1
|
Chero-Sandoval L, Higuera-Gómez A, Martínez-Urbistondo M, Castejón R, Mellor-Pita S, Moreno-Torres V, de Luis D, Cuevas-Sierra A, Martínez JA. Comparative assessment of phenotypic markers in patients with chronic inflammation: Differences on Bifidobacterium concerning liver status. Eur J Clin Invest 2024:e14339. [PMID: 39468772 DOI: 10.1111/eci.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The relationship between systemic lupus erythematosus (SLE) and low-grade metabolic inflammation (MI) with the microbiota is crucial for understanding the pathogenesis of these diseases and developing effective therapeutic interventions. In this context, it has been observed that the gut microbiota plays a key role in the immune regulation and inflammation contributing to the exacerbation through inflammatory mediators. This research aimed to describe similarities/differences in anthropometric, biochemical, inflammatory, and hepatic markers as well as to examine the putative role of gut microbiota concerning two inflammatory conditions: SLE and MI. METHODS Data were obtained from a cohort comprising adults with SLE and MI. Faecal samples were determined by 16S technique. Statistical analyses compared anthropometric and clinical variables, and LEfSe and MetagenomeSeq were used for metagenomic data. An interaction analysis was fitted to investigate associations of microbiota with fatty liver index (FLI) depending on the inflammatory condition. RESULTS Participants with low-grade MI showed worse values in anthropometry and biochemicals compared with patients with SLE. The liver profile of patients with MI was unhealthier, while no relevant differences were found in most of the inflammatory markers between groups. LEfSe analysis revealed an overrepresentation of Bifidobacteriaceae family in SLE group. An interactive association between gut Bifidobacterium abundance and type of disease was identified for FLI values, suggesting an effect modification of the gut microbiota concerning liver markers depending on the inflammatory condition. CONCLUSION This study found phenotypical and microbial similarities and disparities between these two inflammatory conditions, evidenced in clinical and hepatic markers, and showed the interactive interplay between gut Bifidobacterium and liver health (measured by FLI) that occur in a different manner depending on the type of inflammatory disease. These results underscore the importance of personalized approaches and individual microbiota in the screening of different inflammatory situations, considering unique hepatic and microbiota profiles.
Collapse
Affiliation(s)
- Lourdes Chero-Sandoval
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
- Department of Endocrinology and Nutrition, University Clinical Hospital, University of Valladolid, Valladolid, Spain
| | - Andrea Higuera-Gómez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
| | | | - Raquel Castejón
- Internal Medicine Service, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Susana Mellor-Pita
- Internal Medicine Service, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Víctor Moreno-Torres
- Internal Medicine Service, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
- Health Sciences School and Medical Centre, International University of the Rioja (UNIR), Madrid, Spain
| | - Daniel de Luis
- Department of Endocrinology and Nutrition, University Clinical Hospital, University of Valladolid, Valladolid, Spain
- Centre of Endocrinology and Nutrition, University of Valladolid, Valladolid, Spain
| | - Amanda Cuevas-Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
- Health Sciences School and Medical Centre, International University of the Rioja (UNIR), Madrid, Spain
| | - J Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
- Centre of Endocrinology and Nutrition, University of Valladolid, Valladolid, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Carvalho LM, Carvalho BG, Souza LL, da Mota JC, Ribeiro AA, Nicoletti CF. Obesity as an aggravating factor of systemic lupus erythematosus disease: What we already know and what we must explore? - A rapid scoping review. Nutrition 2024; 128:112559. [PMID: 39244807 DOI: 10.1016/j.nut.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect various organs and systems. Symptoms of SLE can vary widely from person to person and over time, including fatigue, joint pain, skin rashes, fever, and inflammation of multiple organs. The association between SLE and excess body weight has been the subject of study, with evidence suggesting that overweight and obesity can worsen the disease´s clinical presentation. Obesity is linked to a state of low-grade chronic inflammation, which can exacerbate the inflammation present in SLE. Additionally, obesity may negatively impact treatment response, disease progression, and patient prognosis. Patients with SLE and obesity may face additional challenges in managing the disease, such as increased symptom severity, higher risk of cardiovascular and renal complications, and a reduced response to conventional treatments. Obesity can also influence the quality of life of patients with SLE, making a holistic approach that considers the individual's nutritional status essential. Therefore, understanding the relationship between obesity and SLE is crucial for optimizing treatment, improving clinical outcomes, and enhancing patients' quality of life. Further research is needed to elucidate the underlying pathophysiological mechanisms, develop more precise and personalized management strategies, and identify biomarkers that can predict disease prognosis and treatment response.
Collapse
Affiliation(s)
- Lucas M Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Beatriz G Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jhulia Cnl da Mota
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda A Ribeiro
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Ding G, Yang X, Li Y, Wang Y, Du Y, Wang M, Ye R, Wang J, Zhang Y, Chen Y, Zhang Y. Gut microbiota regulates gut homeostasis, mucosal immunity and influences immune-related diseases. Mol Cell Biochem 2024:10.1007/s11010-024-05077-y. [PMID: 39060829 DOI: 10.1007/s11010-024-05077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
The intestinal microbiome constitutes a sophisticated and massive ecosystem pivotal for maintaining gastrointestinal equilibrium and mucosal immunity via diverse pathways. The gut microbiota is continuously reshaped by multiple environmental factors, thereby influencing overall wellbeing or predisposing individuals to disease state. Many observations reveal an altered microbiome composition in individuals with autoimmune conditions, coupled with shifts in metabolic profiles, which has spurred ongoing development of therapeutic interventions targeting the microbiome. This review delineates the microbial consortia of the intestine, their role in sustaining gastrointestinal stability, the association between the microbiome and immune-mediated pathologies, and therapeutic modalities focused on microbiome modulation. We emphasize the entire role of the intestinal microbiome in human health and recommend microbiome modulation as a viable strategy for disease prophylaxis and management. However, the application of gut microbiota modification for the treatment of immune-related diseases, such as fecal microbiota transplantation and probiotics, remain quite challenging. Therefore, more research is needed into the role and mechanisms of these therapeutics.
