAs) can promote the transcription of genes involved in cell proliferation and differentiation and that the dysregulation of these noncoding RNAs can cause cancers such as HCC.
Collapse
Affiliation(s)
- Ye-Eun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | - Jiyeon Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Jiyoung Joan Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Hyeonju Woo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul 04673, Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
23
|
Xing E, Billi AC, Gudjonsson JE. Sex Bias and Autoimmune Diseases. J Invest Dermatol 2021; 142:857-866. [PMID: 34362556 DOI: 10.1016/j.jid.2021.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Sex bias in immune function has been well-described, and women have been shown to counter immunologically stimulating phenomena such as infection, malignancy, and trauma with more protective responses than men. Heightened immunity in women may also result in a predisposition for loss of self-tolerance and development of autoimmunity, reflected by the overwhelming female sex bias of patients with autoimmune diseases. In this review, we discuss the postulated evolutionary etiologies for sexual dimorphism in immunity. We also review the molecular mechanisms underlying divergent immune responses in men and women, including sex hormone effects, X chromosome dosage, and autosomal sex-biased genes. With increasing evidence that autoimmune disease susceptibility is influenced by numerous hormonal and genetic factors, a comprehensive understanding of these topics may facilitate the development of much-needed targeted therapeutics.
Collapse
Affiliation(s)
- Enze Xing
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; A. Alfred Taubman Medical Research Institute, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
24
|
Hu Y, Wang X, Song J, Wu J, Xu J, Chai Y, Ding Y, Wang B, Wang C, Zhao Y, Shen Z, Xu X, Cao X. Chromatin remodeler ARID1A binds IRF3 to selectively induce antiviral interferon production in macrophages. Cell Death Dis 2021; 12:743. [PMID: 34315861 PMCID: PMC8316351 DOI: 10.1038/s41419-021-04032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022]
Abstract
Transcription factor IRF3 is critical for the induction of antiviral type I interferon (IFN-I). The epigenetic regulation of IFN-I production in antiviral innate immunity needs to be further identified. Here, we reported that epigenetic remodeler ARID1A, a critical component of the mSWI/SNF complex, could bind IRF3 and then was recruited to the Ifn-I promoter by IRF3, thus selectively promoting IFN-I but not TNF-α, IL-6 production in macrophages upon viral infection. Myeloid cell-specific deficiency of Arid1a rendered mice more susceptible to viral infection, accompanied with less IFN-I production. Mechanistically, ARID1A facilitates chromatin accessibility of IRF3 at the Ifn-I promoters by interacting with histone methyltransferase NSD2, which methylates H3K4 and H3K36 of the promoter regions. Our findings demonstrated the new roles of ARID1A and NSD2 in innate immunity, providing insight into the crosstalks of chromatin remodeling, histone modification, and transcription factors in the epigenetic regulation of antiviral innate immunity.
Collapse
Affiliation(s)
- Ye Hu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaying Song
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiacheng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Xu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangyang Chai
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanyuan Ding
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
| | - Bingjing Wang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunmei Wang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yong Zhao
- Fuwai Central China Cardiovascular Hospital, Heart Center of Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhongyang Shen
- Institute of Transplanation Medicine, First Central Hospital, Nankai University, Tianjin, China
| | - Xiaoqing Xu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- CAMS-Oxford Translational Institute, Chinese Academy of Medical Sciences, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
- College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
25
|
Network Analysis Identifies Sex-Specific Gene Expression Changes in Blood of Amyotrophic Lateral Sclerosis Patients. Int J Mol Sci 2021; 22:ijms22137150. [PMID: 34281203 PMCID: PMC8269377 DOI: 10.3390/ijms22137150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023] Open
Abstract
Understanding the molecular mechanisms underlying the pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is a major challenge. We used co-expression networks implemented by the SWitch Miner software to identify switch genes associated with drastic transcriptomic changes in the blood of ALS patients. Functional analyses revealed that switch genes were enriched in pathways related to the cell cycle, hepatitis C, and small cell lung cancer. Analysis of switch genes by sex revealed that switch genes from males were associated with metabolic pathways, including PI3K-AKT, sphingolipid, carbon metabolism, FOXO, and AMPK signaling. In contrast, female switch genes related to infectious diseases, inflammation, apoptosis, and atherosclerosis. Furthermore, eight switch genes showed sex-specific gene expression patterns. Collectively, we identified essential genes and pathways that may explain sex differences observed in ALS. Future studies investigating the potential role of these genes in driving disease disparities between males and females with ALS are warranted.
