1
|
Zhao H, Lan M, Huang Z, Fu P, Fu B, Guo Y, Li J, Luo Q. Downregulated YTHDF2 expression in systemic lupus erythematosus is associated with inflammatory and neutrophil cytokine production. Clin Rheumatol 2025; 44:237-246. [PMID: 39668303 DOI: 10.1007/s10067-024-07257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/11/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVES An increasing body of evidence suggests that N6-methyladenosine (m6A) plays a crucial role in the etiology of SLE. We focused on YTHDF2 expression in neutrophils and the relationship between YTHDF2 and the pathogenesis of SLE. METHODS Sixty-one patients with SLE and 48 healthy controls (HC) were recruited, and their clinical characteristics were recorded. The mRNA levels of m6A "writers" (METTL3, METTL14, WTAP), "erasers" (FTO and ALKBH5), "readers" (YTHDF2), and inflammatory factors (interleukin-1β, interleukin-6, interleukin-8, and TNF-α) in neutrophils were determined by reverse transcription-quantitative PCR. The protein of YTHDF2 was determined by Western blotting. The correlations between the YTHDF2 in neutrophils of SLE patients and clinical features were examined by Spearman's method. YTHDF2 and TNF-α expression in neutrophils were examined after stimulation by SLE serums. RESULTS The mRNA expression of YTHDF2 in neutrophils was significantly decreased, and the protein level of YTHDF2 in neutrophils was decreased. The mRNA expression of YTHDF2 in neutrophils correlated with L% (rs = 0.5796, P < 0.0001), LMR (rs = 0.3524, P = 0.0062), WBC (rs = - 0.3186, P = 0.0123), N (rs = - 0.4141, P = 0.0010), N% (rs = - 0.4813, P < 0.0001), NLR (rs = - 0.5301, P < 0.0001), dNLR (rs = - 0.4945, P < 0.0001), and SII (rs = - 0.3930, P = 0.0019), which were suggested as the inflammatory conditions of SLE. In addition, the mRNA expression of TNF-α in neutrophils was significantly increased in SLE patients. Further analysis revealed that the mRNA expression of YTHDF2 in neutrophils was inversely correlated with TNF-α in SLE. Neutrophils from health control were significantly downregulated in their YTHDF2 expression and upregulated in their TNF-α expression following stimulation by serum from SLE patients. CONCLUSION This study indicates that the levels of YTHDF2 in peripheral blood neutrophils may be involved in the pathogenesis of SLE and could be a novel target for diagnosis and therapy. Key points • The mRNA expression of YTHDF2 in neutrophils of SLE and described that decreased mRNA of YTHDF2 in neutrophils correlated with L%, LMR, WBC, N, N%, NLR, dNLR, and SII. • The mRNA expression of TNF-α in neutrophils was significantly increased and correlated with YTHDF2 in SLE patients. • Neutrophils from health control were significantly downregulated in their YTHDF2 expression and upregulated in their TNF-α expression following stimulation by serum from SLE patients.
Collapse
Affiliation(s)
- Hongshuai Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, YongwaiZhengjie, Donghu District, Nanchang, 330006, Jiangxi, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Mengfan Lan
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, YongwaiZhengjie, Donghu District, Nanchang, 330006, Jiangxi, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, YongwaiZhengjie, Donghu District, Nanchang, 330006, Jiangxi, China
- Institute of Infection and Immunity, Nanchang University, Nanchang, 330006, Jiangxi, China
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, 330006, Jiangxi, China
| | - Peng Fu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, YongwaiZhengjie, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Biqi Fu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yang Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, YongwaiZhengjie, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, YongwaiZhengjie, Donghu District, Nanchang, 330006, Jiangxi, China.
- Institute of Infection and Immunity, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, YongwaiZhengjie, Donghu District, Nanchang, 330006, Jiangxi, China.
- Institute of Infection and Immunity, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Mu S, Zhao K, Zhong S, Wang Y. The Role of m6A Methylation in Tumor Immunity and Immune-Associated Disorder. Biomolecules 2024; 14:1042. [PMID: 39199429 PMCID: PMC11353047 DOI: 10.3390/biom14081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent and significant internal modification in mRNA, with its critical role in gene expression regulation and cell fate determination increasingly recognized in recent research. The immune system, essential for defense against infections and maintaining internal stability through interactions with other bodily systems, is significantly influenced by m6A modification. This modification acts as a key post-transcriptional regulator of immune responses, though its effects on different immune cells vary across diseases. This review delineates the impact of m6A modification across major system-related cancers-including those of the respiratory, digestive, endocrine, nervous, urinary reproductive, musculoskeletal system malignancies, as well as acute myeloid leukemia and autoimmune diseases. We explore the pathogenic roles of m6A RNA modifications within the tumor immune microenvironment and the broader immune system, highlighting how RNA modification regulators interact with immune pathways during disease progression. Furthermore, we discuss how the expression patterns of these regulators can influence disease susceptibility to immunotherapy, facilitating the development of diagnostic and prognostic models and pioneering new therapeutic approaches. Overall, this review emphasizes the challenges and prospective directions of m6A-related immune regulation in various systemic diseases throughout the body.