Collapse
Affiliation(s)
- Guoao Ding
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
- Department of Life Science, Anhui University, Hefei, 230061, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ying Li
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ying Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yujie Du
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Meng Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ruxin Ye
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Jingjing Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yongkang Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yajun Chen
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yan Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China.
- Department of Life Science, Anhui University, Hefei, 230061, China.
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Zhou L, Cai SZ, Dong LL. Recent advances in pathogenesis, diagnosis, and therapeutic approaches for digestive system involvement in systemic lupus erythematosus. J Dig Dis 2024; 25:410-423. [PMID: 39317429 DOI: 10.1111/1751-2980.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the presence of large amounts of autoantibodies and immune complex formation. Because of their atypical clinical symptoms, SLE patients with digestive system involvement may not be recognized or treated precisely and extensively. Clinicians should pay close attention to SLE with digestive system involvement, as these conditions can easily worsen the condition and possibly endanger the patient's life. In this review we summarized the pathogenesis, pathological characteristics, clinical manifestations, diagnosis, and therapies for digestive system involvement in SLE.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao Zhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ling Li Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Su T, Gan Y, Ma S, Wu H, Lu S, Zhi M, Wang B, Lu Y, Yao J. Graves' disease and the risk of five autoimmune diseases: A Mendelian randomization and colocalization study. Diabetes Metab Syndr 2024; 18:103023. [PMID: 38697002 DOI: 10.1016/j.dsx.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Epidemiological studies have consistently demonstrated a high prevalence of concurrent autoimmune diseases in individuals with Graves' disease (GD). OBJECTIVE The objective of this study is to establish a causal association between GD and autoimmune diseases. METHODS We employed a two-sample Mendelian randomization (MR) to infer a causal association between GD and five autoimmune diseases, namely rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Crohn's disease (CD), ulcerative colitis (UC), and amyotrophic lateral sclerosis (ALS), in the East Asian and European population. Genetic correlations were explored through linkage disequilibrium score regression analysis (LDSC). Finally, colocalization analyses were performed to investigate possible genetic foundations. RESULTS Bidirectional MR analysis indicated that genetically predicted GD increased the risk of RA (Odds Ratio (OR): 1.34, 95 % Confidence Interval (CI): 1.21 to 1.47, P < 0.001) and SLE (OR: 1.21, 95%CI: 1.08 to 1.35, P < 0.001) in the East Asian population. In contrast, we found that genetically predicted RA (OR: 1.14, 95%CI: 1.05 to 1.24, P = 0.002) and SLE (OR: 1.10, 95%CI: 1.03 to 1.17, P = 0.003) were associated with a higher risk of GD. The results have been partially validated in European cohorts. Colocalization analysis suggested the potential existence of shared causal variants between GD and other autoimmune diseases. In particular, gene ARID5B may play an important role in the incidence of autoimmune diseases. CONCLUSION This study has confirmed that GD was associated with RA and SLE and found a possible key gene ARID5B. It may be necessary to strengthen detection to prevent the occurrence of comorbidities in clinical practice.
Collapse
Affiliation(s)
- Tao Su
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Ying Gan
- Department of Anesthesiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shulin Ma
- Department of Anesthesiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hongzhen Wu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shilin Lu
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510060, China
| | - Min Zhi
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Bao Wang
- Department of Anesthesiology, Guangzhou Twelfth People's Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Yi Lu
- Department of Anesthesiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Jiayin Yao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Wang Y, Wang Z, Lu Q. Microbiome dynamics in rheumatic diseases. Curr Opin Rheumatol 2024; 36:134-141. [PMID: 37976078 DOI: 10.1097/bor.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW Rheumatic disease are characterized by their autoimmune nature, frequently affecting joints, bones, muscles, blood vessels, and connective tissues. The onset of these conditions typically unfolds gradually and subtly. It is noteworthy that individuals with rheumatic diseases often experience shifts in their microbiome, specifically on mucosal surfaces. The purpose of this review is to delve into the intricate interplay between the microbiome, encompassing bacteria, viruses and fungi, and its role in the development and aggravation of various rheumatic diseases. Additionally, it aims to offer insights into microbiome-centered therapeutic approaches for patients in the field of rheumatology. RECENT FINDINGS The advent of next-generation sequencing has significantly improved our understanding of microbiome changes. Numerous studies have consistently revealed a strong link between rheumatism and the microbiome, especially in the oral and gut microbiota. SUMMARY A deeper comprehension of the microbiome's connection to rheumatism holds potential for enhancing disease diagnosis and treatment. Targeted therapeutic approaches, including probiotics, fecal microbiota transplantation, and combination therapies with medications, offer promising avenues for disease management.
Collapse
Affiliation(s)
- Yiqing Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University
| | - Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University
| |
Collapse
|
7
|
Silverman GJ, Azzouz DF, Gisch N, Amarnani A. The gut microbiome in systemic lupus erythematosus: lessons from rheumatic fever. Nat Rev Rheumatol 2024; 20:143-157. [PMID: 38321297 DOI: 10.1038/s41584-023-01071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
For more than a century, certain bacterial infections that can breach the skin and mucosal barriers have been implicated as common triggers of autoimmune syndromes, especially post-infection autoimmune diseases that include rheumatic fever and post-streptococcal glomerulonephritis. However, only in the past few years has the importance of imbalances within our own commensal microbiota communities, and within the gut, in the absence of infection, in promoting autoimmune pathogenesis become fully appreciated. A diversity of species and mechanisms have been implicated, including disruption of the gut barrier. Emerging data suggest that expansions (or blooms) of pathobiont species are involved in autoimmune pathogenesis and stimulate clonal expansion of T cells and B cells that recognize microbial antigens. This Review discusses the relationship between the gut microbiome and the immune system, and the potential consequence of disrupting the community balance in terms of autoimmune development, focusing on systemic lupus erythematosus. Notably, inter-relationships between expansions of certain members within gut microbiota communities and concurrent autoimmune responses bear features reminiscent of classical post-infection autoimmune disease. From such insights, new therapeutic opportunities are being considered to restore the balance within microbiota communities or re-establishing the gut-barrier integrity to reinforce immune homeostasis in the host.