Collapse
|
26
|
Wei Y, Chen J, Xu X, Li F, Wu K, Jiang Y, Rao Y, Zhao C, Chen W, Wang X. Restoration of H3k27me3 Modification Epigenetically Silences Cry1 Expression and Sensitizes Leptin Signaling to Reduce Obesity-Related Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004319. [PMID: 34306972 PMCID: PMC8292908 DOI: 10.1002/advs.202004319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 06/01/2023]
Abstract
The trimethylation on histone H3 lysine 27 (H3k27me3), a transcriptionally repressive epigenetic mark of permissive chromatin, can be removed by the histone lysine demethylase 6a (Kdm6a). However, the physiological function of H3k27me3 and Kdm6a on circadian genes remains largely elusive. With the ChIP-Seq and mRNA microarray assays, a critical role is identified for Kdm6a in the regulation of H3k27me3 to impact the expression of Crytochrome 1 (Cry1) in the hypothalamus of diet induced obesity mice. More importantly, both conditional knockout and pharmacological inhibition of Kdm6a reduce body weight and stabilize blood glucose homeostasis. Although a Kdm6a inhibitor fails to decrease body weight in leptin receptor-deficient db/db mice, it significantly decreases Cry1 expression, enhances sensitivity to exogenous leptin administration, and blocks body weight increases in endo-leptin-deficient ob/ob mice. Moreover, gene analysis of the human hypothalamus further reveals a positive correlation between Kdm6a and Cry1. The results show that inhibition of Kdm6a reduces the Cry1 expression and sensitizes leptin signaling to combat obesity-related disease. Therefore, it implicates Kdm6a as an attractive drug target for obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yan Wei
- Department of Ophthalmology and Vision ScienceEye and ENT Hospital, Shanghai Medical CollegeNHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
- Department of OphthalmologyShanghai Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Jun Chen
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai200011China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Xing Xu
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai200011China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Fan Li
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai200011China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Kun Wu
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai200011China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Yingying Jiang
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai200011China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Yuqing Rao
- Department of OphthalmologyShanghai Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Chen Zhao
- Department of Ophthalmology and Vision ScienceEye and ENT Hospital, Shanghai Medical CollegeNHC Key Laboratory of MyopiaFudan UniversityShanghai200031China
| | - Wantao Chen
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai200011China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| | - Xu Wang
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai200011China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of StomatologyShanghai200011China
| |
Collapse
|
27
|
MicroRNA-145-Mediated KDM6A Downregulation Enhances Neural Repair after Spinal Cord Injury via the NOTCH2/Abcb1a Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2580619. [PMID: 34122720 PMCID: PMC8169274 DOI: 10.1155/2021/2580619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/18/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023]
Abstract
Spinal cord injury (SCI) causes a significant physical, emotional, social, and economic burden to millions of people. MicroRNAs are known players in the regulatory circuitry of the neural repair in SCI. However, most microRNAs remain uncharacterized. Here, we demonstrate the neuroprotection of microRNA-145 (miR-145) after SCI in vivo and in vitro. In silico analysis predicted the target gene KDM6A of miR-145. The rat SCI model was developed by weight drop, and lipopolysaccharide- (LPS-) induced PC12 cell inflammatory injury model was also established. We manipulated the expression of miR-145 and/or KDM6A both in vivo and in vitro to explain their roles in rat neurological functional recovery as well as PC12 cell activities and inflammation. Furthermore, we delineated the mechanistic involvement of NOTCH2 and Abcb1a in the neuroprotection of miR-145. According to the results, miR-145 was poorly expressed and KDM6A was highly expressed in the spinal cord tissue of the SCI rat model and LPS-induced PC12 cells. Overexpression of miR-145 protects PC12 cells from LPS-induced cell damage and expedites neurological functional recovery of SCI in rats. miR-145 was validated to target and downregulate the demethylase KDM6A expression, thus abrogating the expression of Abcb1a by promoting the methylation of NOTCH2. Additionally, in vivo findings verified that miR-145 expedites neuroprotection after SCI by regulating the KDM6A/NOTCH2/Abcb1a axis. Taken together, miR-145 confers neuroprotective effects and enhances neural repair after SCI through the KDM6A-mediated NOTCH2/Abcb1a axis.
Collapse
|
28
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Caloric restriction following early-life high fat-diet feeding represses skeletal muscle TNF in male rats. J Nutr Biochem 2021; 91:108598. [PMID: 33549890 DOI: 10.1016/j.jnutbio.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Chronic metabolic diseases are on the rise worldwide and their etiology is multifactorial. Among them, inflammatory components like Tumor Necrosis Factor (TNF), contribute to whole-body metabolic impairment. Caloric Restriction (CR) combats metabolic diseases, but how it reduces inflammation remains understudied. We aimed to evaluate the impact of chronic CR on muscle inflammation, in particular TNF. In our study, 4-week old male Sprague-Dawley rats were fed a high-fat diet (HF, 45% Kcal of fat from lard) ad libitum for 3 months. After estimation of their energy requirement (1 month), they were then divided into three groups: HF ad libitum (OL), weight maintenance with AIN93M (9.5% Kcal from fat; ML, 100% of energy requirement), and caloric restriction (CR, AIN93M with 75% of energy requirement). This dietary intervention continued for six months. At this point, rats were sacrificed and gastrocnemius muscle was collected. CR induced a profound shift in fat and lean mass, and decreased growth factor IGF-1. Muscle qPCR analysis showed a marked decrease in inflammation and TNF (premRNA, mRNA, and protein) by CR, accompanied by Tnf promoter DNA hypermethylation. CR increased expression of histone deacetylase Sirt6 and decreased methyltransferase Suv39h1, together with decreased Tnf promoter and coding region binding of NF- κB and C/EBP-β. Following miRNA database mining, qPCR analysis revealed that CR downregulated the proinflammatory miR-19b and increased the anti-inflammatory miR-181a and its known targets. Chronic CR is able to regulate muscle-specific inflammation by targeting the NF-κB pathway as well as transcriptional and post-transcriptional regulation of Tnf gene.
