1
|
Zhang R, Zheng Y, Xiang F, Zhou J. Inducing or enhancing protein-protein interaction to develop drugs: Molecular glues with various biological activity. Eur J Med Chem 2024; 277:116756. [PMID: 39191033 DOI: 10.1016/j.ejmech.2024.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Over the past two decades, molecular glues (MGs) have gradually attracted the attention of the pharmaceutical community with the advent of MG degraders such as IMiDs and indisulam. Such molecules degrade the target protein by promoting the interaction between the target protein and E3 ligase. In addition, as a chemical inducer, MGs promote the dimerization of homologous proteins and heterologous proteins to form ternary complexes, which have great prospects in regulating biological activities. This review focuses on the application of MGs in the field of drug development including protein-protein interaction (PPI) stability and protein degradation. We thoroughly analyze the structure of various MGs and the interactions between MGs and various biologically active molecules, thus providing new perspectives for the development of PPI stabilizers and new degraders.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Yirong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Fengjiao Xiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
2
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Somsen BA, Sijbesma E, Leysen S, Honzejkova K, Visser EJ, Cossar PJ, Obšil T, Brunsveld L, Ottmann C. Molecular basis and dual ligand regulation of tetrameric Estrogen Receptor α/14-3-3ζ protein complex. J Biol Chem 2023:104855. [PMID: 37224961 PMCID: PMC10302166 DOI: 10.1016/j.jbc.2023.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Therapeutic strategies targeting Nuclear Receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest, driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the Estrogen Receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα, however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its Ligand Binding Domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.
Collapse
Affiliation(s)
- Bente A Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tomáš Obšil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
4
|
Jeanneteau F, Meijer OC, Moisan MP. Structural basis of glucocorticoid receptor signaling bias. J Neuroendocrinol 2023; 35:e13203. [PMID: 36221223 DOI: 10.1111/jne.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Dissociation between the healthy and toxic effects of cortisol, a major stress-responding hormone has been a widely used strategy to develop anti-inflammatory glucocorticoids with fewer side effects. Such strategy falls short when treating brain disorders as timing and activity state within large-scale neuronal networks determine the physiological and behavioral specificity of cortisol response. Advances in structural molecular dynamics posit the bases for engineering glucocorticoids with precision bias for select downstream signaling pathways. Design of allosteric and/or cooperative control for the glucocorticoid receptor could help promote the beneficial and reduce the deleterious effects of cortisol on brain and behavior in disease conditions.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de génomique fonctionnelle, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Onno C Meijer
- Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Pallesen J, Munier CC, Bosica F, Andrei SA, Edman K, Gunnarsson A, La Sala G, Putra OD, Srdanović S, Wilson AJ, Wissler L, Ottmann C, Perry MWD, O’Mahony G. Designing Selective Drug-like Molecular Glues for the Glucocorticoid Receptor/14-3-3 Protein-Protein Interaction. J Med Chem 2022; 65:16818-16828. [PMID: 36484727 PMCID: PMC9791658 DOI: 10.1021/acs.jmedchem.2c01635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ubiquitously expressed glucocorticoid receptor (GR) is a nuclear receptor that controls a broad range of biological processes and is activated by steroidal glucocorticoids such as hydrocortisone or dexamethasone. Glucocorticoids are used to treat a wide variety of conditions, from inflammation to cancer but suffer from a range of side effects that motivate the search for safer GR modulators. GR is also regulated outside the steroid-binding site through protein-protein interactions (PPIs) with 14-3-3 adapter proteins. Manipulation of these PPIs will provide insights into noncanonical GR signaling as well as a new level of control over GR activity. We report the first molecular glues that selectively stabilize the 14-3-3/GR PPI using the related nuclear receptor estrogen receptor α (ERα) as a selectivity target to drive design. These 14-3-3/GR PPI stabilizers can be used to dissect noncanonical GR signaling and enable the development of novel atypical GR modulators.
Collapse
Affiliation(s)
- Jakob
S. Pallesen
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, Biopharmaceuticals R&D,
AstraZeneca, Pepparedsleden
1, 43183 Mölndal, Sweden
| | - Claire C. Munier
- Medicinal
Chemistry, Research and Early Development, Respiratory & Immunology, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Francesco Bosica
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, Biopharmaceuticals R&D,
AstraZeneca, Pepparedsleden
1, 43183 Mölndal, Sweden
| | - Sebastian A. Andrei
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Technische
Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Karl Edman
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anders Gunnarsson
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Giuseppina La Sala
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, Biopharmaceuticals R&D,
AstraZeneca, Pepparedsleden
1, 43183 Mölndal, Sweden
| | - Okky Dwichandra Putra
- Early
Product Development and Manufacturing, Pharmaceutical
Sciences R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Sonja Srdanović
- School
of
Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, West
Yorkshire LS2 9JT, U.K.
| | - Andrew J. Wilson
- School
of
Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, West
Yorkshire LS2 9JT, U.K.