Collapse
Affiliation(s)
- Gregg J Silverman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA.
| | - Doua F Azzouz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Abhimanyu Amarnani
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
8
|
Song W, Wu F, Yan Y, Li Y, Wang Q, Hu X, Li Y. Gut microbiota landscape and potential biomarker identification in female patients with systemic lupus erythematosus using machine learning. Front Cell Infect Microbiol 2023; 13:1289124. [PMID: 38169617 PMCID: PMC10758415 DOI: 10.3389/fcimb.2023.1289124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Objectives Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease that disproportionately affects women. Early diagnosis and prevention are crucial for women's health, and the gut microbiota has been found to be strongly associated with SLE. This study aimed to identify potential biomarkers for SLE by characterizing the gut microbiota landscape using feature selection and exploring the use of machine learning (ML) algorithms with significantly dysregulated microbiotas (SDMs) for early identification of SLE patients. Additionally, we used the SHapley Additive exPlanations (SHAP) interpretability framework to visualize the impact of SDMs on the risk of developing SLE in females. Methods Stool samples were collected from 54 SLE patients and 55 Negative Controls (NC) for microbiota analysis using 16S rRNA sequencing. Feature selection was performed using Elastic Net and Boruta on species-level taxonomy. Subsequently, four ML algorithms, namely logistic regression (LR), Adaptive Boosting (AdaBoost), Random Forest (RF), and eXtreme gradient boosting (XGBoost), were used to achieve early identification of SLE with SDMs. Finally, the best-performing algorithm was combined with SHAP to explore how SDMs affect the risk of developing SLE in females. Results Both alpha and beta diversity were found to be different in SLE group. Following feature selection, 68 and 21 microbiota were retained in Elastic Net and Boruta, respectively, with 16 microbiota overlapping between the two, i.e., SDMs for SLE. The four ML algorithms with SDMs could effectively identify SLE patients, with XGBoost performing the best, achieving Accuracy, Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, and AUC values of 0.844, 0.750, 0.938, 0.923, 0.790, and 0.930, respectively. The SHAP interpretability framework showed a complex non-linear relationship between the relative abundance of SDMs and the risk of SLE, with Escherichia_fergusonii having the largest SHAP value. Conclusions This study revealed dysbiosis in the gut microbiota of female SLE patients. ML classifiers combined with SDMs can facilitate early identification of female patients with SLE, particularly XGBoost. The SHAP interpretability framework provides insight into the impact of SDMs on the risk of SLE and may inform future scientific treatment for SLE.
Collapse
Affiliation(s)
- Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feng Wu
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yan Yan
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yaheng Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, Shanxiuan, China
| | - Qian Wang
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, Shanxiuan, China
| | - Xueli Hu
- Department of Nephrology, Hejin People’s Hospital, Yuncheng, Shanxi, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, Shanxiuan, China
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Liu X, Liu M, Zhao M, Li P, Gao C, Fan X, Cai G, Lu Q, Chen X. Fecal microbiota transplantation for the management of autoimmune diseases: Potential mechanisms and challenges. J Autoimmun 2023; 141:103109. [PMID: 37690971 DOI: 10.1016/j.jaut.2023.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Autoimmune diseases (AIDs) are a series of immune-mediated lethal diseases featured by over-activated immune cells attacking healthy self-tissues and organs due to the loss of immune tolerance, which always causes severe irreversible systematical organ damage and threatens human health heavily. To date, there are still no definitive cures for the treatment of AIDs due to their pathogenesis has not been clearly understood. Besides, the current clinical treatments of AIDs majorly rely on glucocorticoids and immune suppressors, which can lead to serious side effects. In the past years, there are increasing studies demonstrating that an imbalance of gut microbiota is intimately related to the pathogenesis of various AIDs, shedding light on the development of therapeutics by targeting the gut microbiota for the management of AIDs. Among all the approaches targeting the gut microbiota, fecal microbiota transplantation (FMT) has attracted increasing interest, and it has been proposed as a possible strategy to intervene in the homeostasis of gut microbiota for the treatment of various diseases. However, despite the reported good curative effects and clinical studies conducted on FMT, the detailed mechanisms of FMT for the effective treatment of those diseases have not been figured out. To fully understand the mechanisms of the therapeutic effects of FMT on AIDs and improve the therapeutic efficacy of FMT treatment, a systematic review of this topic is necessary. Hence, in this review paper, the potential mechanisms of FMT for the treatment of various AIDs were summarized, including promotion, shaping, activation, or inhibition of the host immune system via the interactions between the microorganisms and the gut immune system, gut-brain, gut-liver, gut-kidney axis, and so on. Then, applications of FMT for the treatment of various AIDs were detailed presented. Finally, the current challenges and potential solutions for the development of FMT formulations and FMT therapeutics were comprehensively discussed.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Mei Liu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Changxing Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Xinyu Fan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| |
Collapse
|
10
|
Amarnani A, Silverman GJ. Understanding the roles of the microbiome in autoimmune rheumatic diseases. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:177-187. [PMID: 38125641 PMCID: PMC10729600 DOI: 10.2478/rir-2023-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/06/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiome represents a potential promising therapeutic target for autoimmune diseases. This review summarizes the current knowledge on the links between the gut microbiome and several autoimmune rheumatic diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) spondyloarthropathies (SpA), Sjogren's syndrome (SS), and systemic sclerosis (SSc). Evidence from studies of RA and SLE patients suggests that alterations in the gut microbiome composition and function contribute to disease development and progression through increased gut permeability, with microbes and microbial metabolites driving an excessive systemic activation of the immune system. Also, there is growing evidence that gut dysbiosis and subsequent immune cell activation may contribute to disease pathogenesis in SpA and SS. For SSc, there are fewer, but these are still informative, reports on alterations in the gut microbiome. In general, the complex interplay between the microbiome and the immune system is still not fully understood. Here we discuss the current knowledge of the link between the gut microbiome and autoimmune rheumatic diseases, highlighting potentially fertile areas for future research and make considerations on the potential benefits of strategies that restore gut microbiome homeostasis.