Collapse
|
30
|
Zhu X, Zhu Y, Ding C, Zhang W, Guan H, Li C, Lin X, Zhang Y, Huang C, Zhang L, Yu X, Zhang X, Zhu W. LncRNA H19 regulates macrophage polarization and promotes Freund's complete adjuvant-induced arthritis by upregulating KDM6A. Int Immunopharmacol 2021; 93:107402. [PMID: 33540246 DOI: 10.1016/j.intimp.2021.107402] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 12/27/2022]
Abstract
Aberrant expression of long non-coding RNA (lncRNA) H19 is tightly linked to multiple steps of tumorigenesis via the modulation of cell proliferation and apoptosis; however, the pathological significance and regulatory mechanisms of lncRNA H19 in macrophages remain obscure. To investigate whether lncRNA H19 modulates macrophage activation in rheumatoid arthritis (RA), lncRNA H19 levels in PMA-induced PBMC from patients with RA and healthy volunteers were assessed. In addition, the distribution of macrophage subsets, macrophage phenotypic characteristics, and pro-inflammatory gene expression were examined in lncRNA H19 smart silencer- or pcDNA 3.1- H19-transfected macrophages and AAV8-mediated H19 overexpression in a Freund' s complete adjuvant-induced arthritis mouse model. The level of lncRNA H19 was higher in RA patients than in healthy volunteers. Silencing of lncRNA H19 altered lipopolysaccharide plus interferon-induced M1 macrophage polarization and decreased IL-6, CD80, CCL8, and CXCL10 expression in macrophages of RA patients. LncRNA H19 overexpression markedly induced IL-6, CD80, HLA-DR, KDM6A, STAT1, IRF5, CCL8, CXCL9, CXCL10, and CXCL11 expression in macrophages and promoted macrophage migration. AAV8-mediated H19 overexpression aggravated arthritis in mice by promoting M1 macrophage polarization along with iNOS, IL-6, CCL8, CXCL9, CXCL10, CXCL11, MMP3, MMP13 and COX-2 expression in mononuclear cells isolated from the swollen ankle. GSK-J4, an inhibitor of KDM6A, suppressed the activity of lncRNA H19 in macrophages and ameliorated lncRNA H19-aggravated arthritis. In summary, the current study demonstrated that lncRNA H19 is upregulated in RA patients and arthritic mice. LncRNA H19 promotes M1 macrophage polarization and aggravates arthritis by upregulating KDM6A expression.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Ye Zhu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Chen Ding
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Weiting Zhang
- Department of Rheumatology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Huilin Guan
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Chunmei Li
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Xiao Lin
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Yang Zhang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Chunyan Huang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Luyao Zhang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Xin Yu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Xiaomin Zhang
- Department of Rheumatology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Wei Zhu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China.
| |
Collapse
|
31
|
Chen J, Xu X, Li Y, Li F, Zhang J, Xu Q, Chen W, Wei Y, Wang X. Kdm6a suppresses the alternative activation of macrophages and impairs energy expenditure in obesity. Cell Death Differ 2020; 28:1688-1704. [PMID: 33303977 PMCID: PMC8167088 DOI: 10.1038/s41418-020-00694-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Histone lysine demethylase 6a (Kdm6a) mediates the removal of repressive trimethylation from histone H3 lysine 27 (H3K27me3) to activate target gene expression. Obesity is associated with metabolic inflammation, and adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation. However, it is still unclear whether the Kdm6a pathway in ATMs regulates energy homeostasis. Here, we identified Kdm6a as a critical epigenetic switch that modulates macrophage polarisation and further disrupts energy balance. Myeloid-specific Kdm6a knockout in Kdm6aF/Y;Lyz2-Cre mice significantly reversed the high-fat diet (HFD)-induced M1–M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity. The brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly increased in Kdm6aF/Y;Lyz2-Cre mice. Furthermore, Kdm6a regulated the Ire1α expression in a demethylase activity-dependent manner and augmented the M2 polarisation of macrophages. Macrophage with higher Kdm6a significantly promotes adipogenesis in white adipocyte and inhibits thermogenesis in beige adipocytes. These results suggest that the Kdm6a in macrophages drives obesity and metabolic syndrome by impairing BAT activity and WAT differentiation.
Collapse
Affiliation(s)
- Jun Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Disease, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xing Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Disease, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yan Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Disease, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Fan Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Disease, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Disease, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Disease, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Disease, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yan Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,Department of Ophthalmology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,National Clinical Research Center for Oral Disease, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
32
|
Sawada Y, Gallo RL. Role of Epigenetics in the Regulation of Immune Functions of the Skin. J Invest Dermatol 2020; 141:1157-1166. [PMID: 33256976 DOI: 10.1016/j.jid.2020.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
This review is intended to illuminate the emerging understanding of epigenetic modifications that regulate both adaptive and innate immunity in the skin. Host defense of the epidermis and dermis involves the interplay of many cell types to enable homeostasis; tolerance to the external environment; and appropriate response to transient microbial, chemical, and physical insults. To understand this process, the study of cutaneous immunology has focused on immune responses that reflect both adaptive learned and genetically programmed innate defense systems. However, recent advances have begun to reveal that epigenetic modifications of chromatin structure also have a major influence on the skin immune system. This deeper understanding of how enzymatic changes in chromatin structure can modify the skin immune system and may explain how environmental exposures during life, and the microbiome, lead to both short-term and long-term changes in cutaneous allergic and other inflammatory processes. Understanding the mechanisms responsible for alterations in gene and chromatin structure within skin immunocytes could provide key insights into the pathogenesis of inflammatory skin diseases that have thus far evaded understanding by dermatologists.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of California, San Diego, San Diego, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, California, USA.
| |
Collapse
|
33
|
Li M, Rong ZJ, Cao Y, Jiang LY, Zhong D, Li CJ, Sheng XL, Hu JZ, Lu HB. Utx Regulates the NF-κB Signaling Pathway of Natural Stem Cells to Modulate Macrophage Migration during Spinal Cord Injury. J Neurotrauma 2020; 38:353-364. [PMID: 32977735 DOI: 10.1089/neu.2020.7075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells (NSCs) play vital roles in the homeostasis of neurological function. Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) is an important regulator of stem cell phenotypes. In our current study, we aimed to investigate whether the conditional knockout of UTX on neural stem cells alters macrophage assembly in response to spinal cord injury (SCI). Conditional knockout Utx of NSC (Utx-KO) mice was used to generate SCI models by the modified Allen method. We reported that neurological function and scar hyperplasia significantly improved in Utx-KO mice after SCI, accompanied by significantly reduced assembly of macrophages. With a 45-fold pathway array and Western blot, we found that Utx-KO could significantly inhibit NF-κB signaling activation and promote the synthesis and secretion of macrophage migration inhibitory factor (MIF) in NSCs. Administration of the selective NF-κB p65 activator betulinic acid and the selective MIF inhibitor ISO-1 confirmed that the activation of NF-κB p65 phosphorylation or inhibition of MIF could eliminate the benefits of Utx-KO in SCI, such as inhibition of macrophage aggregation and reduction in scar proliferation. This study confirmed that UTX in NSCs could alter macrophage migration and improve neurological function recovery after SCI in mice.