Collapse
Affiliation(s)
- Siyu Mu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Kaiyue Zhao
- Department of Hepatology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Yanli Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
3
|
Chen Y, Liu M, Lu M, Luo L, Han Z, Liu X. Exploring the impact of m 6A modification on immune diseases: mechanisms and therapeutic implication. Front Immunol 2024; 15:1387582. [PMID: 39072324 PMCID: PMC11272477 DOI: 10.3389/fimmu.2024.1387582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
N6-methyladenosine (m6A) is a chemical modification of RNA and has become a widely discussed topic among scientific researchers in recent years. It is distributed in various organisms, including eukaryotes and bacteria. It has been found that m6A is composed of writers, erasers and readers and is involved in biological functions such as splicing, transport and translation of RNA. The balance of the human immune microenvironment is important for human health abnormalities. Increasing studies have found that m6A affects the development of immune diseases such as inflammatory enteritis and systemic lupus erythematosus (SLE) by participating in the homeostatic regulation of the immune microenvironment in vivo. In this manuscript, we introduce the composition, biological function, regulation of m6A in the immune microenvironment and its progression in various immune diseases, providing new targets and directions for the treatment of immune diseases in clinical practice.
Collapse
Affiliation(s)
- Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Miao Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linling Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xide Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Feng Y, Shen J, Lin Z, Chen Z, Zhou M, Ma X. PXR Activation Relieves Deoxynivalenol-Induced Liver Oxidative Stress Via Malat1 LncRNA m 6A Demethylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308742. [PMID: 38654691 PMCID: PMC11220637 DOI: 10.1002/advs.202308742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Deoxynivalenol (DON) is a prevalent toxin causing severe liver damage through hepatocellular oxidative stress. However, the underlying mechanisms and effective therapeutic approaches remain unknown. Here, the unique role of the xenobiotic metabolism factor pregnane X receptor (PXR) in mediating DON-induced hepatocellular oxidative stress is investigated. Treatment with the PXR agonist 3-indole-propionic acid (IPA) alleviates DON-induced oxidative stress and liver injury both in vitro and in vivo. Mechanistically, it is discovered for the first time that PXR agonist IPA directly transactivates the m6A demethylase FTO expression, leading to site-specific demethylation and decreased abundance of YTHDC1-bound Malat1 lncRNA at single-nucleotide resolution. The diminished m6A modification of Malat1 lncRNA reduces its stability and augments antioxidant pathways governed by NRF2, consequently mitigating DON-induced liver injury. Furthermore, Malat1 knockout mice exhibit decreased DON-induced liver injury, emphasizing the role of Malat1 lncRNA in oxidative stress. Collectively, the findings establish that PXR-mediated m6A-dependent Malat1 lncRNA expression determines hepatocyte oxidative stress via m6A demethylase FTO, providing valuable insights into the potential mechanisms underlying DON-induced liver injury and offers potential therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Yue Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Jiakun Shen
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Zishen Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Zeyi Chen
- College of Life SciencesHenan Agricultural UniversityZhengzhou450046China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
5
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Nie SC, Jing YH, Lu L, Ren SS, Ji G, Xu HC. Mechanisms of myeloid-derived suppressor cell-mediated immunosuppression in colorectal cancer and related therapies. World J Gastrointest Oncol 2024; 16:1690-1704. [PMID: 38764816 PMCID: PMC11099432 DOI: 10.4251/wjgo.v16.i5.1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
Severe immunosuppression is a hallmark of colorectal cancer (CRC). Myeloid-derived suppressor cells (MDSCs), one of the most abundant components of the tumor stroma, play an important role in the invasion, metastasis, and immune escape of CRC. MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells, including T and natural killer cells, as well as by inducing the proliferation of immunosuppressive cells, such as regulatory T cells and tumor-associated macrophages, which, in turn, promote the growth of cancer cells. Thus, MDSCs are key contributors to the emergence of an immunosuppressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity. In this narrative review, we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment, the current therapeutic approaches and technologies targeting MDSCs, and the therapeutic potential of modulating MDSCs in CRC treatment. This study provides ideas and methods to enhance survival rates in patients with CRC.