Collapse
Affiliation(s)
- Abhimanyu Amarnani
- Department of Medicine, NYU Grossman School of Medicine, New York, NYUSA
| | - Gregg J. Silverman
- Department of Medicine, NYU Grossman School of Medicine, New York, NYUSA
| |
Collapse
|
11
|
Li F, Liang Z, Zhong H, Hu X, Tang Z, Zhu C, Shen J, Han X, Lin R, Zheng R, Tang R, Peng H, Zheng X, Mo C, Chen P, Wang X, Wen Q, Li J, Xia X, Ye H, Qiu Y, Yu J, Fu D, Liu J, Wang R, Xie H, Guo Y, Li X, Fan J, Liu Q, Mao H, Chen W, Zhou Y. Group 3 Innate Lymphoid Cells Exacerbate Lupus Nephritis by Promoting B Cell Activation in Kidney Ectopic Lymphoid Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302804. [PMID: 37915129 PMCID: PMC10724443 DOI: 10.1002/advs.202302804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/28/2023] [Indexed: 11/03/2023]
Abstract
Group 3 innate lymphoid cells (ILC3s) represent a new population in immune regulation, yet their role in lupus nephritis (LN) remains elusive. In the present work, systemic increases in ILC3s, particularly in the kidney, are observed to correlate strongly with disease severity in both human and murine LN. Using MRL/lpr lupus mice and a nephrotoxic serum-induced LN model, this study demonstrates that ILC3s accumulated in the kidney migrate predominantly from the intestine. Furthermore, intestinal ILC3s accelerate LN progression, manifested by exacerbated autoimmunity and kidney injuries. In LN kidneys, ILC3s are located adjacent to B cells within ectopic lymphoid structures (ELS), directly activating B cell differentiation into plasma cells and antibody production in a Delta-like1 (DLL1)/Notch-dependent manner. Blocking DLL1 attenuates ILC3s' effects and protects against LN. Altogether, these findings reveal a novel pathogenic role of ILC3s in B cell activation, renal ELS formation and autoimmune injuries during LN, shedding light on the therapeutic value of targeting ILC3s for LN.
Collapse
Affiliation(s)
- Feng Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Zhou Liang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Haojie Zhong
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital, Shenzhen UniversityShenzhen518000China
| | - Xinrong Hu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Ziwen Tang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Changjian Zhu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jiani Shen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Xu Han
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Ruoni Lin
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Ruilin Zheng
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Ruihan Tang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Huajing Peng
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Xunhua Zheng
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Chengqiang Mo
- Department of UrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
| | - Peisong Chen
- Department of Laboratory MedicineThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
| | - Xin Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Qiong Wen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jianbo Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Xi Xia
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Hongjian Ye
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Yagui Qiu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jianwen Yu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Dongying Fu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jiaqi Liu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Rong Wang
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Huixin Xie
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Yun Guo
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Xiaoyan Li
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Jinjin Fan
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Haiping Mao
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510080China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat‐Sen University) and Guangdong Provincial Key Laboratory of NephrologyGuangzhou510080China
| |
Collapse
|
12
|
Kalayci FNC, Ozen S. Possible Role of Dysbiosis of the Gut Microbiome in SLE. Curr Rheumatol Rep 2023; 25:247-258. [PMID: 37737528 DOI: 10.1007/s11926-023-01115-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW The resident gut microbiota serves as a double-edged sword that aids the host in multiple ways to preserve a healthy equilibrium and serve as early companions and boosters for the gradual evolution of our immune defensive layers; nevertheless, the perturbation of the symbiotic resident intestinal communities has a profound impact on autoimmunity induction, particularly in systemic lupus erythematosus (SLE). Herein, we seek to critically evaluate the microbiome research in SLE with a focus on intestinal dysbiosis. RECENT FINDINGS SLE is a complex and heterogeneous disorder with self-attack due to loss of tolerance, and there is aberrant excessive immune system activation. There is mounting evidence suggesting that intestinal flora disturbances may accelerate the formation and progression of SLE, presumably through a variety of mechanisms, including intestinal barrier dysfunction and leaky gut, molecular mimicry, bystander activation, epitope spreading, gender bias, and biofilms. Gut microbiome plays a critical role in SLE pathogenesis, and additional studies are warranted to properly define the impact of gut microbiome in SLE, which can eventually lead to new and potentially safer management approaches for this debilitating disease.