Collapse
Affiliation(s)
- Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Zi-Jie Rong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Li-Yuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Dong Zhong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Cheng-Jun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Xiao-Long Sheng
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Jian-Zhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China
| | - Hong-Bin Lu
- Xiangya Hospital, Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, People's Republic of China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
34
|
Bao R, Stapor D, Luke JJ. Molecular correlates and therapeutic targets in T cell-inflamed versus non-T cell-inflamed tumors across cancer types. Genome Med 2020; 12:90. [PMID: 33106165 PMCID: PMC7590690 DOI: 10.1186/s13073-020-00787-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The T cell-inflamed tumor microenvironment, characterized by CD8 T cells and type I/II interferon transcripts, is an important cancer immunotherapy biomarker. Tumor mutational burden (TMB) may also dictate response, and some oncogenes (i.e., WNT/β-catenin) are known to mediate immunosuppression. METHODS We performed an integrated multi-omic analysis of human cancer including 11,607 tumors across multiple databases and patients treated with anti-PD1. After adjusting for TMB, we correlated the T cell-inflamed gene expression signature with somatic mutations, transcriptional programs, and relevant proteome for different immune phenotypes, by tumor type and across cancers. RESULTS Strong correlations were noted between mutations in oncogenes and tumor suppressor genes and non-T cell-inflamed tumors with examples including IDH1 and GNAQ as well as less well-known genes including KDM6A, CD11c, and genes with unknown functions. Conversely, we observe genes associating with the T cell-inflamed phenotype including VHL and PBRM1. Analyzing gene expression patterns, we identify oncogenic mediators of immune exclusion across cancer types (HIF1A and MYC) as well as novel examples in specific tumors such as sonic hedgehog signaling, hormone signaling and transcription factors. Using network analysis, somatic and transcriptomic events were integrated. In contrast to previous reports of individual tumor types such as melanoma, integrative pan-cancer analysis demonstrates that most non-T cell-inflamed tumors are influenced by multiple signaling pathways and that increasing numbers of co-activated pathways leads to more highly non-T cell-inflamed tumors. Validating these analyses, we observe highly consistent inverse relationships between pathway protein levels and the T cell-inflamed gene expression across cancers. Finally, we integrate available databases for drugs that might overcome or augment the identified mechanisms. CONCLUSIONS These results nominate molecular targets and drugs potentially available for further study and potential immediate translation into clinical trials for patients with cancer.
Collapse
Affiliation(s)
- Riyue Bao
- Hillman Cancer Center, UPMC, Pittsburgh, PA, 15232, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Daniel Stapor
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Jason J Luke
- Hillman Cancer Center, UPMC, Pittsburgh, PA, 15232, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
35
|
Beacon TH, Su RC, Lakowski TM, Delcuve GP, Davie JR. SARS-CoV-2 multifaceted interaction with the human host. Part II: Innate immunity response, immunopathology, and epigenetics. IUBMB Life 2020; 72:2331-2354. [PMID: 32936531 DOI: 10.1002/iub.2379] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 makes its way into the cell via the ACE2 receptor and the proteolytic action of TMPRSS2. In response to the SARS-CoV-2 infection, the innate immune response is the first line of defense, triggering multiple signaling pathways to produce interferons, pro-inflammatory cytokines and chemokines, and initiating the adaptive immune response against the virus. Unsurprisingly, the virus has developed strategies to evade detection, which can result in delayed, excessive activation of the innate immune system. The response elicited by the host depends on multiple factors, including health status, age, and sex. An overactive innate immune response can lead to a cytokine storm, inflammation, and vascular disruption, leading to the vast array of symptoms exhibited by COVID-19 patients. What is known about the expression and epigenetic regulation of the ACE2 gene and the various players in the host response are explored in this review.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada
| | - Ted M Lakowski
- College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Zhang J, Ying Y, Li M, Wang M, Huang X, Jia M, Zeng J, Ma C, Zhang Y, Li C, Wang X, Shu XS. Targeted inhibition of KDM6 histone demethylases eradicates tumor-initiating cells via enhancer reprogramming in colorectal cancer. Am J Cancer Res 2020; 10:10016-10030. [PMID: 32929331 PMCID: PMC7481431 DOI: 10.7150/thno.47081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor-initiating cells (TICs) maintain heterogeneity within tumors and seed metastases at distant sites, contributing to therapeutic resistance and disease recurrence. In colorectal cancer (CRC), strategy that effectively eradicates TICs and is of potential value for clinical use still remains in need. Methods: The anti-tumorigenic activity of a small-molecule inhibitor of KDM6 histone demethylases named GSK-J4 in CRC was evaluated by in vitro assays and in vivo imaging of xenografted tumors. Sphere formation, flow cytometry analysis of cell surface markers and intestinal organoid formation were performed to examine the impact of GSK-J4 on TIC properties. Transcriptome analysis and global profiling of H3K27ac, H3K27me3, and KDM6A levels by ChIP-seq were conducted to elucidate how KDM6 inhibition reshapes epigenetic landscape and thereby eliminating TICs. Results: GSK-J4 alleviated the malignant phenotypes of CRC cells in vitro and in vivo, sensitized them to chemotherapeutic treatment, and strongly repressed TIC properties and stemness-associated gene signatures in these cells. Mechanistically, KDM6 inhibition induced global enhancer reprogramming with a preferential impact on super-enhancer-associated genes, including some key genes that control stemness in CRC such as ID1. Besides, expression of both Kdm6a and Kdm6b was more abundant in mouse intestinal crypt when compared with upper villus and inhibition of their activities blocked intestinal organoid formation. Finally, we unveiled the power of KDM6B in predicting both the overall survival outcome and recurrence of CRC patients. Conclusions: Our study provides a novel rational strategy to eradicate TICs through reshaping epigenetic landscape in CRC, which might also be beneficial for optimizing current therapeutics.
