1
|
Yuan C. Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review). Oncol Lett 2025; 29:104. [PMID: 39736924 PMCID: PMC11683524 DOI: 10.3892/ol.2024.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
Sarcopenia is an age-related disease that is characterized by a decline in muscle mass and function with significant epidemiological and clinical implications. In recent years, gut microbiota has gained attention as an important regulatory factor in human health. To the best of our knowledge, this is the first study to introduce the definition and epidemiological background of sarcopenia and analyze the potential impact of the gut microbiota on muscle metabolism and growth, including aspects such as gut microbiota metabolites, muscle protein synthesis and energy metabolism. Additionally, this article summarizes the current research progress in gut microbiota interventions for the treatment of sarcopenia, such as probiotics, prebiotics and fecal microbiota transplantation and discusses future research directions and potential therapeutic strategies.
Collapse
Affiliation(s)
- Chanqi Yuan
- Department of Geriatrics, Harbin 242 Hospital, Harbin, Heilongjiang 150060, P.R. China
| |
Collapse
|
2
|
Zhang S, Zhou R, Xie X, Xiong S, Li L, Li Y. Polysaccharides from Lycium barbarum, yam, and sunflower ameliorate colitis in a structure and intrinsic flora-dependent manner. Carbohydr Polym 2025; 349:122905. [PMID: 39643421 DOI: 10.1016/j.carbpol.2024.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Polysaccharides have been suggested to ameliorate metabolic diseases. However, their differential colitis-mitigating effects in mouse models with different colony structures remain poorly understood. Therefore, this study investigated the effects of polysaccharides from Lycium barbarum (LBP), sunflower (SP), and yam (YP) on colitis in C57BL/6 J (B6) mice born via vaginal delivery (VD) and in both caesarean section (CS)- and VD-born Institute of Cancer Research (ICR) mice. LBP was mainly composed of glucose (30.2 %), galactose (27.5 %), and arabinose (26.9 %). The main components of SP and YP were galacturonic acid (75.8 %) and glucose (98.1 %), respectively. Interestingly, LBP effectively alleviated body weight loss, reduced inflammatory cytokine levels, and restored intestinal barrier function in all three mouse models. Moreover, LBP decreased the abundance of norank_f__norank_o__Clostridia_UCG-014, Coriobacteriaceae_UCG-002, and norank_f_Eubacterium_coprostanoligenes_group in B6 mice, and the abundance of these genera positively correlated with pro-inflammatory cytokine levels. LBP increased the abundance of Lactobacillus, which was positively correlated with the levels of the protective factor, IL-10, in CS-born ICR mice. Collectively, our study suggests the potential application of LBP in the treatment of ulcerative colitis. We also provide an alternative method for restoring intestinal homeostasis in CS-born offspring.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoran Xie
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shanshan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Zhang Y, Ji W, Qin H, Chen Z, Zhou Y, Zhou Z, Wang J, Wang K. Astragalus polysaccharides alleviate DSS-induced ulcerative colitis in mice by restoring SCFA production and regulating Th17/Treg cell homeostasis in a microbiota-dependent manner. Carbohydr Polym 2025; 349:122829. [PMID: 39643403 DOI: 10.1016/j.carbpol.2024.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Natural polysaccharides from Astragalus membranaceus have been shown to relieve ulcerative colitis (UC). However, the mechanism and causal relationship between the gut microbiota and Astragalus polysaccharides (APS) treatment of UC are unclear. The results of the present study showed that APS ameliorated colonic injury and the disruption of the gut microbiota and restored intestinal immune homeostasis in mice with DSS-induced colitis. Meanwhile, we found that APS treatment was ineffective in antibiotic-treated colitis mice but was effective when FMT (Fecal microbiota transplantation) was performed on UC mice using APS-treated mice as donors. APS increased the proportion of relevant microbiota that produce SCFAs and both direct administration of APS and administration of APS-adjusted gut microbiota significantly promoted the production of SCFAs in colitis mice. We demonstrated that APS dually inhibited NF-κB activation via the TLR4 and HDAC3 pathways and improved the balance in Th17/Treg cells in UC mice. In conclusion, our study revealed that APS is a promising prebiotic agent for the maintenance of intestinal health and demonstrated that APS may ameliorate colitis in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenting Ji
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Hailong Qin
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yinxing Zhou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Zhihong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|
4
|
Quaglio AEV, Magro DO, Imbrizi M, De Oliveira ECS, Di Stasi LC, Sassaki LY. Creeping fat and gut microbiota in Crohn’s disease. World J Gastroenterol 2025; 31:102042. [DOI: 10.3748/wjg.v31.i1.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
In this article, we explored the role of adipose tissue, especially mesenteric adipose tissue and creeping fat, and its association with the gut microbiota in the pathophysiology and progression of Crohn’s disease (CD). CD is a form of inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract, influenced by genetic predisposition, gut microbiota dysbiosis, and environmental factors. Gut microbiota plays a crucial role in modulating immune response and intestinal inflammation and is associated with the onset and progression of CD. Further, visceral adipose tissue, particularly creeping fat, a mesenteric adipose tissue characterized by hypertrophy and fibrosis, has been implicated in CD pathogenesis, inflammation, and fibrosis. The bacteria from the gut microbiota may translocate into mesenteric adipose tissue, contributing to the formation of creeping fat and influencing CD progression. Although creeping fat may be a protective barrier against bacterial invasion, its expansion can damage adjacent tissues, leading to complications. Modulating gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and prebiotics has shown potential in managing CD. However, more research is needed to clarify the mechanisms linking gut dysbiosis, creeping fat, and CD progression and develop targeted therapies for microbiota modulation and fat-related complications in patients with CD.
Collapse
Affiliation(s)
- Ana EV Quaglio
- Verum Ingredients, Botucatu Technology Park, Botucatu 18605-525, São Paulo, Brazil
| | - Daniéla O Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - Marcello Imbrizi
- Department of Gastroenterology, Faculty of Medical Sciences, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - Ellen CS De Oliveira
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu 18618-686, São Paulo, Brazil
| | - Luiz C Di Stasi
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Y Sassaki
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
5
|
Li J, Fan R, Zhang Z, Zhao L, Han Y, Zhu Y, Duan JA, Su S. Role of gut microbiota in rheumatoid arthritis: Potential cellular mechanisms regulated by prebiotic, probiotic, and pharmacological interventions. Microbiol Res 2025; 290:127973. [PMID: 39541714 DOI: 10.1016/j.micres.2024.127973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects joints and multiple organs and systems, which is long-lasting and challenging to cure and significantly impacting patients' quality of life. Alterations in the composition of intestinal flora in both preclinical and confirmed RA patients indicate that intestinal bacteria play a vital role in RA immune function. However, the mechanism by which the intestinal flora is regulated to improve the condition of RA is not fully understood. This paper reviews the methods of regulating gut microbiota and its metabolites through prebiotics, probiotics, and pharmacological interventions, and discusses their effects on RA. Additionally, it explores the potential predictive role of cellular therapy mechanisms of intestinal flora in treating RA. These findings suggest that restoring the ecological balance of intestinal flora and regulating intestinal barrier function may enhance immune system function, thereby improving rheumatoid arthritis. This offers new insights into its treatment.
Collapse
Affiliation(s)
- Jiashang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruoying Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhe Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihui Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Li T, Hu G, Fu S, Qin D, Song Z. Phillyrin ameliorates DSS-induced colitis in mice via modulating the gut microbiota and inhibiting the NF-κB/MLCK pathway. Microbiol Spectr 2024:e0200624. [PMID: 39699220 DOI: 10.1128/spectrum.02006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024] Open
Abstract
Phillyrin (PHY), also known as forsythin, is an active constituent isolated from the fruit of Forsythia suspensa (Thunb.) Vahl (Oleaceae). It exhibits anti-inflammatory, anti-viral, and antioxidant properties. However, the precise impact of PHY on colitis induced by dextran sodium sulfate (DSS) and its mechanism remain elusive. The present investigation revealed that PHY (12.5, 25.0, and 50.0 mg/kg) exhibited significant therapeutic efficacy in protecting mice against DSS-induced colitis. This effect was manifested as reduced weight loss, a shortened colon, increased secretion of inflammatory factors, increased intestinal permeability, and an enhanced disease activity index in mice with ulcerative colitis (UC). Molecular investigations have determined that PHY mitigates the nuclear translocation of nuclear factor kappa B, thereby downregulating myosin light-chain kinase-driven myosin light-chain phosphorylation. This mechanism results in the preservation of the integrity of the intestinal barrier. The outcomes of 16S rRNA sequencing suggest that PHY (50 mg/kg) augmented the relative abundance of certain probiotic strains, including Lactobacillaceae and Lachnospiraceae. Additionally, PHY supplementation elevated the short-chain fatty acid contents within the intestinal contents of mice with UC. In conclusion, pre-treatment with PHY may ameliorate the DSS-induced UC in mice by lowering the expression of inflammatory factors, protecting intestinal barrier function, and enhancing the structure of the intestinal flora.IMPORTANCEThe protective effect of phillyrin on DSS-induced colitis was explained for the first time, and the anti-inflammatory effect of phillyrin was demonstrated by fecal microbiota transplantation experiments mainly through intestinal flora.