Collapse
Affiliation(s)
| | - Seza Ozen
- Department of Paediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Wang A, Zhao J, Qin Y, Zhang Y, Xing Y, Wang Y, Yu Z, Yan J, Han M, Yuan J, Hui Y, Guo S, Ning X, Sun S. Alterations of the gut microbiota in the lupus nephritis: a systematic review. Ren Fail 2023; 45:2285877. [PMID: 37994423 PMCID: PMC11001323 DOI: 10.1080/0886022x.2023.2285877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that gut microbiota dysbiosis may play a critical role in the development of lupus nephritis (LN). However, the specific characteristics of the gut microbiota in individuals with LN have not been fully clarified. METHODS The PubMed, Web of Science, and Embase databases were systematically searched for clinical and animal studies related to the relationship between LN and gut microbiota from inception until October 1, 2023. A semiquantitative analysis was used to assess the changes in gut microbial profiles. RESULTS A total of 15 clinical studies were selected for analysis, which included 138 LN patients, 441 systemic lupus erythematosus patients, and 1526 healthy controls (HCs). Five different types of LN mouse models were included in 5 animal studies. The alpha diversity was decreased in LN patients compared to HCs. A significant decrease in the Firmicutes/Bacteroidetes (F/B) ratio is considered a hallmark of pathological conditions. Specifically, alterations in the abundance of the phylum Proteobacteria, genera Streptococcus and Lactobacillus, and species Ruminococcus gnavus and Lactobacillus reuteri may play a critical role in the pathogenesis of LN. Remarkably, the gut taxonomic chain Bacteroidetes-Bacteroides-Bacteroides thetaiotaomicron was enriched in LN patients, which could be a crucial characteristic of LN patients. The increased level of interleukin-6, imbalance of regulatory T cells and T helper 17 cells, and decreased level of the intestinal tight junction proteins zonula occludens-1 and claudin-1 also might be related to the pathogenesis of LN. CONCLUSIONS Specific changes in the abundance of gut microbiota such as decreased F/B ratio, and the level of inflammatory indicators, and markers of intestinal barrier dysfunction may play a crucial role in the pathogenesis of LN. These factors could be effective diagnostic and potential therapeutic targets for LN.
Collapse
Affiliation(s)
- Anjing Wang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yumeng Zhang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuwei Wang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jipeng Yan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Mei Han
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
14
|
Qian X, Fu Z, Diao C, Zhang W, Tao W, Hu J, Zhang S, Zhao D. Genetic causal relationship between gut microbiome and psoriatic arthritis: a bidirectional two-sample Mendelian randomization study. Front Microbiol 2023; 14:1265786. [PMID: 38029137 PMCID: PMC10644104 DOI: 10.3389/fmicb.2023.1265786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Several observational studies have suggested a potential relationship between gut microbiome and psoriatic arthritis (PsA). However, the causality of this relationship still remains unclear. We aim to explore if the specific gut microbiome is causally associated with PsA at the genetic level and offer valuable insights into the etiology of PsA. Methods In this study, we employed a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the causal effects of the gut microbiome on PsA. Publicly accessible genome-wide association study summary data of gut microbiome were obtained from the MiBioGen consortium (n = 14,306), while the summary statistics of psoriatic arthropathies were sourced from the FinnGen consortium R8 release data (2,776 cases and 221,323 controls). The primary analytical method employed was inverse variance weighted (IVW), complemented by supplementary methods including MR-Egger, weighted median, weighted mode, maximum likelihood, MR-PRESSO, and cML-MA. Reverse MR analysis was performed on the bacteria that were found to be causally associated with PsA in forward MR analysis. Cochran's IVW Q statistic was utilized to assess the heterogeneity of instrumental variables among the selected single nucleotide polymorphisms. Results IVW estimates revealed that Ruminococcaceae_UCG-002 (odds ratio (OR) = 0.792, 95% confidence interval (CI), 0.643-0.977, p = 0.029) exhibited a protective effect on PsA. Conversely, Blautia (OR = 1.362, 95% CI, 1.008-1.842, p = 0.044), Eubacterium_fissicatena_group (OR = 1.28, 95% CI, 1.075-1.524, p = 0.006), and Methanobrevibacter (OR = 1.31, 95% CI, 1.059-1.621, p = 0.013) showed a positive correlation with the risk of PsA. No significant heterogeneity, horizontal pleiotropy, or outliers were observed, and the results of the MR analysis remained unaffected by any single nucleotide polymorphisms. According to the results of reverse MR analysis, no significant causal effect of PsA was found on gut microbiome. Conclusion This study establishes for the first time a causal relationship between the gut microbiome and PsA, providing potential valuable strategies for the prevention and treatment of PsA. Further randomized controlled trials are urgently warranted to support the targeted protective mechanisms of probiotics on PsA.
Collapse
Affiliation(s)
- Xinyu Qian
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhida Fu
- Department of Reproductive Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoyue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenbo Zhang
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weiyu Tao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiaqi Hu
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuqing Zhang
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Shao T, Hsu R, Hacein-Bey C, Zhang W, Gao L, Kurth MJ, Zhao H, Shuai Z, Leung PSC. The Evolving Landscape of Fecal Microbial Transplantation. Clin Rev Allergy Immunol 2023; 65:101-120. [PMID: 36757537 PMCID: PMC9909675 DOI: 10.1007/s12016-023-08958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
The human gastrointestinal tract houses an enormous microbial ecosystem. Recent studies have shown that the gut microbiota plays significant physiological roles and maintains immune homeostasis in the human body. Dysbiosis, an imbalanced gut microbiome, can be associated with various disease states, as observed in infectious diseases, inflammatory diseases, autoimmune diseases, and cancer. Modulation of the gut microbiome has become a therapeutic target in treating these disorders. Fecal microbiota transplantation (FMT) from a healthy donor restores the normal gut microbiota homeostasis in the diseased host. Ample evidence has demonstrated the efficacy of FMT in recurrent Clostridioides difficile infection (rCDI). The application of FMT in other human diseases is gaining attention. This review aims to increase our understanding of the mechanisms of FMT and its efficacies in human diseases. We discuss the application, route of administration, limitations, safety, efficacies, and suggested mechanisms of FMT in rCDI, autoimmune diseases, and cancer. Finally, we address the future perspectives of FMT in human medicine.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Ronald Hsu
- Division of Gastroenterology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Camelia Hacein-Bey
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Weici Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lixia Gao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mark J Kurth
- Department of Chemistry, University of California Davis, Davis, CA, 95616, USA
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
16
|