Collapse
|
37
|
Imuta H, Fujita D, Oba S, Kiyosue A, Nishimatsu H, Yudo K, Suzuki E. Histone methylation and demethylation are implicated in the transient and sustained activation of the interleukin-1β gene in murine macrophages. Heart Vessels 2020; 35:1746-1754. [PMID: 32676696 DOI: 10.1007/s00380-020-01670-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
Macrophages play a crucial role in the development of atherosclerosis. To explore the mechanism by which macrophages attain a proinflammatory phenotype for a sustained period, we stimulated macrophages with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) and measured the interleukin-1β (IL-1β) expression. The IL-1β expression increased transiently, and its expression lasted for, at least, 1 week after the cessation of LPS and IFN-γ stimulation. At the promoter region of the IL-1β gene, the demethylation of histone H3 lysine 27 (H3K27) was significantly induced for 1 week after transient stimulation with LPS and IFN-γ. The expression of H3K27 demethylases ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) and jumonji domain-containing 3 (JMJD3) increased significantly for 1 week after transient stimulation with LPS and IFN-γ. When the UTX expression was inhibited by using small interfering RNA (siRNA) for UTX, the IL-1β expression was significantly suppressed in both transient and sustained phases, whereas siRNA for JMJD3 significantly inhibited only the sustained phase of the IL-1β expression. These results suggested that H3K27 demethylation was implicated in the transient and sustained increase in the IL-1β expression after LPS and IFN-γ stimulation.
Collapse
Affiliation(s)
- Hiroyuki Imuta
- Division of Cardiovascular Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daishi Fujita
- Division of Cardiovascular Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shigeyoshi Oba
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Arihiro Kiyosue
- Division of Cardiovascular Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroaki Nishimatsu
- Department of Urology, Fraternity Memorial Hospital, 2-1-11 Yokozuna, Sumida-ku, Tokyo, 130-8587, Japan
| | - Kazuo Yudo
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8512, Japan
| | - Etsu Suzuki
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8512, Japan.
| |
Collapse
|
38
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
39
|
Liu X, Zhu C, Zha H, Tang J, Rong F, Chen X, Fan S, Xu C, Du J, Zhu J, Wang J, Ouyang G, Yu G, Cai X, Chen Z, Xiao W. SIRT5 impairs aggregation and activation of the signaling adaptor MAVS through catalyzing lysine desuccinylation. EMBO J 2020; 39:e103285. [PMID: 32301534 PMCID: PMC7265249 DOI: 10.15252/embj.2019103285] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
RLR-mediated type I IFN production plays a pivotal role in innate antiviral immune responses, where the signaling adaptor MAVS is a critical determinant. Here, we show that MAVS is a physiological substrate of SIRT5. Moreover, MAVS is succinylated upon viral challenge, and SIRT5 catalyzes desuccinylation of MAVS. Mass spectrometric analysis indicated that Lysine 7 of MAVS is succinylated. SIRT5-catalyzed desuccinylation of MAVS at Lysine 7 diminishes the formation of MAVS aggregation after viral infection, resulting in the inhibition of MAVS activation and leading to the impairment of type I IFN production and antiviral gene expression. However, the enzyme-deficient mutant of SIRT5 (SIRT5-H158Y) loses its suppressive role on MAVS activation. Furthermore, we show that Sirt5-deficient mice are resistant to viral infection. Our study reveals the critical role of SIRT5 in limiting RLR signaling through desuccinylating MAVS.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Juan Du
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Junji Zhu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Zhu Chen
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
- The Key Laboratory of Aquaculture Disease ControlMinistry of AgricultureWuhanChina
- The Key Laboratory of Aquatic Biodiversity and ConservationInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- The Innovation Academy of Seed DesignChinese Academy of SciencesWuhanChina
| |
Collapse
|
40
|
Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel) 2020; 12:cancers12061411. [PMID: 32486098 PMCID: PMC7352439 DOI: 10.3390/cancers12061411] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages are key innate immune cells in the tumor microenvironment (TME) that regulate primary tumor growth, vascularization, metastatic spread and tumor response to various types of therapies. The present review highlights the mechanisms of macrophage programming in tumor microenvironments that act on the transcriptional, epigenetic and metabolic levels. We summarize the latest knowledge on the types of transcriptional factors and epigenetic enzymes that control the direction of macrophage functional polarization and their pro- and anti-tumor activities. We also focus on the major types of metabolic programs of macrophages (glycolysis and fatty acid oxidation), and their interaction with cancer cells and complex TME. We have discussed how the regulation of macrophage polarization on the transcriptional, epigenetic and metabolic levels can be used for the efficient therapeutic manipulation of macrophage functions in cancer.