Collapse
Affiliation(s)
- Tong Li
- College of Veterinary Medicine, Jilin University, changchun, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, changchun, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, changchun, China
| | - Di Qin
- College of Animal Science and Technology, Jilin University, changchun, China
| | - Zheyu Song
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, changchun, China
| |
Collapse
|
7
|
Xiao Q, Luo L, Zhu X, Yan Y, Li S, Chen L, Wang X, Zhang J, Liu D, Liu R, Zhong Y. Formononetin alleviates ulcerative colitis via reshaping the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156153. [PMID: 39423480 DOI: 10.1016/j.phymed.2024.156153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), a type of inflammatory bowel disease, presents substantial challenges in clinical treatment due to the limitations of current medications. Formononetin (FN), a naturally compound with widespread availability, exhibits anti-inflammatory, antioxidant, and immunomodulatory properties. PURPOSE This study aimed to investigate the efficacy of FN against UC and its potential regulatory mechanism. METHODS Here, dextran sulfate sodium (DSS) was employed to replicate experimental colitis in mice with concomitant FN treatment. The distribution and localisation of CD68 and F4/80 macrophages in colonic tissues were visualized by immunofluorescence, their chemokine and inflammatory cytokine concentrations were determined by ELISA, and macrophages and M1/M2 subpopulations were determined by flow cytometry. Additionally, 16 s rRNA and LC-MS techniques were used to detect the colonic intestinal microbiota and metabolite profiles, respectively. Correlation analyses was performed to clarify the interactions between differential bacteria, metabolites and M1/M2 macrophages, and pseudo sterile mice were constructed by depletion of gut flora with quadruple antibiotics, followed by faecal microbial transplantation to evaluate its effects on colitis and M1/M2 macrophage polarisation. RESULTS FN dose-dependently alleviated clinical symptoms and inflammatory injury in colonic tissues of colitis mice, with its high-dose efficacy comparable to that of 5-ASA. Concurrently, FN not only inhibited inflammatory infiltration of macrophages and their M1/M2 polarisation balance in colitis mice, but also improved the composition of colonic microbiota and metabolite profiles. However, FN lost its protective effects against DSS-induced colitis and failed to restore the equilibrium of M1/M2 macrophage differentiation following intestinal flora depletion through quadruple antibiotic treatment. Importantly, fecal microbiota transplantation from FN-treated mice restored FN's protective effects against DSS-induced colitis and reestablished its regulatory role in M1/M2 macrophage polarization. CONCLUSION Collectively, FN ameliorated UC through modulating the balance of M1/M2 macrophage polarization in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Effective Material Basis of TCM, Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lin Luo
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiyan Zhu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yuhao Yan
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Shanshan Li
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Liling Chen
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jie Zhang
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duanyong Liu
- Jiangxi Provincial Engineering Research Center of Development and Evaluation of TCM classic prescriptions, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Nursing, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Prevention and Treatment of Immunological and Metabolic Diseases Related to Prescription and Syndrome, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Effective Material Basis of TCM, Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Youbao Zhong
- College of Acupuncture and Tuina, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Key Laboratory of Prevention and Treatment of Immunological and Metabolic Diseases Related to Prescription and Syndrome, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
8
|
Peña-Ocaña BA, Silva-Flores M, Shotaro T, García-Gálvez L, Hernández-Esquivel L, Robledo-Cadena DX, Barrera-Oviedo D, Pérez-Torres I, Tostado-Islas O, Maeda T, Rodríguez-Zavala JS, Marín-Hernández Á, García-Contreras R, Jasso-Chávez R. Transplant of gut microbiota ameliorates metabolic and heart disorders in rats fed with a hypercaloric diet by modulating microbial metabolism and diversity. Biomed Pharmacother 2024; 181:117667. [PMID: 39546851 DOI: 10.1016/j.biopha.2024.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Metabolic syndrome (MS) is a cluster of metabolic disorders which have a tight correlation with dysbiosis of gut microbiota (GM) that have to be treated to avoid higher risks for health. In this work, probiotics obtained from healthy cultured GM were provided to rats with metabolic syndrome (MSR) as therapy in treating MS through the correction of dysbiosis. MSR showed obesity, high blood pressure, abnormal blood chemistry parameters and high heart rate respect to control rats (CNTR). Cultivated GM from feces of MSR in media favoring anaerobic species, showed dysbiosis as judged by differences in the 16S rRNA metabarcoding analysis and by affected intermediary metabolism (methane and SCFA production, nutrients consumption and enzyme activities) compared to CNTR. The metabarcoding analysis of cultured healthy GM identified 211 species, which were further transplanted alive in MSR once a week for 9 weeks. Thereafter, in transplanted MSR the excess of Clostridium and Lactobacillus diminished, while Prevotella, Eubacterium, Faecalibacterium and methanogens, among others increased, leading to the recovery of the microbial metabolic capacity. The presence of butyric acid-producing bacteria in the transplanted GM correlated with increased levels of anti-inflammatory cytokines. Therefore, transplanted MSR recovered the normal levels of weight, blood glucose, triglycerides and cholesterol as well as the heart function. Data suggested that the great diversity of species contained in the GM transplanted restored the microbial metabolism, consuming excessive nutrients and secondary metabolites produced by MS. The use of cultivated GM as probiotics may be a safer alternative for the treatment of different diseases.
Collapse
Affiliation(s)
- Betsy Anaid Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico.
| | - Mayel Silva-Flores
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Toya Shotaro
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Leslie García-Gálvez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | | | - Diana Barrera-Oviedo
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar 411A, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Israel Pérez-Torres
- Departamento de Medicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Oswaldo Tostado-Islas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar 411A, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - José S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar 411A, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
9
|
Huai M, Pei M, Chen J, Duan X, Zhu Y, Yang F, Ge W. Oral creatine-modified selenium-based hyaluronic acid nanogel mediated mitochondrial energy recovery to drive the treatment of inflammatory bowel disease. J Nanobiotechnology 2024; 22:740. [PMID: 39609811 PMCID: PMC11603945 DOI: 10.1186/s12951-024-03007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
The damnification of mitochondrion is often considered to be an important culprit of inflammatory bowel disease (IBD), however, there are fewer reports of mechanisms of mitochondria-mediated IBD treatment. Therefore, we first proposed to reboot mitochondrial energy metabolism to treat IBD by capturing the double-sided factor of ROS and creatine (Cr)-assisted energy adjustment. Herein, an oral Cr-modified selenium-based hyaluronic acid (HA) nanogel (HASe-Cr nanogel) was fabricated for treatment of IBD, through ROS elimination and energy metabolism upgradation. More concretely, due to IBD lesion-specific positive charge and the high expression of CD44, HASe-Cr nanogel exhibited dual targeted inflammatory bio-functions, and ROS-driven degradation properties in high-yield ROS levels in inflammation areas. As expected, multifunctional HASe-Cr nanogel could effectively ameliorate IBD-related symptoms, such as mitochondrial biological function restoration, inhibition of M1-like macrophage polarization, gut mucosal reconstruction, microbial ecological repair, etc., thus excellently treating IBD. Overall, the proposed strategy underlined that the great potentiality of HASe-Cr nanogel by restarting mitochondrial metabolic energy in colitis lesions, providing new a pavement of mitochondrion-mediated colitis treatment in clinical applications.