Yan M, Ouyang YL, Xiao LY, Ao M, Gosau M, Friedrich RE, Smeets R, Fu LL, Feng HC, Burg S. Correlations between gut microbiota and lichen planus: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1235982. [PMID: 37767099 PMCID: PMC10521728 DOI: 10.3389/fimmu.2023.1235982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Purpose Several existing studies have revealed that the occurrence of lichen planus (LP) is relevant to the gut microbiota, and the causal relationship between gut microbiota and LP was analyzed using the Mendelian randomization (MR) method. Methods Through the two-sample MR method, single nucleotide polymorphisms (SNPs) relevant to gut microbiota were selected as instrument variables (IVs) to evaluate the causal association between gut microbiota and the risk of LP. Results According to the selection criteria of inverse-variance weighted (IVW), six bacterial genera were found to be significantly linked to the initiation of LP; The IVW results suggested that Oxalobacteraceae, Victivallaceae, and Actinobacteria could restrain the initiation of LP, showing protective effects against LP. Desulfovibrio, Veillonella, and Ruminococcus gauvreauii groups were demonstrated to have casual correlations with the onset of LP. Conclusion The relationship between gut microbiota and LP was not a single positive or inverse relationship. Investigation of the causal relationship of these gut microbiota with LP could further provide evidence for the intestine-skin axis theory. However, the specific mechanism of microorganisms affecting the skin remains to be clarified. In this paper, the protective effects and mechanisms of Oxalobacteraceae, Victivallaceae, and Actinobacteria on LP require further exploration.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu-Long Ouyang
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Li-Yuan Xiao
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Man Ao
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E. Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ling-Ling Fu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hong-chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Guo M, Lu M, Chen K, Xu R, Xia Y, Liu X, Liu Z, Liu Q. Akkermansia muciniphila and Lactobacillus plantarum ameliorate systemic lupus erythematosus by possibly regulating immune response and remodeling gut microbiota. mSphere 2023; 8:e0007023. [PMID: 37366641 PMCID: PMC10449527 DOI: 10.1128/msphere.00070-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023] Open
Abstract
Systemic lupus erythematosus (SLE), characterized by persistent inflammation, is a complex autoimmune disorder that affects all organs, challenging clinical treatment. Dysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Modulating the gut microbiome is proposed as a promising approach for fine-running parts of the immune system, relieving systematic inflammation in multiple diseases. This study demonstrated that the administration of Akkermansia muciniphila and Lactobacillus plantarum contributed to an anti-inflammatory environment by decreasing IL-6 and IL-17 and increasing IL-10 levels in the circulation. The treatment of A. muciniphila and L. plantarum restored the intestinal barrier integrity to a different extent. In addition, both strains reduced the deposit of IgG in the kidney and improved renal function significantly. Further studies revealed distinct remodeling roles of A. muciniphila and L. plantarum administration on the gut microbiome. This work demonstrated essential mechanisms of how A. muciniphila and L. plantarum remodel gut microbiota and regulate the immune responses in the SLE mice model. IMPORTANCE Several pieces of research have demonstrated that certain probiotic strains contribute to regulating excessive inflammation and restoring tolerances in the SLE animal model. More animal trials combined with clinical studies are urgently needed to further elucidate the mechanisms for the effect of specific probiotic bacteria in preventing SLE symptoms and developing novel therapeutic targets. In this study, we explored the role of A. muciniphila and L. plantarum in ameliorating the SLE disease activity. Both A. muciniphila and L. plantarum treatment relieved the systemic inflammation and improved renal function in the SLE mouse model. We demonstrated that A. muciniphila and L. plantarum contributed to an anti-inflammatory environment by regulating cytokine levels in the circulation, restoring the intestinal barrier integrity, and remodeling the gut microbiome, however, to a different extent.
Collapse
Affiliation(s)
- Mengchen Guo
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kun Chen
- Zhongda Hospital, Southeast University, Nanjing, China
| | - Rui Xu
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen of Jiangsu Province and Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Zhi Liu
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen of Jiangsu Province and Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Qisha Liu
- Department of Pathogen Biology-Microbiology Division, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen of Jiangsu Province and Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- The Laboratory Center for Basic Medical Sciences of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Lupu VV, Butnariu LI, Fotea S, Morariu ID, Badescu MC, Starcea IM, Salaru DL, Popp A, Dragan F, Lupu A, Mocanu A, Chisnoiu T, Pantazi AC, Jechel E. The Disease with a Thousand Faces and the Human Microbiome-A Physiopathogenic Intercorrelation in Pediatric Practice. Nutrients 2023; 15:3359. [PMID: 37571295 PMCID: PMC10420997 DOI: 10.3390/nu15153359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Numerous interrelationships are known in the literature that have the final effect of unmasking or influencing various pathologies. Among these, the present article aims to discuss the connection between systemic lupus erythematosus (SLE) and the human microbiome. The main purpose of this work is to popularize information about the impact of dysbiosis on the pathogenesis and evolutionary course of pediatric patients with SLE. Added to this is the interest in knowledge and awareness of adjunctive therapeutic means that has the ultimate goal of increasing the quality of life. The means by which this can be achieved can be briefly divided into prophylactic or curative, depending on the phase of the condition in which the patient is. We thus reiterate the importance of the clinician acquiring an overview of SLE and the human microbiome, doubled by in-depth knowledge of the physio-pathogenic interactions between the two (in part achieved through the much-studied gut-target organ axes-brain, heart, lung, skin), with the target objective being that of obtaining individualized, multimodal and efficient management for each individual patient.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minerva Codruta Badescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iuliana Magdalena Starcea
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Popp
- Pediatrics Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ancuta Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Mocanu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Tatiana Chisnoiu
- Pediatrics Department, Faculty of Medicine, Ovidius University, 900470 Constanta, Romania
| | | | - Elena Jechel
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
19
|
Wang C, Lin Y, Chen L, Chen H. Gut microbiota mediated the effects of high relative humidity on lupus in female MRL/lpr mice. Adv Rheumatol 2023; 63:24. [PMID: 37217962 DOI: 10.1186/s42358-023-00306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
INTRODUCTION The relationship between humidity and systemic lupus erythematosus (SLE) has yielded inconsistent results in prior research, while the effects of humidity on lupus in animal experiments and its underlying mechanism remain inadequately explored. METHODS The present study aimed to investigate the impact of high humidity (80 ± 5%) on lupus using female and male MRL/lpr mice, with a particular focus on elucidating the role of gut microbiota in this process. To this end, fecal microbiota transplantation (FMT) was employed to transfer the gut microbiota of MRL/lpr mice under high humidity to blank MRL/lpr mice under normal humidity (50 ± 5%), allowing for an assessment of the effect of FMT on lupus. RESULTS The study revealed that high humidity exacerbated lupus indices (serum anti-dsDNA, ANA, IL-6, and IFN- g, and renal pathology) in female MRL/lpr mice but had no significant effect on male MRL/lpr mice. The aggravation of lupus caused by high humidity may be attributed to the increased abundances of the Rikenella, Romboutsia, Turicibacter, and Escherichia-Shigella genera in female MRL/lpr mice. Furthermore, FMT also exacerbated lupus in female MRL/lpr mice but not in male MRL/lpr mice. CONCLUSION In summary, this study has demonstrated that high humidity exacerbated lupus by modulating gut microbiota in female MRL/lpr mice. The findings underscore the importance of considering environmental factors and gut microbiota in the development and progression of lupus, particularly among female patients.