Collapse
|
41
|
Jiang Q, Huang X, Hu X, Shan Z, Wu Y, Wu G, Lei L. Histone demethylase KDM6A promotes somatic cell reprogramming by epigenetically regulating the PTEN and IL-6 signal pathways. Stem Cells 2020; 38:960-972. [PMID: 32346926 DOI: 10.1002/stem.3188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 12/13/2022]
Abstract
Aberrant epigenetic reprogramming is one of the major barriers for somatic cell reprogramming. Although our previous study has indicated that H3K27me3 demethylase KDM6A can improve the nuclear reprogramming efficiency, the mechanism remains unclear. In this study, we demonstrate that the overexpression of Kdm6a may improve induced pluripotent stem cell (iPSC) reprogramming efficiency in a demethylase enzymatic activity-dependent manner. KDM6A erased H3K27me3 on pluripotency- and metabolism-related genes, and consequently facilitated changing the gene expression profile and metabolic pattern to an intermediate state. Furthermore, KDM6A may promote IL-6 expression, and the secreted IL-6 may further improve iPSC reprogramming efficiency. In addition, KDM6A may promote PTEN expression to decrease p-AKT and p-mTOR levels, which in turn facilitates reprogramming. Overall, our results reveal that KDM6A may promote iPSC reprogramming efficiency by accelerating changes in the gene expression profile and the metabolic pattern in a demethylation-activity-dependent manner. These results may provide an insight into the relationship between epigenomics, transcriptomics, metabolomics, and reprogramming.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Xingwei Huang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Zhiyan Shan
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Guangming Wu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, People's Republic of China
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China.,Key laboratory of preservation of human genetic resources and disease control in China(Harbin Medical University), Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
42
|
Abstract
Enhancers are cis-acting elements with many sites bound by transcription factors and activate transcription over long distance. Histone modifications are critical for enhancer activity and utilized as hallmarks for the identification of putative enhancers. Monomethylation of histone H3 lysine 4 (H3K4me1) is the mark for enhancer priming; acetylation of histone H3 lysine 27 (H3K27ac) for active enhancers and trimethylation of histone H3 lysine 27 (H3K27me3) for silent enhancers. Recent studies from multiple groups have provided evidence that enhancer reprogramming, especially gain of enhancer activity, is closely related to tumorigenesis and cancer development. In this review, we will summarize the recent discoveries about enhancer regulation and the mechanisms of enhancer reprogramming in tumorigenesis, and discuss the potential application of enhancer manipulation in precision medicine.
Collapse
Affiliation(s)
- Jie Yao
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
| | - Ji Chen
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
| | - Lian-Yun Li
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
| | - Min Wu
- College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
43
|
Arnold PR, Wells AD, Li XC. Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Front Cell Dev Biol 2020; 7:377. [PMID: 31993419 PMCID: PMC6971116 DOI: 10.3389/fcell.2019.00377] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
Enhancers are cis-regulatory elements in the genome that cooperate with promoters to control target gene transcription. Unlike promoters, enhancers are not necessarily adjacent to target genes and can exert their functions regardless of enhancer orientations, positions and spatial segregations from target genes. Thus, for a long time, the question as to how enhancers act in a temporal and spatial manner attracted considerable attention. The recent discovery that enhancers are also abundantly transcribed raises interesting questions about the exact roles of enhancer RNA (eRNA) in gene regulation. In this review, we highlight the process of enhancer transcription and the diverse features of eRNA. We review eRNA functions, which include enhancer-promoter looping, chromatin modifying, and transcription regulating. As eRNA are transcribed from active enhancers, they exhibit tissue and lineage specificity, and serve as markers of cell state and function. Finally, we discuss the unique relationship between eRNA and super enhancers in phase separation wherein eRNA may contribute significantly to cell fate decisions.
Collapse
Affiliation(s)
- Preston R Arnold
- Texas A&M Health Science Center, College of Medicine, Bryan, TX, United States.,Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xian C Li
- Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
44
|
Ni S, Luo Z, Jiang L, Guo Z, Li P, Xu X, Cao Y, Duan C, Wu T, Li C, Lu H, Hu J. UTX/KDM6A Deletion Promotes Recovery of Spinal Cord Injury by Epigenetically Regulating Vascular Regeneration. Mol Ther 2019; 27:2134-2146. [PMID: 31495776 PMCID: PMC6904668 DOI: 10.1016/j.ymthe.2019.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
The regeneration of the blood vessel system post spinal cord injury (SCI) is essential for the repair of neurological function. As a significant means to regulate gene expression, epigenetic regulation of angiogenesis in SCI is still largely unknown. Here, we found that Ubiquitously Transcribed tetratricopeptide repeat on chromosome X (UTX), the histone H3K27 demethylase, increased significantly in endothelial cells post SCI. Knockdown of UTX can promote the migration and tube formation of endothelial cells. The specific knockout of UTX in endothelial cells enhanced angiogenesis post SCI accompanied with improved neurological function. In addition, we found regulation of UTX expression can change the level of microRNA 24 (miR-24) in vitro. The physical binding of UTX to the promotor of miR-24 was indicated by chromatin immunoprecipitation (ChIP) assay. Meanwhile, methylation sequencing of endothelial cells demonstrated that UTX could significantly decrease the level of methylation in the miR-24 promotor. Furthermore, miR-24 significantly abolished the promoting effect of UTX deletion on angiogenesis in vitro and in vivo. Finally, we predicted the potential target mRNAs of miR-24 related to angiogenesis. We indicate that UTX deletion can epigenetically promote the vascular regeneration and functional recovery post SCI by forming a regulatory network with miR-24.