Collapse
Affiliation(s)
- Manxiu Huai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Mingliang Pei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Chen
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xiaoyan Duan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Yun Zhu
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China.
| |
Collapse
|
10
|
Yang X, He M, Cao J, Tang Q, Yang B, Li T, Sun M. Acupuncture and Moxibustion for Inflammatory Bowel Disease: Regulatory Mechanisms Revealed by Microbiome and Metabolomic Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1891-1923. [PMID: 39581856 DOI: 10.1142/s0192415x24500745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Acupuncture and moxibustion are widely acknowledged as effective complementary therapies for managing inflammatory bowel disease (IBD) in traditional Chinese medicine. However, the regulatory mechanisms by which these two therapies exert their therapeutic effects in IBD are yet to be fully elucidated. The objective of this study was to investigate the mechanisms of action underlying acupuncture and moxibustion and the regulative differences between them as therapeutic interventions for IBD. Using a dextran sodium sulfate-induced IBD mice model, the effects of the two treatments were evaluated by examination of body weight, stool samples, colon morphology, inflammatory factors, gut microbiota, and metabolites. The results indicated that both acupuncture and moxibustion mitigated body weight reduction; improved the structural characteristics of intestinal tissues; increased levels of anti-inflammatory cytokines including interleukin (IL)-10; and decreased levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-[Formula: see text]), nuclear factor kappa B (NF-[Formula: see text]B), IL-6, IL-1[Formula: see text], and IL-17. Acupuncture and moxibustion had distinct effects on the regulation of the intestinal microbiota and metabolic pathways in IBD mice. Moxibustion regulated a greater number of metabolic pathways than acupuncture, the majority of which were associated with amino acid metabolism, brain signal transmission, energy metabolism, and anti-inflammatory pathways. These findings provide a scientific basis for the differential applications of acupuncture and moxibustion in clinical practice.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Medicine, Lishui University, Lishui 323000, Zhejiang Province, P. R. China
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Min He
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Jiazhen Cao
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Qingqing Tang
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Bo Yang
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Tie Li
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| |
Collapse
|
11
|
Qiao Z, Li Z, Shi Y, Yi J, Zhu J, Kang Q, Hao L, Zhao C, Lu J. Radiation protection of sodium alginate and its regulatory effect on intestinal microflora in mice. Int J Biol Macromol 2024; 280:135809. [PMID: 39306170 DOI: 10.1016/j.ijbiomac.2024.135809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prolonged or high-dose exposure to ionizing radiation (IR) can cause damage to normal tissues of the body. Therefore, it is imperative to find effective radiation protective agents to mitigate IR-induced damage. This study evaluated the effects of sodium alginate (SA) on the radiation protection and modulatory effects of gut microorganisms using a 60Coγ-induced damage model in mice. Results showed that SA could reduce the damage of hematopoietic system; and alleviate the oxidative damage in irradiated mice by inhibiting the content of malondialdehyde (MDA) and increasing the activities of superoxide dismutase (SOD) and glutathione (GSH) in serum, spleen, jejunum and liver. Moreover, SA treatment ameliorated IR-induced small intestine lesions and alleviated liver injury. This was consistent with decreased levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and tumor necrosis factor-α (TNF-α), and increased levels of interferon-γ (IFN-γ) and interleukin-2 (IL-2) after SA treatment. Furthermore, SA treatment reversed IR-induced gut dysbiosis, elevated the Firmicutes/Bacteroidetes ratio, increased the beneficial bacteria and reduced the pathogenic bacteria in the small intestine. In conclusion, the present study demonstrated that SA exerted good radioprotective effect by improving hematopoietic system, alleviating oxidative stress, attenuating liver injury and inflammatory response, and modulating the intestinal microbiota in irradiated mice.
Collapse
Affiliation(s)
- Zhangning Qiao
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Zhiying Li
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Yanling Shi
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Juanjuan Yi
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Jiaqing Zhu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Qiaozhen Kang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Limin Hao
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China; Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, China
| | - Changcheng Zhao
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China.
| | - Jike Lu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China.
| |
Collapse
|
12
|
Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, Duan X, Ma J, Jiang Z, Hou J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release 2024; 375:20-46. [PMID: 39214316 DOI: 10.1016/j.jconrel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Xiaolei Duan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
13
|
De Souza V, Cruz MDP, Mello DC, Oliveira APLD, Martins RÁBL, Longo L, Parizotto NA, Marcos RL. Exploring photobiomodulation in the management of bowel diseases: a concise critical review. Lasers Med Sci 2024; 39:265. [PMID: 39463190 DOI: 10.1007/s10103-024-04217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
The complexity of the gastrointestinal system plays a crucial role in coordinating essential processes such as digestion, nutrient absorption, and waste elimination. inflammatory bowel diseases (IBD) pose significant treatment challenges due to their complex aetiology and varied symptoms. Conventional therapeutic approaches often involve pharmacological interventions, which may have side effects and limited efficacy. Photobiomodulation (PBM), also known as low-level light therapy, has emerged as a promising therapeutic or adjunctive alternative in the treatment of intestinal diseases. The search was conducted in the MEDLINE database via PubMed, SCOPUS, covering the period from 1990 to 2024. A total of 72 studies were selected, of which 9 focused on inflammatory bowel diseases IBD, including ulcerative colitis (UC) and Crohn's disease (CD). Among these studies, 1 was clinical protocol while eight experimental. The results showed that PBM has a significant positive effect in IBD studies in rats, with reduction of intestinal inflammation, improvement of mucosal integrity, and modulation of the immune response. However, no clinical studies were found necessary to obtain results and establish effective and safe treatment protocols. Nevertheless, PBM holds potential as a non-invasive and complementary therapeutic approach for managing IBD, offering new perspectives for the treatment of chronic intestinal diseases. Therefore, this brief review emphasizes the need to transition from preclinical research to clinical research on this topic and highlights the scarcity of clinical studies.
Collapse
Affiliation(s)
- Vanessa De Souza
- Program in Medicine - Biophotonics, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil.
| | - Marlon da Palma Cruz
- Program in Medicine - Biophotonics, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil
| | - Dominique Cavalcanti Mello
- Program in Medicine - Biophotonics, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil
| | - Ana Paula Ligeiro de Oliveira
- Program in Medicine - Biophotonics, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil
| | - Rodrigo Álvaro Brandão Lopes Martins
- Laboratory of Biophotonics and Experimental Therapeutics - LABITEX, Universidade Evangélica de Goiás - UniEvangélica, Av. Universitária S/N, Anápolis, GO, Brazil
| | | | - Nivaldo Antonio Parizotto
- Biomedical Engineering, University Brasil, Rua Carolina Fonseca, 584 - Itaquera, São Paulo, SP, 08230-030, Brazil
| | - Rodrigo Labat Marcos
- Program in Medicine - Biophotonics, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, 01504-000, Brazil
| |
Collapse
|
14
|
Xie Q, Chen J, Yang H, Liang J, Ma R, Guo J, Zeng X. A Comprehensive Review of Coptidis Rhizoma and Magnoliae Officinalis Cortex Drug Pair and Their Chemical Composition, Pharmacological Effects and Pharmacokinetics Analysis. Drug Des Devel Ther 2024; 18:4413-4426. [PMID: 39372674 PMCID: PMC11456271 DOI: 10.2147/dddt.s477381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Herbal pairs are unique combinations of two relatively fixed herbs that are used in clinical practice. This is the most fundamental and straightforward form of multiple herbal treatment that aims to attain specific efficacy through unique methods. Coptidis Rhizoma ("Huanglian" in Chinese) and Magnoliae Officinalis Cortex ("Houpo" in Chinese) which are commonly used in combination and could also be used as important components of other prescriptions to treat damp-heat dysentery, splenic and stomach disorders, and qi stagnation in clinical practice. However, there is currently no summary on the compatibility of Huanglian and Houpo about traditional use, phytochemistry, and pharmacological activity. It was found the combination or separate extraction of the two drugs may affect the main active components, and new components may be produced after the combined extraction. At the same time, Huanglian and Houpo herb pair exhibited antiviral, anti-inflammatory, antibacterial and other pharmacological effects. At present, research mainly focuses on the indicator components of Huanglian and Houpo, such as berberine, magnolol, and magnolol. The models used for pharmacological validation are limited, mainly including ulcerative colitis, pneumonia, bacterial infections, etc. In order to verify the pharmacological activity of the combination of Huanglian and Houpo, it is necessary to try more in vitro and in vivo models. It's still need to study the compatibility mechanism of the Huanglian and Houpo drug pair, including but not limited to the interactions between different components and the impact of compatibility on efficacy, bioequivalence studies, and the impact of different dosage forms on pharmacokinetics in the future. It's believed that the systematic review provided comprehensive information for the study of Huanglian-Houpo drug pair, which will help highlight the importance of the Huanglian-Houpo herb pair and provide some clues for future research on this herb pair.