Collapse
Affiliation(s)
- Chaochao Wang
- Department of Nephrology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, China
| | - Yongqiang Lin
- Department of Nephrology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, China
| | - Leiming Chen
- Department of Nephrology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, China
| | - Hui Chen
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, 325000, China.
| |
Collapse
|
20
|
Yang P, Xu R, Chen F, Chen S, Khan A, Li L, Zhang X, Wang Y, Xu Z, Shen H. Fungal gut microbiota dysbiosis in systemic lupus erythematosus. Front Microbiol 2023; 14:1149311. [PMID: 37089568 PMCID: PMC10115219 DOI: 10.3389/fmicb.2023.1149311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionDespite recent developments in our comprehension of how the gut microbiota and systemic lupus erythematosus (SLE) are related. The mycobiome: which is a small but crucial part of the gut microbiota and is involved in hosts’ homeostasis and physiological processes, remained unexplored in SLE.MethodsWe profiled the gut fungal mycobiota based on internal transcribed spacer region 1 (ITS1) sequencing for the gut microbial DNA from the SLE individuals with lupus nephritis (LN) (n = 23), SLE without LN (n = 26) and healthy controls (n = 14) enrolled in Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School.ResultsThe ITS sequencing generated a total of 4.63 million valid tags which were stratified into 4,488 operational taxonomic units (OTUs) and identified about 13 phyla and 262 genera. Patients with SLE were characterized with unique fungal flora feature. The fungal microbiomes of the three groups displayed distinct beta diversity from each other. Compared with HC group, the abundance of fungal dysbiosis was reflected in a higher ratio of opportunistic fungi in SLE or LN group, as well as the loss of Rhizopus and Malassezia. The main principal components of the flora between the SLE and LN group were generally consistent. The relative abundance of Vanrija in the fecal fungal community was higher in LN group, while the relative abundance of Fusarium was higher in SLE group. Moreover, our data revealed superior diagnostic accuracy for SLE with the fungal species (e.g. Candida, Meyerozyma). Correlations between gut fungi and clinical parameters were identified by Spearman’s correlation analysis. Interestingly, Aspergillus in SLE patients was positively correlated with ACR, 24 h proteinuria, proteinuria, anti-dsDNA, ANA, and SLEDAI, while Rhizopus was negatively correlated with lymphocytes and Hb. Finally, we successfully cultured the fungi and identified it as Candida glabrata by microscopic observation and mass spectrometry.DiscussionWe first explored the highly significant gut fungal dysbiosis and ecology in patients with SLE, and demonstrated the applicability of fungal species as SLE diagnostic tools, signifying that the gut fungal mycobiome-host interplay can potentially contribute in disease pathogenesis.
Collapse
Affiliation(s)
- Ping Yang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rui Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Fei Chen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shanshan Chen
- Department of Rheumatology and Immunology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Xiaoshan Zhang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
- Yanbo Wang,
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Zhipeng Xu,
| | - Han Shen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Han Shen,
| |
Collapse
|
21
|
Xu H, Meng X, Wang L, Zhu G, Fan X, Li R, Fei Y, Yang H, Zhao L. Dietary patterns and life-styles of patients with gastrointestinal involvement of systemic lupus erythematosus: Questionnaire survey from a tertiary center of China. Lupus 2023; 32:477-488. [PMID: 36749733 DOI: 10.1177/09612033231156075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the dietary patterns and lifestyles of patients with lupus gastrointestinal (GI) involvement and to reveal the possible role of organ-specific involvement of systemic lupus erythematosus (SLE) on daily diet. METHODS Patients with SLE complicated with gastrointestinal involvement (SLE-GI) admitted to Peking Union Medical College Hospital (PUMCH) from January 2010 to September 2021 were enrolled. Age- and sex-matched SLE patients with lupus nephritis (SLE-LN) but free of other internal organs involvement who were admitted during the same period were enrolled as disease controls at the ratio of 1:1. In addition, a group of age- and sex-matched healthy people were also included as healthy controls (HCs). Questionnaires were distributed to these patients and HC to collect their dietary patterns and lifestyle information. Clinical features, dietary and lifestyle habits were compared between the two groups of patients and HC. RESULTS The questionnaire survey showed that compared with HC, the SLE-GI group had higher proportions of vegetarians (p = 0.014) and a lower proportion of omnivores (p = 0.058). A higher percentage of SLE-GI patients reported a traditional Chinese medicine (p = 0.018) taken history and surgical history (p = 0.014). They also less likely to take fried/pickled food (p = 0.042) and dietary supplements (p = 0.024) than HC. Higher percentages of SLE-GI patients and SLE-LN patients preferred self-catering (87.5% and 94.3%) over take-out food than HC (70.8%) (p = 0.127 and p = 0.016). No significant difference on drinking preference among the three groups, but it seemed more SLE-GI patients consumed yogurt than HC (p = 0.097). The SLE-LN patients were also found to have lower frequencies of staying up late (p = 0.005). The SLE-GI group also presented higher positivity rates for anti-SSA (69.6% vs. 45.7%, p = 0.020) and anti-SSB antibodies (32.6% vs. 10.9%, p = 0.011) but lower positivity rates for anti-dsDNA antibodies (30.4% vs. 82.6%, p < 0.001) compared with the SLE-LN group. CONCLUSION The dietary patterns, life-styles and autoantibody spectrum of SLE-GI patients differed greatly from those of SLE-LN patients and healthy people. These factors may reflect the influence of disease and organ involvement modes on patients' daily life and may contribute partly to the systemic involvement in SLE.