Collapse
Affiliation(s)
- Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zhu Guo
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China; Spine Surgery Department of the Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Ping Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Xiang Xu
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China; Department of Minimally Invasive Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical College, Huhhot 010030, Inner Mongolia, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Chengjun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China.
| |
Collapse
|
45
|
Zhao J, Huang K, Peng HZ, Feng JF. Protein C-ets-2 epigenetically suppresses TLRs-induced interleukin 6 production in macrophages. Biochem Biophys Res Commun 2019; 522:960-964. [PMID: 31810605 DOI: 10.1016/j.bbrc.2019.11.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022]
Abstract
Interleukin 6 (IL-6) is a major proinflammatory cytokine involved in several aspects of the immune response. Excessive IL-6 production and dysregulated IL-6 receptor signaling lead to multiple inflammatory and autoimmune diseases, such as asthma, even cancer. Thus, its precise regulatory mechanisms need to be fully addressed. Here we found that knockdown of protein C-ets-2 (Ets2) resulted in higher IL-6 production after TLRs activation in macrophages. Mechanistically, Ets2 associated with an epigenetic modifier histone deacetylase 1 (HDAC1) and promoted its recruitment to the Il6 promoter after TLRs activation. Subsequentially, it enhanced histone deacetylation and inhibited Il6 mRNA transcription. Thus, Ets2 epigenetically suppresses TLRs-induced IL-6 production in both human and murine macrophages via promoting histone deacetylation of the Il6 promoter, serving as a new potential therapeutic target in inflammatory diseases therapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Respiration, Zhejiang Medical & Health Group Hangzhou Hospital, 1 Banshan Road, Hangzhou, 310022, Zhejiang, China.
| | - Kai Huang
- Department of Laboratory Diagnosis, NO.425 Hospital, 86 Sanyawan Road, Sanya, 572000, Hainan, China.
| | - Hui-Zhong Peng
- Department of Respiration, Zhejiang Medical & Health Group Hangzhou Hospital, 1 Banshan Road, Hangzhou, 310022, Zhejiang, China.
| | - Ji-Feng Feng
- Department of Laboratory Diagnosis, NO.425 Hospital, 86 Sanyawan Road, Sanya, 572000, Hainan, China.
| |
Collapse
|
46
|
Ibáñez-Cabellos JS, Seco-Cervera M, Osca-Verdegal R, Pallardó FV, García-Giménez JL. Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis. Front Genet 2019; 10:1104. [PMID: 31798626 PMCID: PMC6863924 DOI: 10.3389/fgene.2019.01104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accepted that epigenetic pathways play an essential role in the development and function of the immune system. Although many published studies have attempted to elucidate the relation between epigenetic modifications (e.g. DNA methylation, histone post-translational modifications, miRNAs) and autoimmune disorders, the contribution of epigenetic regulation to the pathogenesis of SS and RA is at present poorly understood. This review attempts to shed light from a critical point of view on the identification of the most relevant epigenetic mechanisms related to RA and SS by explaining intricate regulatory processes and phenotypic features of both autoimmune diseases. Moreover, we point out some epigenetic markers which can be used to monitor the inflammation status and the dysregulated immunity in SS and RA. Finally, we discuss the inconvenience of using epigenetic data obtained from bulk immune cell populations instead specific immune cell subpopulations.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
47
|
Sun P, Zhang SJ, Maksim S, Yao YF, Liu HM, Du J. Epigenetic Modification in Macrophages: A Promising Target for Tumor and Inflammation-associated Disease Therapy. Curr Top Med Chem 2019; 19:1350-1362. [PMID: 31215380 DOI: 10.2174/1568026619666190619143706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023]
Abstract
Macrophages are essential for supporting tissue homeostasis, regulating immune response, and promoting tumor progression. Due to its heterogeneity, macrophages have different phenotypes and functions in various tissues and diseases. It is becoming clear that epigenetic modification playing an essential role in determining the biological behavior of cells. In particular, changes of DNA methylation, histone methylation and acetylation regulated by the corresponding epigenetic enzymes, can directly control macrophages differentiation and change their functions under different conditions. In addition, epigenetic enzymes also have become anti-tumor targets, such as HDAC, LSD1, DNMT, and so on. In this review, we presented an overview of the latest progress in the study of macrophages phenotype and function regulated by epigenetic modifications, including DNA methylation and histone modifications, to better understand how epigenetic modification controls macrophages phenotype and function in inflammation-associated diseases, and the application prospect in anti-tumor.
Collapse
Affiliation(s)
- Pei Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Shu-Jing Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Semenov Maksim
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Yong-Fang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies (Zhengzhou University), Ministry of Education of China, Zhengzhou, China
| | - Juan Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Itoh Y, Golden LC, Itoh N, Matsukawa MA, Ren E, Tse V, Arnold AP, Voskuhl RR. The X-linked histone demethylase Kdm6a in CD4+ T lymphocytes modulates autoimmunity. J Clin Invest 2019; 129:3852-3863. [PMID: 31403472 DOI: 10.1172/jci126250] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/11/2019] [Indexed: 01/05/2023] Open
Abstract
Multiple sclerosis (MS) is a putative T cell-mediated autoimmune disease. As with many autoimmune diseases, females are more susceptible than males. Sexual dimorphisms may be due to differences in sex hormones, sex chromosomes, or both. Regarding sex chromosome genes, a small percentage of X chromosome genes escape X inactivation and have higher expression in females (XX) compared with males (XY). Here, high-throughput gene expression analysis in CD4+ T cells showed that the top sexually dimorphic gene was Kdm6a, a histone demethylase on the X chromosome. There was higher expression of Kdm6a in females compared with males in humans and mice, and the four core genotypes (FCG) mouse model showed higher expression in XX compared with XY. Deletion of Kdm6a in CD4+ T cells ameliorated clinical disease and reduced neuropathology in the classic CD4+ T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis (EAE). Global transcriptome analysis in CD4+ T cells from EAE mice with a specific deletion of Kdm6a showed upregulation of Th2 and Th1 activation pathways and downregulation of neuroinflammation signaling pathways. Together, these data demonstrate that the X escapee Kdm6a regulates multiple immune response genes, providing a mechanism for sex differences in autoimmune disease susceptibility.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Lisa C Golden
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Noriko Itoh
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Macy Akiyo Matsukawa
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Emily Ren