Collapse
Affiliation(s)
- Shu-Chang Nie
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Hua Jing
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
| | - Si-Si Ren
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| | - Han-Chen Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine), Shanghai 200032, China
| |
Collapse
|
7
|
Wen J, Xue L, Wei Y, Liang J, Jia W, Yong T, Chu L, Li H, Han S, Liao J, Chen Z, Liu Y, Liu Q, Ding Z, Liang H, Gan L, Chen X, Huang Z, Zhang B. YTHDF2 Is a Therapeutic Target for HCC by Suppressing Immune Evasion and Angiogenesis Through ETV5/PD-L1/VEGFA Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307242. [PMID: 38247171 PMCID: PMC10987122 DOI: 10.1002/advs.202307242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/11/2024] [Indexed: 01/23/2024]
Abstract
N6-methyladenosine (m6A) modification orchestrates cancer formation and progression by affecting the tumor microenvironment (TME). For hepatocellular carcinoma (HCC), immune evasion and angiogenesis are characteristic features of its TME. The role of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), as an m6A reader, in regulating HCC TME are not fully understood. Herein, it is discovered that trimethylated histone H3 lysine 4 and H3 lysine 27 acetylation modification in the promoter region of YTHDF2 enhanced its expression in HCC, and upregulated YTHDF2 in HCC predicted a worse prognosis. Animal experiments demonstrated that Ythdf2 depletion inhibited spontaneous HCC formation, while its overexpression promoted xenografted HCC progression. Mechanistically, YTHDF2 recognized the m6A modification in the 5'-untranslational region of ETS variant transcription factor 5 (ETV5) mRNA and recruited eukaryotic translation initiation factor 3 subunit B to facilitate its translation. Elevated ETV5 expression induced the transcription of programmed death ligand-1 and vascular endothelial growth factor A, thereby promoting HCC immune evasion and angiogenesis. Targeting YTHDF2 via small interference RNA-containing aptamer/liposomes successfully both inhibited HCC immune evasion and angiogenesis. Together, this findings reveal the potential application of YTHDF2 in HCC prognosis and targeted treatment.
Collapse
Affiliation(s)
- Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lin Xue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yi Wei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenlong Jia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Han Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ TransplantationChinese Academy of Medical ScienceWuhan430030China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhan430030China
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ TransplantationChinese Academy of Medical ScienceWuhan430030China
| |
Collapse
|
8
|
Huang Y, Xue Q, Chang J, Wang Y, Cheng C, Xu S, Wang X, Miao C. M6A methylation modification in autoimmune diseases, a promising treatment strategy based on epigenetics. Arthritis Res Ther 2023; 25:189. [PMID: 37784134 PMCID: PMC10544321 DOI: 10.1186/s13075-023-03149-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation modification is involved in the regulation of various biological processes, including inflammation, antitumor, and antiviral immunity. However, the role of m6A modification in the pathogenesis of autoimmune diseases has been rarely reported. METHODS Based on a description of m6A modification and the corresponding research methods, this review systematically summarizes current insights into the mechanism of m6A methylation modification in autoimmune diseases, especially its contribution to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS By regulating different biological processes, m6A methylation is involved in the pathogenesis of autoimmune diseases and provides a promising biomarker for the diagnosis and treatment of such diseases. Notably, m6A methylation modification is involved in regulating a variety of immune cells and mitochondrial energy metabolism. In addition, m6A methylation modification plays a role in the pathological processes of RA, and m6A methylation-related genes can be used as potential targets in RA therapy. CONCLUSIONS M6A methylation modification plays an important role in autoimmune pathological processes such as RA and SLE and represents a promising new target for clinical diagnosis and treatment, providing new ideas for the treatment of autoimmune diseases by targeting m6A modification-related pathways.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
- Anhui Public Health Clinical Center, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230027, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China.
| |
Collapse
|
9
|
Petri BJ, Cave MC, Klinge CM. Changes in m6A in Steatotic Liver Disease. Genes (Basel) 2023; 14:1653. [PMID: 37628704 PMCID: PMC10454815 DOI: 10.3390/genes14081653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
| | - Matthew C. Cave
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
10
|
Deng X, Qing Y, Chen J. Targeting YTHDF2/MDSCs to improve radiotherapy. Cell Chem Biol 2023; 30:703-705. [PMID: 37478827 DOI: 10.1016/j.chembiol.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Immunosuppression contributes to tumor-radiotherapy failure, but the mechanism remains elusive. Wang et al.1 reported that ionizing radiation (IR) induces YTHDF2 expression in myeloid-derived suppressor cells (MDSCs) via an IR-YTHDF2-NF-κB circuit, which contributes to MDSC expansion/migration and treatment failure. Genetic depletion or pharmacological inhibition of YTHDF2 overcomes immunosuppression and improves radiotherapy.
Collapse
Affiliation(s)
- Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA; Gehr Family Center for Leukemia Research & City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|