Collapse
Affiliation(s)
- Haojie Xu
- Department of Rheumatology and Clinical Immunology, 34732Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xia Meng
- Department of Rheumatology and Clinical Immunology, 34732Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lu Wang
- Department of Rheumatology and Clinical Immunology, 34732Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Gaoqi Zhu
- Department of Rheumatology and Immunology, 74539The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoyun Fan
- Department of Rheumatology and Immunology, 74539The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rongli Li
- Department of Rheumatology and Clinical Immunology, 34732Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, 34732Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, 34732Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, 34732Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
22
|
Ishina IA, Zakharova MY, Kurbatskaia IN, Mamedov AE, Belogurov AA, Gabibov AG. MHC Class II Presentation in Autoimmunity. Cells 2023; 12:314. [PMID: 36672249 PMCID: PMC9856717 DOI: 10.3390/cells12020314] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Antigen presentation by major histocompatibility complex class II (MHC-II) molecules is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk of the development of different autoimmune diseases (ADs), including those characterized by the emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
- Department of Life Sciences, Higher School of Economics, 101000 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
23
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:cells12010184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 119] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.T.); (J.C.R.); Tel.: +39-053-2455-557 (E.T.); +39-053-245-5536 (J.C.R.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Correspondence: (E.T.); (J.C.R.); Tel.: +39-053-2455-557 (E.T.); +39-053-245-5536 (J.C.R.)
| |
Collapse
|
24
|
Widhani A, Djauzi S, Suyatna FD, Dewi BE. Changes in Gut Microbiota and Systemic Inflammation after Synbiotic Supplementation in Patients with Systemic Lupus Erythematosus: A Randomized, Double-Blind, Placebo-Controlled Trial. Cells 2022; 11:3419. [PMID: 36359816 PMCID: PMC9658918 DOI: 10.3390/cells11213419] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 08/04/2023] Open
Abstract
Gut dysbiosis has a role in the pathogenesis of lupus. Synbiotic supplementation may restore the balance of gut microbiota. This study investigated whether synbiotics could improve gut microbiota and systemic inflammation in lupus patients. This randomized, double-blind, placebo-controlled trial was conducted in adult systemic lupus erythematosus (SLE) patients. Subjects were randomized to receive either synbiotics or a placebo. Fecal microbiota, hs-CRP, IL-6, and IL-17 were measured at baseline and after 60 days. Patients who fulfilled the inclusion criteria were randomized into synbiotic (n = 23) and placebo groups (n = 23). In the synbiotic group, hs-CRP was not significantly increased (1.8 [0.9; 4.85] vs. 2.1 [0.9; 4.25] mg/L; pre vs. post; p = 0.23), whereas in the placebo group hs-CRP was increased significantly (1.75 [0.4; 4.45] vs. 3.75 [0.58; 7.05] mg/L; pre vs. post; p = 0.005). In the synbiotic group, IL-6 decreased significantly (8.76 [6.62; 11.39] vs. 6.59 [4.96; 8.01]; pre vs. post; p = 0.02), while there was no significant change in IL-17 level. In the placebo group, there was no significant change in IL-6 and IL-17. Synbiotic supplementation increased the Firmicutes:Bacteroidetes ratio (0.05 ± 0.60 vs. -0.08 ± 0.63, synbiotic vs. placebo p = 0.48) and butyrate metabolism (p = 0.037) and decreased amino sugar and nucleotide sugar metabolism (p = 0.040). There was improvement in the SLE disease activity index 2K (SLEDAI-2K) score in the synbiotic group (14 [9; 16] vs. 8 [2; 12]; pre vs. post; p < 0.001), while no change in the placebo group (9 [8; 18.25] vs. 9 [5.5; 15]; pre vs. post; p = 0.31). Synbiotic supplementation could reduce systemic inflammation and SLE disease activity and alter the composition and functions of gut microbiota.
Collapse
Affiliation(s)
- Alvina Widhani
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Samsuridjal Djauzi
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Dr. Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | | | - Beti Ernawati Dewi
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
25
|
Yaigoub H, Fath N, Tirichen H, Wu C, Li R, Li Y. Bidirectional crosstalk between dysbiotic gut microbiota and systemic lupus erythematosus: What is new in therapeutic approaches? Clin Immunol 2022; 244:109109. [PMID: 36087683 DOI: 10.1016/j.clim.2022.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by chronic inflammation and multiple organs damage. Its pathogenesis is complex and involves multiple factors including gut microbiota. Accumulating evidence indicates the interaction of microbial communities with the host immune system to maintain a state of homeostasis. Imbalances within the gut microbial composition and function may contribute to the development of many autoimmune diseases including SLE. In this review, we aim to highlight the dysregulation of commensal bacteria and their metabolites in the gastrointestinal tract and the resulting autoimmune responses in lupus and to decrypt the cross-link between the altered gut microbiota and the immune system in the SLE condition. We also provide new insights into targeting gut microbiota as a promising therapeutic approach to treat and manage SLE.
Collapse
Affiliation(s)
- Hasnaa Yaigoub
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Nada Fath
- Comparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, Rabat, Morocco
| | - Hasna Tirichen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|