Collapse
Affiliation(s)
- Qian Xie
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Jiarou Chen
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Hongyan Yang
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Jianlong Liang
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Rong Ma
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| | - Xuxin Zeng
- School of Medicine, Foshan University, Foshan, 528000, People’s Republic of China
| |
Collapse
|
15
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
16
|
Lin D, Jin Y, Shao X, Xu Y, Ma G, Jiang Y, Xu Y, Jiang Y, Hu D. Global, regional, and national burden of inflammatory bowel disease, 1990-2021: Insights from the global burden of disease 2021. Int J Colorectal Dis 2024; 39:139. [PMID: 39243331 PMCID: PMC11380638 DOI: 10.1007/s00384-024-04711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE The prevalence of inflammatory bowel disease (IBD) is on the rise worldwide. We utilizes data from the Global Burden of Diseases (GBD) 2021 to analyze the national-level burden of IBD, trends in disease incidence, and epidemiological characteristics. METHODS Detailed information on IBD was gathered from 204 countries and territories spanning 1990 to 2021, sourced from the GBD 2021. Calculations were performed for incidence rates, mortality rates, disease-adjusted life years (DALYs), and estimated annual percentage changes (EAPCs). These trends were analyzed based on region, nationality, age, gender, and World Bank income level stratifications. RESULTS The global age-standardised incident rate (ASIR) of IBD increased from 4.22 per 100000 in 1990 to 4.45 per 100000 in 2021. However, the age-standardised mortality rate (ASMR) decreased from 0.60 per 100000 in 1990 to 0.52 per 100000 in 2021. Similarly, the age-standardised DALYs rate decreased from 21.55 per 100000 in 1990 to 18.07 per 100000 in 2021. Gender comparisons showed negligible differences in disease burden. The greatest increase in IBD-associated ASIR and ASMR occurred in World Bank upper-middle income region (EAPCs, 1.25) and World Bank high-income region (EAPCs, 1.00), respectively. Regionally, East Asia experienced the largest increase in ASIR (EAPCs, 2.89). Among 204 countries, China had the greatest increases in ASIR (EAPCs, 2.93), Netherlands had the highest ASMR in 2021 (2.21 per 100000). CONCLUSIONS Global incidence rate of IBD have been increasing from 1990 to 2021, while the DALYs and mortality have been decreasing. The escalating incident rates in select Asian regions deserves further attention.
Collapse
Affiliation(s)
- Daopo Lin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yang Jin
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaoxiao Shao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guolong Ma
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinghe Xu
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, China.
| | - Yongpo Jiang
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, China.
| | - Dingyuan Hu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
17
|
Zhang C, Fan X, Li Z, Hu Z, He C, Wang S, Li M. Causal association between inflammatory bowel disease and acute pancreatitis: a two-sample bidirectional mendelian randomization study. Front Genet 2024; 15:1324893. [PMID: 39205942 PMCID: PMC11349681 DOI: 10.3389/fgene.2024.1324893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background Acute pancreatitis (AP) is an extraintestinal manifestation of inflammatory bowel disease (IBD). Numerous observational studies have reported an increased risk of AP in patients diagnosed with IBD. However, the causal association and directionality between IBD or its subtypes and the development of AP remains unclear due to the limitations of observational research. This study aims to explore the relationship between IBD or its subtypes and AP risk using Mendelian Randomization (MR) method. Methods A two-sample bidirectional MR study was conducted, selecting genetic variants associated with IBD and AP as instrumental variables from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) and FinnGen databases, respectively. The inverse-variance weighted (IVW) method used as the primary approach for causal inference. The Cochran Q test was employed for heterogeneity assessment. Sensitivity analyses were performed using the MR Egger intercept test, MR-Presso, and Leave-one-out method. Results The results revealed that IBD (OR = 1.049, 95% CI = 1.010-1.090, p = 0.013) and ulcerative colitis (UC) (OR = 1.057, 95% CI = 1.013-1.102, p = 0.011) were significantly associated with an increased risk of AP. However, Crohn's disease (CD) (OR = 1.023, 95% CI = 0.993-1.055, p = 0.134) did not show a causal association with the risk of AP. Interestingly, AP was suggestively associated with a decreased risk of CD (OR = 0.797, 95% CI = 0.637-0.997, p = 0.047). Furthermore, there was no causal association between AP and the risk of IBD (OR = 0.886, 95% CI = 0.753-1.042, p = 0.144) or UC (OR = 0.947, 95% CI = 0.773-1.159, p = 0.595). Conclusion In conclusion, this study provides genetic evidence supporting the causal influence of IBD (specifically UC) on AP, while CD does not appear to have a causal impact on AP.
Collapse
Affiliation(s)
- Cong Zhang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Gastroenterology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan, China
| | - Xiujing Fan
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Gastroenterology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Gastroenterology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zongyi Hu
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Gastroenterology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Gastroenterology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Gastroenterology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Gastroenterology, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Ryu HM, Islam SMS, Riaz B, Sayeed HM, Choi B, Sohn S. Immunomodulatory Effects of a Probiotic Mixture: Alleviating Colitis in a Mouse Model through Modulation of Cell Activation Markers and the Gut Microbiota. Int J Mol Sci 2024; 25:8571. [PMID: 39201260 PMCID: PMC11354276 DOI: 10.3390/ijms25168571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ulcerative colitis (UC) is a persistent inflammatory intestinal disease that consistently affects the colon and rectum. Its exact cause remains unknown. UC causes a considerable challenge in healthcare, prompting research for novel therapeutic strategies. Although probiotics have gained popularity as possible candidates for managing UC, studies are still ongoing to identify the best probiotics or probiotic mixtures for clinical applications. This study aimed to determine the efficacy of a multi-strain probiotic mixture in mitigating intestinal inflammation in a colitis mouse model induced by dextran sulfate sodium. Specifically, a multi-strain probiotic mixture consisting of Tetragenococcus halophilus and Eubacterium rectale was used to study its impact on colitis symptoms. Anti-inflammatory effects were evaluated using ELISA and flow cytometry. The configuration of gut microbial communities was determined using 16S rRNA metagenomic analysis. According to this study, colitis mice treated with the probiotic mixture experienced reduced weight loss and significantly less colonic shortening compared to untreated mice. Additionally, the treated mice exhibited increased levels of forkhead box P3 (Foxp3) and interleukin 10, along with decreased expression of dendritic cell activation markers, such as CD40+, CD80+, and CD83+, in peripheral blood leukocytes and intraepithelial lymphocytes. Furthermore, there was a significant decrease in the frequencies of CD8+N.K1.1+ cells and CD11b+Ly6G+ cells. In terms of the gut microbiota, probiotic-mixture treatment of colitis mice significantly increased the abundance of the phyla Actinobacteria and Verrucomicrobia (p < 0.05). These results provide valuable insights into the therapeutic promise of multi-strain probiotics, shedding light on their potential to alleviate colitis symptoms. This research contributes to the ongoing exploration of effective probiotic interventions for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - S. M. Shamsul Islam
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Bushra Riaz
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Hasan M. Sayeed
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| | - Bunsoon Choi
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (S.M.S.I.); (B.R.); (H.M.S.)
| |
Collapse
|
19
|
Ding G, Yang X, Li Y, Wang Y, Du Y, Wang M, Ye R, Wang J, Zhang Y, Chen Y, Zhang Y. Gut microbiota regulates gut homeostasis, mucosal immunity and influences immune-related diseases. Mol Cell Biochem 2024:10.1007/s11010-024-05077-y. [PMID: 39060829 DOI: 10.1007/s11010-024-05077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
The intestinal microbiome constitutes a sophisticated and massive ecosystem pivotal for maintaining gastrointestinal equilibrium and mucosal immunity via diverse pathways. The gut microbiota is continuously reshaped by multiple environmental factors, thereby influencing overall wellbeing or predisposing individuals to disease state. Many observations reveal an altered microbiome composition in individuals with autoimmune conditions, coupled with shifts in metabolic profiles, which has spurred ongoing development of therapeutic interventions targeting the microbiome. This review delineates the microbial consortia of the intestine, their role in sustaining gastrointestinal stability, the association between the microbiome and immune-mediated pathologies, and therapeutic modalities focused on microbiome modulation. We emphasize the entire role of the intestinal microbiome in human health and recommend microbiome modulation as a viable strategy for disease prophylaxis and management. However, the application of gut microbiota modification for the treatment of immune-related diseases, such as fecal microbiota transplantation and probiotics, remain quite challenging. Therefore, more research is needed into the role and mechanisms of these therapeutics.
Collapse
Affiliation(s)
- Guoao Ding
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
- Department of Life Science, Anhui University, Hefei, 230061, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ying Li
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ying Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yujie Du
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Meng Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ruxin Ye
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Jingjing Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yongkang Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yajun Chen
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yan Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China.
- Department of Life Science, Anhui University, Hefei, 230061, China.