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Vincent Tse
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Rhonda R Voskuhl
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
49
|
Segovia C, San José-Enériz E, Munera-Maravilla E, Martínez-Fernández M, Garate L, Miranda E, Vilas-Zornoza A, Lodewijk I, Rubio C, Segrelles C, Valcárcel LV, Rabal O, Casares N, Bernardini A, Suarez-Cabrera C, López-Calderón FF, Fortes P, Casado JA, Dueñas M, Villacampa F, Lasarte JJ, Guerrero-Ramos F, de Velasco G, Oyarzabal J, Castellano D, Agirre X, Prósper F, Paramio JM. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med 2019; 25:1073-1081. [PMID: 31270502 DOI: 10.1038/s41591-019-0499-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
Bladder cancer is lethal in its advanced, muscle-invasive phase with very limited therapeutic advances1,2. Recent molecular characterization has defined new (epi)genetic drivers and potential targets for bladder cancer3,4. The immune checkpoint inhibitors have shown remarkable efficacy but only in a limited fraction of bladder cancer patients5-8. Here, we show that high G9a (EHMT2) expression is associated with poor clinical outcome in bladder cancer and that targeting G9a/DNMT methyltransferase activity with a novel inhibitor (CM-272) induces apoptosis and immunogenic cell death. Using an immunocompetent quadruple-knockout (PtenloxP/loxP; Trp53loxP/loxP; Rb1loxP/loxP; Rbl1-/-) transgenic mouse model of aggressive metastatic, muscle-invasive bladder cancer, we demonstrate that CM-272 + cisplatin treatment results in statistically significant regression of established tumors and metastases. The antitumor effect is significantly improved when CM-272 is combined with anti-programmed cell death ligand 1, even in the absence of cisplatin. These effects are associated with an endogenous antitumor immune response and immunogenic cell death with the conversion of a cold immune tumor into a hot tumor. Finally, increased G9a expression was associated with resistance to programmed cell death protein 1 inhibition in a cohort of patients with bladder cancer. In summary, these findings support new and promising opportunities for the treatment of bladder cancer using a combination of epigenetic inhibitors and immune checkpoint blockade.
Collapse
Affiliation(s)
- Cristina Segovia
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Edurne San José-Enériz
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Ester Munera-Maravilla
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Mónica Martínez-Fernández
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain.,Mobile Genomes and Disease Laboratory CIMUS, Universidad de Santiago de Compostela, La Coruña, Spain
| | - Leire Garate
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Estíbaliz Miranda
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | | | - Carolina Rubio
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Carmen Segrelles
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Luis Vitores Valcárcel
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.,TECNUN, University of Navarra, San Sebastián, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Alejandra Bernardini
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | | | - Fernando F López-Calderón
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Puri Fortes
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - José A Casado
- Division of Hematopoietic Innovative Therapies (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Marta Dueñas
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Felipe Villacampa
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Félix Guerrero-Ramos
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain.,Urology Department, University Hospital '12 de Octubre', Madrid, Spain
| | - Guillermo de Velasco
- Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain.,Medical Oncology Department, University Hospital '12 de Octubre', Madrid, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Daniel Castellano
- Molecular Oncology Unit CIEMAT, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain.,Medical Oncology Department, University Hospital '12 de Octubre', Madrid, Spain
| | - Xabier Agirre
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain. .,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.
| | - Felipe Prósper
- Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain. .,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain. .,Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain.
| | - Jesús M Paramio
- Molecular Oncology Unit CIEMAT, Madrid, Spain. .,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain. .,Institute of Biomedical Research, University Hospital '12 de Octubre', Madrid, Spain.
| |
Collapse
|
50
|
Sommese L, Benincasa G, Schiano C, Marfella R, Grimaldi V, Sorriento A, Lucchese R, Fiorito C, Sardu C, Nicoletti GF, Napoli C. Genetic and epigenetic-sensitive regulatory network in immune response: a putative link between HLA-G and diabetes. Expert Rev Endocrinol Metab 2019; 14:233-241. [PMID: 31131681 DOI: 10.1080/17446651.2019.1620103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Human leukocyte antigen-G (HLA-G) gene encodes for a tolerogenic molecule constitutively expressed in human pancreas and upregulated upon inflammatory signals. The 14 bp INS/DEL polymorphism in the 3'UTR of HLA-G may influence the susceptibility for diabetes and coronary heart diseases (CHD), thus suggesting a novel candidate gene. DNA hypomethylation at HLA-G promoter may be a putative useful clinical biomarker for CHD onset. Upregulation of soluble HLA-G isoform (sHLA-G) was detected in prediabetic and diabetic subjects, suggesting a putative role in metabolic dysfunctions. AREAS COVERED We conducted a scoping literature review of genetic and epigenetic-sensitive mechanisms regulating HLA-G in diabetes. English-language manuscripts published between 1997 and 2019, were identified through PubMed, Google Scholar, and Web of Science database searches. After selecting 14 original articles representing case-control studies, we summarized and critically evaluated their main findings. EXPERT COMMENTARY Although epigenetic modifications are involved in the onset of hyperglycemic conditions evolving into diabetes and CHD, it is still difficult to obtain simple and useful clinical biomarkers. Inflammatory-induced KDM6A/INF-β/HLA-G axis might be a part of the epigenetic network leading to overexpression of HLA-G at pancreatic level. Network medicine may show whether HLA-G is involved in diabetes and CHD.
Collapse
Affiliation(s)
- Linda Sommese
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Giuditta Benincasa
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | | | - Raffaele Marfella
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | - Vincenzo Grimaldi
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Antonio Sorriento
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Roberta Lucchese
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Carmela Fiorito
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Celestino Sardu
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | - Giovanni Francesco Nicoletti
- d Multidisciplinary Department of Medical-Surgical and Dental Specialties , Università degli Studi della Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
- c IRCCS SDN , Naples , Italy
| |
Collapse
|