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Wang J, Li J, Ji Y. Mendelian randomization as a cornerstone of causal inference for gut microbiota and related diseases from the perspective of bibliometrics. Medicine (Baltimore) 2024; 103:e38654. [PMID: 38941393 PMCID: PMC11466094 DOI: 10.1097/md.0000000000038654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024] Open
Abstract
Gut microbiota, a special group of microbiotas in the human body, contributes to health in a way that can't be ignored. In recent years, Mendelian randomization, which is a widely used and successful method of analyzing causality, has been investigated for the relationship between the gut microbiota and related diseases. Unfortunately, there seems to be a shortage of systematic bibliometric analysis in this field. Therefore, this study aims to investigate the research progress of Mendelian randomization for gut microbiota through comprehensive bibliometric analysis. In this study, publications about Mendelian randomization for gut microbiota were gathered from 2013 to 2023, utilizing the Web of Science Core Collection as our literature source database. The search strategies were as follows: TS = (intestinal flora OR gut flora OR intestinal microflora OR gut microflora OR intestinal microbiota OR gut microbiota OR bowel microbiota OR bowel flora OR gut bacteria OR intestinal tract bacteria OR bowel bacteria OR gut metabolites OR gut microbiota) and TS = (Mendelian randomization). VOSviewer (version 1.6.18), CiteSpace (version 6.1.R1), Microsoft Excel 2021, and Scimago Graphica were employed for bibliometric and visualization analysis. According to research, from January 2013 to August 2023, 154 publications on Mendelian randomization for gut microbiota were written by 1053 authors hailing from 332 institutions across 31 countries and published in 86 journals. China had the highest number of publications, with 109. Frontiers in Microbiology is the most prolific journal, and Lei Zhang has published the highest number of significant articles. The most popular keywords were "Mendelian randomization," "gut microbiota," "instruments," "association," "causality," "gut microbiome," "risk," "bias," "genome-wide association," and "causal relationship." Moreover, the current research hotspots in this field focus on utilizing a 2-sample Mendelian randomization to investigate the relationship between gut microbiota and associated disorders. This research systematically reveals a comprehensive overview of the literature that has been published over the last 10 years about Mendelian randomization for gut microbiota. Moreover, the knowledge of key information in the field from a bibliometric perspective may greatly facilitate future research in the field.
Collapse
Affiliation(s)
- Jiani Wang
- Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Jian Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Yong Ji
- Department of Neonatal Intensive Care Unit, Children’s Hospital of Shanxi Province (Maternal and Child Heath Hospital of Shanxi Province, Maternity Hospital of Shanxi Province), Taiyuan, China
| |
Collapse
|
21
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tanya Marie Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sepideh Pakpour
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ed J Kuijper
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sukanya Neupane
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sadeghi
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Estello Nap-Hill
- Department of Medicine, Division of Gastroenterology, St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Zhang Z, Hu Y, Zhang N, Li J, Lu J, Wei H. Dietary supplementation with non-digestible isomaltooligosaccharide and Lactiplantibacillus plantarum ZDY2013 ameliorates DSS-induced colitis via modulating intestinal barrier integrity and the gut microbiota. Food Funct 2024; 15:5908-5920. [PMID: 38738338 DOI: 10.1039/d4fo00421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Non-digestible oligosaccharides have attracted attention due to their critical role in maintaining the balance of a host's gut microbiota. Lactiplantibacillus plantarum ZDY2013 was isolated from traditional fermented acid beans, which could metabolize many complex carbohydrates and had intestinal immunomodulatory effects. In our study, the ameliorative effect of a combination of non-digestible isomaltooligosaccharide (IMO) and L. plantarum ZDY2013 was investigated in dextran sulfate sodium (DSS)-induced colitis mice. The results showed that IMO could specifically promote L. plantarum ZDY2013 intestinal colonization after five days of gavage and ameliorate the symptoms of colitis (survival rate, DAI score, colon length, etc.) as well as colon tissue integrity. IMO combined with L. plantarum ZDY2013 increased the levels of intestinal tight junction proteins (ZO-1 and claudin) and mucin (MUC-2), followed by alleviation of inflammatory responses (decreased the expression of IL-1β, TNF-α, and IL-6 and increased the expression of IL-10 and IL-22) and the level of oxidative stress (decreased the level of COX-2 and iNOS and increased the expression of T-AOC and SOD). Furthermore, the combination increased the diversity of the gut microbiota and modulated the microbial structural component (decreased the abundance of Escherichia and Helicobacter and increased the abundance of Lactobacillus and SCFA-producing related species). Taken together, our results suggested that the consumption of IMO and L. plantarum ZDY2013 could improve the symptoms of colitis in mice by improving the intestinal barrier along with regulating the composition and metabolites of the gut microbiota.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
- Chongqing Research Institute, Nanchang University, Chongqing 402660, China
| | - Yingsheng Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Na Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jinmei Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jinlin Lu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
23
|
Huo Z, Li J, Li X, Xiao H, Lin Y, Ma Y, Li J, Yang H, Zhang C. Functional fractions of Astragalus polysaccharides as a potential prebiotic to alleviate ulcerative colitis. Int J Biol Macromol 2024; 271:132580. [PMID: 38788871 DOI: 10.1016/j.ijbiomac.2024.132580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that is significantly influenced by an imbalance in the gut microbiota. Astragalus membranaceus, particularly its polysaccharide components, has shown therapeutic potential for the treatment of UC, although the specific active constituents and their mechanistic pathways remain to be fully elucidated. In this study, we investigated two molecular weight fractions of Astragalus polysaccharides (APS), APS1 (Mw < 10 kDa) and APS2 (10 kDa < Mw < 50 kDa), isolated by ultrafiltration, focusing on their prebiotic effects, effects on UC, and the underlying mechanism. Our results showed that both APS1 and APS2 exhibit prebiotic properties, with APS1 significantly outperforming APS2 in ameliorating UC symptoms. APS1 significantly attenuated weight loss and UC manifestations, reduced colonic pathology, and improved intestinal mucosal barrier integrity. In addition, APS1 significantly reduced the levels of inflammatory cytokines in the serum and colonic tissue, and downregulated colonic chemokines. Furthermore, APS1 ameliorated dextran sulfate sodium salt (DSS)-induced intestinal dysbiosis by promoting the growth of beneficial microbes and inhibiting the proliferation of potential pathogens, leading to a significant increase in short-chain fatty acids. In conclusion, this study highlights the potential of APS1 as a novel prebiotic for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuchan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
24
|
Suman S. Enteric Nervous System Alterations in Inflammatory Bowel Disease: Perspectives and Implications. GASTROINTESTINAL DISORDERS 2024; 6:368-379. [PMID: 38872954 PMCID: PMC11175598 DOI: 10.3390/gidisord6020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The enteric nervous system (ENS), consisting of neurons and glial cells, is situated along the gastrointestinal (GI) tract's wall and plays a crucial role in coordinating digestive processes. Recent research suggests that the optimal functioning of the GI system relies on intricate connections between the ENS, the intestinal epithelium, the immune system, the intestinal microbiome, and the central nervous system (CNS). Inflammatory bowel disease (IBD) encompasses a group of chronic inflammatory disorders, such as Crohn's disease (CD) and ulcerative colitis (UC), characterized by recurring inflammation and damage to the GI tract. This review explores emerging research in the dynamic field of IBD and sheds light on the potential role of ENS alterations in both the etiology and management of IBD. Specifically, we delve into IBD-induced enteric glial cell (EGC) activation and its implications for persistent enteric gliosis, elucidating how this activation disrupts GI function through alterations in the gut-brain axis (GBA). Additionally, we examine IBD-associated ENS alterations, focusing on EGC senescence and the acquisition of the senescence-associated secretory phenotype (SASP). We highlight the pivotal role of these changes in persistent GI inflammation and the recurrence of IBD. Finally, we discuss potential therapeutic interventions involving senotherapeutic agents, providing insights into potential avenues for managing IBD by targeting ENS-related mechanisms. This approach might represent a potential alternative to managing IBD and advance treatment of this multifaceted disease.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
25
|
Peng X, Yang Y, Zhong R, Yang Y, Yan F, Liang N, Yuan S. Zinc and Inflammatory Bowel Disease: From Clinical Study to Animal Experiment. Biol Trace Elem Res 2024:10.1007/s12011-024-04193-6. [PMID: 38805169 DOI: 10.1007/s12011-024-04193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract (GI) with a high incidence rate globally, and IBD patients are often accompanied by zinc deficiency. This review aims to summarize the potential therapeutic value of zinc supplementation in IBD clinical patients and animal models. Zinc supplementation can relieve the severity of IBD especially in patients with zinc deficiency. The clinical severity of IBD were mainly evaluated through some scoring methods involving clinical performance, endoscopic observation, blood biochemistry, and pathologic biopsy. Through conducting animal experiments, it has been found that zinc plays an important role in alleviating clinical symptoms and improving pathological lesions. In both clinical observation and animal experiment of IBD, the therapeutic mechanisms of zinc interventions have been found to be related to immunomodulation, intestinal epithelial repair, and gut microbiota's balance. Furthermore, the antioxidant activity of zinc was clarified in animal experiment. Appropriate zinc supplementation is beneficial for IBD therapy, and the present evidence highlights that alleviating zinc-deficient status can effectively improve the severity of clinical symptoms in IBD patients and animal models.
Collapse
Affiliation(s)
- Xi Peng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yingxiang Yang
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China
| | - Rao Zhong
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Yuexuan Yang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Shibin Yuan
- School of Life Sciences, China West Normal University, Nanchong, 637001, Sichuan, China.
| |
Collapse
|
26
|
Uthaman S, Parvinroo S, Mathew AP, Jia X, Hernandez B, Proctor A, Sajeevan KA, Nenninger A, Long MJ, Park IK, Chowdhury R, Phillips GJ, Wannemuehler MJ, Bardhan R. Inhibiting the cGAS-STING Pathway in Ulcerative Colitis with Programmable Micelles. ACS NANO 2024; 18:12117-12133. [PMID: 38648373 DOI: 10.1021/acsnano.3c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Shadi Parvinroo
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Ansuja Pulickal Mathew
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Xinglin Jia
- Department of Mathematics, Iowa State University, Ames, Iowa 50011, United States
| | - Belen Hernandez
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Alexandra Proctor
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Karuna Anna Sajeevan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Ariel Nenninger
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Mary-Jane Long
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Gregory J Phillips
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| |
Collapse
|
27
|
Xu B, Fu Y, Yin N, Qin W, Huang Z, Xiao W, Huang H, Mei Q, Fan J, Zeng Y, Huang C. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii served as key components of fecal microbiota transplantation to alleviate colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G607-G621. [PMID: 38502145 PMCID: PMC11376976 DOI: 10.1152/ajpgi.00303.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. Forty donors were divided into high (donor H) and low (donor L) groups according to the diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor H (P < 0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy (P < 0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group (P < 0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.NEW & NOTEWORTHY We demonstrate that donors with high abundance of Bacteroides and Faecalibacterium ameliorate dextran sulfate sodium (DSS)-induced colitis in mice by fecal microbiota transplantation (FMT). The combination therapy of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii is superior to mono-bacterial therapy in ameliorating colitis in mice, of which mechanism may involve promoting lecithin and inducing IL-10 production of intestinal Tregs.
Collapse
Affiliation(s)
- Binqiang Xu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yang Fu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Wenfei Qin
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zehua Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Xiao
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Huizhen Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai General Hospital of Nanjing Medical University, Shanghai, People's Republic of China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Junjie Fan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Chunlan Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Shin J, Baek GH, Cha B, Park SH, Lee JH, Kim JS, Kwon KS. Complementary Therapeutic Effect of Fecal Microbiota Transplantation in Ulcerative Colitis after the Response to Anti-Tumor Necrosis Factor Alpha Agent Was Lost: A Case Report. Biomedicines 2024; 12:800. [PMID: 38672155 PMCID: PMC11048579 DOI: 10.3390/biomedicines12040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In patients with ulcerative colitis (UC), the development of an antidrug antibody (ADA) to anti-tumor necrosis factor (TNF)α agent is a crucial problem which aggravates the clinical course of the disease, being cited as one of the most common causes for discontinuing anti-TNFα treatment. This is due to ADA eventually causing secondary LOR, leading to discontinuation of anti-TNFα treatment. Recently, research on the microbiome and relationship between worsening UC and dysbiosis has been conducted. Further, investigations on the association between the microbiome and secondary LOR are increasing. Here, we present the therapeutic effect of fecal microbiota transplantation (FMT) on a 42-year-old man with secondary LOR and high ADA levels. FMT has recently been used for the treatment of, and for overcoming, drug resistance through microbiome modification. Stool samples were collected from the patient before and 4 weeks after FMT. Symptoms, including hematochezia and Mayo endoscopy sub-scores, improved after FMT, while ADA levels decreased by one-third to less than half the value (29 ng/mL) compared to before FMT (79 ng/mL). Additionally, the trough level of infliximab became measurable, which reflects the improvement in the area under the concentration (AUC). Butyricicoccus, Faecalibacterium, Bifidobacterium, Ligilactobacillus, Alistipes, and Odoribacter, which regulate immune responses and alleviate inflammation, also increased after FMT. We report a case in which microbiome modification by FMT increased the AUC of anti-TNFα in a patient who developed secondary LOR during anti-TNFα treatment, thereby improving symptoms and mucosal inflammation.
Collapse
Affiliation(s)
- Jongbeom Shin
- Department of Internal Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; (J.S.); (B.C.)
| | - Ga Hyeon Baek
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Boram Cha
- Department of Internal Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; (J.S.); (B.C.)
| | - Soo-Hyun Park
- Department of Neurology, Soon Chun Hyang University Hospital Seoul, Seoul 04401, Republic of Korea;
| | - Jung-Hwan Lee
- Division of Gastroenterology, Department of Hospital Medicine, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Kye Sook Kwon
- Department of Internal Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea; (J.S.); (B.C.)
| |
Collapse
|
29
|
Boppana K, Almansouri NE, Bakkannavar S, Faheem Y, Jaiswal A, Shergill K, Nath TS. Alterations in Gut Microbiota as Early Biomarkers for Predicting Inflammatory Bowel Disease Onset and Progression: A Systematic Review. Cureus 2024; 16:e58080. [PMID: 38741828 PMCID: PMC11088963 DOI: 10.7759/cureus.58080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic ailment impacting the digestive system, triggered by an unusual reaction of the immune system. It includes two types of diseases: ulcerative colitis and Crohn's disease. Nonetheless, the diagnosis and evaluation of disease progression in IBD are difficult due to the absence of distinct indicators. While conventional biomarkers from blood plasma and feces, such as C-reactive protein, fecal calprotectin, and S100A12, can be employed to gauge inflammation, they are not exclusive to IBD. There is a broad consensus that intestinal microorganisms significantly contribute to the onset of intestinal imbalance, a condition intimately linked with the cause and development of IBD. Numerous studies have indicated that the makeup of intestinal microorganisms varies between individuals with IBD and those who are healthy, particularly concerning the diversity of microbes and the proportional prevalence of certain bacteria. A total of 1475 records underwent examination. Following the eligibility assessment, 17 reports were considered. The final review encompassed 12 studies, as five articles were excluded due to insufficient details regarding cases, controls, and comparability. This article suggests that gut microbiota has potential biomarkers for the noninvasive evaluation of IBD activity. Recognizing the microbiome linked with disease activity paves the way for the development of a group of microbiota-derived indicators to evaluate the initiation and advancement of IBD. This article discusses whether changes in gut microbial composition can serve as early indicators of IBD onset and progression.
Collapse
Affiliation(s)
- Kusalik Boppana
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Manipal University, Manipal, IND
| | - Naiela E Almansouri
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, University of Tripoli, Tripoli, LBY
| | - Saloni Bakkannavar
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Youmna Faheem
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Medicine, New Medical Center Royal Hospital, Abu Dhabi, ARE
| | - Amisha Jaiswal
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kainaat Shergill
- Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Medicine, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, IND
| | - Tuheen Sankar Nath
- Surgical Oncology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
30
|
Chen SJ, Zhang DY, Wu X, Zhang FM, Cui BT, Huang YH, Zhang ZL, Wang R, Bai FH. Washed microbiota transplantation for Crohn's disease: A metagenomic, metatranscriptomic, and metabolomic-based study. World J Gastroenterol 2024; 30:1572-1587. [PMID: 38617453 PMCID: PMC11008410 DOI: 10.3748/wjg.v30.i11.1572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/07/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is a promising therapeutic approach for treating Crohn's disease (CD). The new method of FMT, based on the automatic washing process, was named as washed microbiota transplantation (WMT). Most existing studies have focused on observing the clinical phenomena. However, the mechanism of action of FMT for the effective management of CD-particularly in-depth multi-omics analysis involving the metagenome, metatranscriptome, and metabolome-has not yet been reported. AIM To assess the efficacy of WMT for CD and explore alterations in the microbiome and metabolome in response to WMT. METHODS We conducted a prospective, open-label, single-center clinical study. Eleven CD patients underwent WMT. Their clinical responses (defined as a decrease in their CD Activity Index score of > 100 points) and their microbiome (metagenome, metatranscriptome) and metabolome profiles were evaluated three months after the procedure. RESULTS Seven of the 11 patients (63.6%) showed an optimal clinical response three months post-WMT. Gut microbiome diversity significantly increased after WMT, consistent with improved clinical symptoms. Comparison of the metagenome and metatranscriptome analyses revealed consistent alterations in certain strains, such as Faecalibacterium prausnitzii, Roseburia intestinalis, and Escherichia coli. In addition, metabolomics analyses demonstrated that CD patients had elevated levels of various amino acids before treatment compared to the donors. However, levels of vital amino acids that may be associated with disease progression (e.g., L-glutamic acid, gamma-glutamyl-leucine, and prolyl-glutamine) were reduced after WMT. CONCLUSION WMT demonstrated therapeutic efficacy in CD treatment, likely due to the effective reconstruction of the patient's microbiome. Multi-omics techniques can effectively help decipher the potential mechanisms of WMT in treating CD.
Collapse
Affiliation(s)
- Shi-Ju Chen
- Graduate School, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Da-Ya Zhang
- Graduate School, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Xia Wu
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Fa-Ming Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Bo-Ta Cui
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Yi-Hao Huang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Zu-Lun Zhang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Rui Wang
- Department of Microbiota Medicine & Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China
| | - Fei-Hu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan Province, China
| |
Collapse
|
31
|
Chechushkov A, Desyukevich P, Yakovlev T, Al Allaf L, Shrainer E, Morozov V, Tikunova N. Sterile Fecal Microbiota Transplantation Boosts Anti-Inflammatory T-Cell Response in Ulcerative Colitis Patients. Int J Mol Sci 2024; 25:1886. [PMID: 38339169 PMCID: PMC10856413 DOI: 10.3390/ijms25031886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Ulcerative colitis is a chronic immune-mediated disease of unclear etiology, affecting people of different ages and significantly reducing the quality of life. Modern methods of therapy are mainly represented by anti-inflammatory drugs and are not aimed at a specific pathogenetic factor. In this study, we investigated the effect of transplantation of sterile stool filtrate from healthy donors on the induction of anti-inflammatory immune mechanisms. It was shown that performing such a procedure in patients with ulcerative colitis caused the appearance of T helper cells in the blood, which reacted to the content of sterile stool filtrates in an antigen-specific manner and produced IL-10. At the same time, cells of the same patients before therapy in response to the addition of sterile stool filtrates were less reactive and predominantly produced IL-4, indicating its pro-inflammatory skewing. The obtained data demonstrated the effect of an anti-inflammatory shift in the T-helper response after transplantation of sterile stool filtrate, which increased and persisted for at least three months after the procedure.
Collapse
Affiliation(s)
- Anton Chechushkov
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
- Advanced Engineering School, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel Desyukevich
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Timir Yakovlev
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Lina Al Allaf
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Evgeniya Shrainer
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
- Autonomous Non-Commercial Organization “Center of New Medical Technologies in Akademgorodok”, 630090 Novosibirsk, Russia
| | - Vitalyi Morozov
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
| | - Nina Tikunova
- Federal State Public Scientific Institution “Institute of Chemical Biology and Fundamental Medicine”, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (E.S.); (V.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
32
|
De Backer D, Deutschman CS, Hellman J, Myatra SN, Ostermann M, Prescott HC, Talmor D, Antonelli M, Pontes Azevedo LC, Bauer SR, Kissoon N, Loeches IM, Nunnally M, Tissieres P, Vieillard-Baron A, Coopersmith CM. Surviving Sepsis Campaign Research Priorities 2023. Crit Care Med 2024; 52:268-296. [PMID: 38240508 DOI: 10.1097/ccm.0000000000006135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES To identify research priorities in the management, epidemiology, outcome, and pathophysiology of sepsis and septic shock. DESIGN Shortly after publication of the most recent Surviving Sepsis Campaign Guidelines, the Surviving Sepsis Research Committee, a multiprofessional group of 16 international experts representing the European Society of Intensive Care Medicine and the Society of Critical Care Medicine, convened virtually and iteratively developed the article and recommendations, which represents an update from the 2018 Surviving Sepsis Campaign Research Priorities. METHODS Each task force member submitted five research questions on any sepsis-related subject. Committee members then independently ranked their top three priorities from the list generated. The highest rated clinical and basic science questions were developed into the current article. RESULTS A total of 81 questions were submitted. After merging similar questions, there were 34 clinical and ten basic science research questions submitted for voting. The five top clinical priorities were as follows: 1) what is the best strategy for screening and identification of patients with sepsis, and can predictive modeling assist in real-time recognition of sepsis? 2) what causes organ injury and dysfunction in sepsis, how should it be defined, and how can it be detected? 3) how should fluid resuscitation be individualized initially and beyond? 4) what is the best vasopressor approach for treating the different phases of septic shock? and 5) can a personalized/precision medicine approach identify optimal therapies to improve patient outcomes? The five top basic science priorities were as follows: 1) How can we improve animal models so that they more closely resemble sepsis in humans? 2) What outcome variables maximize correlations between human sepsis and animal models and are therefore most appropriate to use in both? 3) How does sepsis affect the brain, and how do sepsis-induced brain alterations contribute to organ dysfunction? How does sepsis affect interactions between neural, endocrine, and immune systems? 4) How does the microbiome affect sepsis pathobiology? 5) How do genetics and epigenetics influence the development of sepsis, the course of sepsis and the response to treatments for sepsis? CONCLUSIONS Knowledge advances in multiple clinical domains have been incorporated in progressive iterations of the Surviving Sepsis Campaign guidelines, allowing for evidence-based recommendations for short- and long-term management of sepsis. However, the strength of existing evidence is modest with significant knowledge gaps and mortality from sepsis remains high. The priorities identified represent a roadmap for research in sepsis and septic shock.
Collapse
Affiliation(s)
- Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY
- Sepsis Research Lab, the Feinstein Institutes for Medical Research, Manhasset, NY
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, United Kingdom
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Ignacio-Martin Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Leinster, Dublin, Ireland
| | | | - Pierre Tissieres
- Pediatric Intensive Care, Neonatal Medicine and Pediatric Emergency, AP-HP Paris Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antoine Vieillard-Baron
- Service de Medecine Intensive Reanimation, Hopital Ambroise Pare, Universite Paris-Saclay, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
33
|
Bianchi MG, Chiu M, Taurino G, Bergamaschi E, Turroni F, Mancabelli L, Longhi G, Ventura M, Bussolati O. Amorphous silica nanoparticles and the human gut microbiota: a relationship with multiple implications. J Nanobiotechnology 2024; 22:45. [PMID: 38291460 PMCID: PMC10826219 DOI: 10.1186/s12951-024-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.
Collapse
Affiliation(s)
- Massimiliano G Bianchi
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Martina Chiu
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Paediatrics, University of Turin, Turin, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| |
Collapse
|
34
|
Wang C, Jiang S, Zheng H, An Y, Zheng W, Zhang J, Liu J, Lin H, Wang G, Wang F. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117294. [PMID: 37839771 DOI: 10.1016/j.jep.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Wei-Zhi-Tong Micro-pills (QWZT) is herbal compound used in the treatment of GU, whose functions include clearing the stomach and fire, softening the liver and relieving pain. However, its mechanistic profile on host intestinal microbiota and metabolism has not been determined. AIM OF THE STUDY The present study aimed to observe the healing effect of QWZT on acetic acid-induced gastric ulcer in a rat model and to preliminarily elucidate its possible therapeutic mechanism from the perspective of host intestinal microbiota and metabolism. MATERIALS AND METHODS The Wistar male rats (7 weeks old; weight 180-200 g) were randomly divided into normal control group (NC), acetic acid-induced gastric ulcer group (GU), and QWZT treatment group (High dose: 1250 mg/kg/day, Middle dose: 625 mg/kg/day, Low dose: 312.5 mg/kg/day) of 6 rats each. An acetic acid-induced gastric ulcer rat model was constructed based on anatomical surgery. QWZT (High dose, Middle dose, and Low dose) was used to treat gastric ulcer rats for 7 days by gavage. At the end of treatment, the body weight, macroscopic condition of gastric tissue ulcers, pathological changes (HE staining), inflammatory factors, oxidative stress factors, and endocrine factors were assessed in each group of rats. Fresh feces and serum from each group of rats were collected for microbiome and metabolome analysis on the machine, respectively. Drug-disease common targets and functional pathways were captured based on network pharmacology. The complex network of Herbs-Targets-Pathways-Metabolites-Microbiota interactions was constructed. Ultimately, Fecal Microbiota Transplantation (FMT) evaluated the contribution of gut microbiota in disease. RESULTS QWZT increased the abundance of beneficial bacteria (Bacteroides, Alloprevotella, Rikenellaceae_RC9_gut_group, Lactobacillus, Lachnospiraceae_NK4A136_group, Parabacteroides, etc.), reduced the abundance of harmful bacteria (Micromonospora, Geobacter, Nocardioides, and Arenimonas, etc.), reduced the levels of inflammatory mediators (12,13-EpOME, 9,10-Epoxyoctadecenoic acid, SM(d18:1/16:0) and Leukotriene A4, etc.), restored host metabolic disorders (Linoleic acid metabolism, Glycerophospholipid metabolism, and Arachidonic acid metabolism), and regulated the level of cytokines (IL-6, TNF-a, SOD, MDA, PEG-2 and NO), ultimately exerting an anti-ulcer effect. Apart from that, FMT improved acetic acid-induced gastric ulcers in rats. CONCLUSION QWZT improved acetic acid-induced gastric ulcers in rats by remodeling intestinal microbiota and regulating host metabolism. This work may promote the process of developing and utilizing clinical applications of QWZT.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Wenxue Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jiaqi Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jianming Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| |
Collapse
|
35
|
Deng S, Pei C, Cai K, Huang W, Xiao X, Zhang X, Liang R, Chen Y, Xie Z, Li P, Liao Q. Lactobacillus acidophilus and its metabolite ursodeoxycholic acid ameliorate ulcerative colitis by promoting Treg differentiation and inhibiting M1 macrophage polarization. Front Microbiol 2024; 15:1302998. [PMID: 38292253 PMCID: PMC10825044 DOI: 10.3389/fmicb.2024.1302998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Lactobacillus acidophilus (LA) is a common clinical probiotic that improves ulcerative colitis (UC) by restoring intestinal immune balance. However, the interaction of LA with the gut microbiota and its metabolites in the treatment of UC remains unknown. Therefore, this study seeks to elucidate whether the gut microbiota and its metabolites act as pivotal effectors in LA's therapeutic mechanisms and how precisely they modulate intestinal immunity. In this study, we verified that LA can obviously ameliorate the disease severity, and regulate intestinal immune disorders in UC mice. Subsequently, antibiotic (ABX)-mediated depletion of the gut microflora demonstrated that the therapeutic efficiency of LA was closely associated with gut microbiota. In addition, the results of metabolomics revealed that ursodeoxycholic acid (UDCA), a metabolite of intestinal flora, may be a potential effector molecule mediating therapeutic effects of LA. Indeed, we found that UDCA can improve the macro pathological characteristics of UC mice, and through a comprehensive set of in vivo and in vitro experiments, we discovered that UDCA exerts dual effects on immune regulation. Firstly, it promotes the differentiation of Treg cells, resulting in increased secretion of anti-inflammatory cytokines. Secondly, UDCA inhibits the polarization of M1 macrophages, effectively reducing the secretion of pro-inflammatory cytokines. Moreover, we found that UDCA regulation of immune response is directly related to the RapGap/PI3K-AKT/NF-κB signaling pathway. In conclusion, LA and its metabolite, UDCA, may treat UC by activating the RapGap/PI3K-AKT/NF-κB signaling pathway and modulating Treg cells and M1 macrophages. All in all, our findings highlight the potential of microbial metabolites in enhancing probiotic for UC treatment.
Collapse
Affiliation(s)
- Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
36
|
Liu Z, Sun M, Jin C, Sun X, Feng F, Niu X, Wang B, Zhang Y, Wang J. Naringenin confers protection against experimental autoimmune encephalomyelitis through modulating the gut-brain axis: A multiomics analysis. J Nutr Biochem 2023; 122:109448. [PMID: 37741298 DOI: 10.1016/j.jnutbio.2023.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system that involves the immune system attacking the protective covering of nerve fibers. This disease can be influenced by both environmental and genetic factors. Evidence has highlighted the critical role of the intestinal microbiota in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). The composition of gut microflora is mainly determined by dietary components, which, in turn, modulate host homeostasis. A diet rich in naringenin at 0.5% can effectively mitigate the severity of EAE in mice. However, there is little direct data on the impact of naringenin at optimal doses on EAE development, as well as its intestinal microbiota and metabolites. Our study revealed that 2.0% naringenin resulted in the lowest clinical score and pathological changes in EAE mice, and altered the gene expression profiles associated with inflammation and immunity in spinal cord tissue. We then used untargeted metabolomics and 16S rRNA gene sequences to identify metabolites and intestinal microbiota, respectively. Naringenin supplementation enriched gut microbiota in EAE mice, including increasing the abundance of Paraprevotellaceae and Comamonadaceae, while decreasing the abundance of Deltaproteobacteria, RF39, and Desulfovibrionaceae. Furthermore, the changes in gut microbiota affected the production of metabolites in the feces and brain, suggesting a role in regulating the gut-brain axis. Finally, we conducted a fecal transplantation experiment to validate that gut microbiota partly mediates the effect of naringenin on EAE alleviation. In conclusion, naringenin has potential immunomodulatory effects that are influenced to some extent by the gut microbiome.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaoying Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xinli Niu
- School of Life Science, Henan University, Kaifeng, China
| | - Bin Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China.
| |
Collapse
|
37
|
Zhang A, Wang F, Li D, Wang CZ, Yao H, Wan JY, Yuan CS. Emerging insights into inflammatory bowel disease from the intestinal microbiota perspective: a bibliometric analysis. Front Immunol 2023; 14:1264705. [PMID: 37954613 PMCID: PMC10639163 DOI: 10.3389/fimmu.2023.1264705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) has caused severe health concerns worldwide. Studies on gut microbiota have provided new targets for preventing and treating IBD. Therefore, it is essential to have a comprehensive understanding of the current status and evolution of gut microbiota and IBD studies. Methods A bibliometric analysis was performed on documents during 2003-2022 retrieved from the Scopus database, including bibliographical profiles, citation patterns, and collaboration details. Software programs of VOSviewer, CiteSpace, and the Bibliometrix R package visually displayed the mass data presented in the scientific landscapes and networks. Results 10479 publications were retrieved, showing a steadily growing tendency in interest. Xavier Ramnik J. group led the total number of publications (73 papers) and 19787 citations, whose productive work aroused widespread concern. Among the 1977 academic journals, the most prolific ones were Inflammatory Bowel Diseases, Frontiers in Immunology, and Nutrients. Research outputs from the United States (US, 9196 publications), China (5587), and Italy (2305) were highly ranked. Conclusion Our bibliometric study revealed that the role of gut microbiota has become a hot topic of IBD research worldwide. These findings are expected to improve understanding of research characteristics and to guide future directions in this field.
Collapse
Affiliation(s)
- Anqi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Wang
- Department of Traditional Chinese Medicine, 731 Hospital of China Aerospace Science and Industry Group, Beijing, China
| | - Delong Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL, United States
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| | - Haiqiang Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Yi Wan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL, United States
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
38
|
Anegkamol W, Kamkang P, Hunthai S, Kaewwongse M, Taweevisit M, Chuaypen N, Rattanachaisit P, Dissayabutra T. The Usefulness of Resistant Maltodextrin and Chitosan Oligosaccharide in Management of Gut Leakage and Microbiota in Chronic Kidney Disease. Nutrients 2023; 15:3363. [PMID: 37571302 PMCID: PMC10420640 DOI: 10.3390/nu15153363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Microbiota-dysbiosis-induced gut leakage is a pathophysiologic change in chronic kidney disease (CKD), leading to the production of several uremic toxins and their absorption into the bloodstream to worsen the renal complications. We evaluate the benefits of resistant maltodextrin (RMD) and chitosan oligosaccharide (COS) supplements in cell culture and CKD-induced rats. The RMD exerted a significant anti-inflammatory effect in vitro and intestinal occludin and zonula occluden-1 up-regulation in CKD rats compared with inulin and COS. While all prebiotics slightly improved gut dysbiosis, RMD remarkably promoted the relative abundance and the combined abundance of Lactobacillus, Bifidobacteria, Akkermansia, and Roseburia in CKD rats. Supplements of RMD should be advantageous in the treatment of gut leakage and microbiota dysbiosis in CKD.
Collapse
Affiliation(s)
- Weerapat Anegkamol
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| | - Panumas Kamkang
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| | - Sittiphong Hunthai
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| | - Maroot Kaewwongse
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Natthaya Chuaypen
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pakkapon Rattanachaisit
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thasinas Dissayabutra
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.A.); (P.K.); (S.H.); (N.C.); (P.R.)
| |
Collapse
|
39
|
Mingaila J, Atzeni A, Burokas A. A Comparison of Methods of Gut Microbiota Transplantation for Preclinical Studies. Int J Mol Sci 2023; 24:12005. [PMID: 37569381 PMCID: PMC10418867 DOI: 10.3390/ijms241512005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The experimental details reported in preclinical fecal microbiota transplantation (FMT) protocols are highly inconsistent, variable, and/or incomplete. We therefore evaluated FMT from a human donor to antibiotic-induced microbial-depleted mice by exploring the effects of six techniques based on antibiotic (AB) or antibiotic + antimycotic (AB + T) gut decontamination, different administration routes, and different dosing intervals on the gut microbial population, assessed using 16S and 18S sequencing. In addition, we explored the effectiveness of FMT in terms of inflammation, physiological, and behavioral outcomes. Our results showed that intrarectal FMT at low dosing intervals better preserved the donor's gut bacterial community at genus level. Furthermore, we showed a lower abundance of several genera of fungi in animals treated with AB + T. In addition, we observed that AB + T gut decontamination followed by per os FMT, once every 3 days, affected behavioral parameters when compared to other FMT techniques. Accordingly, the same FMT groups that showed an association with some of the behavioral tests were also related to specific gut fungal genera, suggesting a possible mediation. Our findings may be useful for optimizing the practice of FMT and also in terms of donor microbiota preservation. This information may help to improve the reproducibility and reliability of FMT studies.
Collapse
Affiliation(s)
| | | | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|