| | - Lisa Wissler
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Technische
Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Matthew W. D. Perry
- Medicinal
Chemistry, Research and Early Development, Respiratory & Immunology, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Gavin O’Mahony
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism, Biopharmaceuticals R&D,
AstraZeneca, Pepparedsleden
1, 43183 Mölndal, Sweden,
| |
Collapse
|
6
|
Genomics, Origin and Selection Signals of Loudi Cattle in Central Hunan. BIOLOGY 2022; 11:biology11121775. [PMID: 36552284 PMCID: PMC9775101 DOI: 10.3390/biology11121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Due to the geographical, cultural and environmental variability in Xiangxi, China, distinctive indigenous cattle populations have formed. Among them, Loudi cattle and Xiangxi cattle are the local cattle in Hunan, and the environment in Loudi is relatively more enclosed and humid than that in Xiangxi. To study the genome and origin of Loudi cattle in hot and humid environments, 29 individuals were collected and sequenced by whole-genome resequencing. In addition, genomic data were obtained from public databases for 96 individuals representing different cattle breeds worldwide, including 23 Xiangxi cattle from western Hunan. Genetic analysis indicated that the genetic diversity of Loudi cattle was close to that of Chinese cattle and higher than that of other breeds. Population structure and ancestral origin analysis indicated the relationship between Loudi cattle and other breeds. Loudi has four distinctive seasons, with a stereoscopic climate and extremely rich water resources. Selective sweep analysis revealed candidate genes and pathways associated with environmental adaptation and homeostasis. Our findings provide a valuable source of information on the genetic diversity of Loudi cattle and ideas for population conservation and genome-associated breeding of local cattle in today's extreme climate environment.
Collapse
|
7
|
Proteomics profiles of blood glucose-related proteins involved in a Chinese longevity cohort. Clin Proteomics 2022; 19:45. [PMID: 36463101 PMCID: PMC9719669 DOI: 10.1186/s12014-022-09382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND High blood glucose level is one of the main characteristics of diabetes mellitus. Based on previous studies, it is speculated longevity families may have certain advantages in blood glucose regulation. However, limited information on these items has been reported. The purpose of this study was to profile differences of plasma proteomics between longevity subjects (with normal fructosamine (FUN) level) and non-longevity area participants (with exceeding standard FUN level). METHODS In this study, a TMT-based proteomics analysis was used to profile differences of plasma proteomics between longevity subjects (with normal FUN level) and non-longevity area participants (with exceeding standard FUN level). Results were validated by Luminex detection. RESULTS A total of 155 differentially expressed proteins (DEPs) were identified between these two groups. The DEPs related to blood glucose regulation were mainly involved in glycolysis/gluconeogenesis, pyruvate metabolism and propanoate metabolism, and most of the DEPs were contained in carbohydrate metabolism, PI3K-Akt pathway, glucagon signaling pathway and inflammatory response. Validation by Luminex detection confirmed that CD163 was down-regulated, and SPARC, PARK 7 and IGFBP-1 were up-regulated in longevity participants. CONCLUSIONS This study not only highlighted carbohydrate metabolism, PI3K-Akt pathway, glucagon signaling pathway and inflammatory response may play important roles in blood glucose regulation, but also indicated that YWHAZ, YWHAB, YWHAG, YWHAE, CALM3, CRP, SAA2, PARK 7, IGFBP1 and VNN1 may serve as potential biomarkers for predicting abnormal blood glucose levels.
Collapse
|
8
|
Wang S, Osgood AO, Chatterjee A. Uncovering post-translational modification-associated protein-protein interactions. Curr Opin Struct Biol 2022; 74:102352. [PMID: 35334254 PMCID: PMC9464464 DOI: 10.1016/j.sbi.2022.102352] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023]
Abstract
In living systems, the chemical space and functional repertoire of proteins are dramatically expanded through the post-translational modification (PTM) of various amino acid residues. These modifications frequently trigger unique protein-protein interactions (PPIs) - for example with reader proteins that directly bind the modified amino acid residue - which leads to downstream functional outcomes. The modification of a protein can also perturb its PPI network indirectly, for example, through altering its conformation or subcellular localization. Uncovering the network of unique PTM-triggered PPIs is essential to fully understand the roles of an ever-expanding list of PTMs in our biology. In this review, we discuss established strategies and current challenges associated with this endeavor.
Collapse
Affiliation(s)
- Shu Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Arianna O Osgood
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
9
|
Kozeleková A, Náplavová A, Brom T, Gašparik N, Šimek J, Houser J, Hritz J. Phosphorylated and Phosphomimicking Variants May Differ—A Case Study of 14-3-3 Protein. Front Chem 2022; 10:835733. [PMID: 35321476 PMCID: PMC8935074 DOI: 10.3389/fchem.2022.835733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Protein phosphorylation is a critical mechanism that biology uses to govern cellular processes. To study the impact of phosphorylation on protein properties, a fully and specifically phosphorylated sample is required although not always achievable. Commonly, this issue is overcome by installing phosphomimicking mutations at the desired site of phosphorylation. 14-3-3 proteins are regulatory protein hubs that interact with hundreds of phosphorylated proteins and modulate their structure and activity. 14-3-3 protein function relies on its dimeric nature, which is controlled by Ser58 phosphorylation. However, incomplete Ser58 phosphorylation has obstructed the detailed study of its effect so far. In the present study, we describe the full and specific phosphorylation of 14-3-3ζ protein at Ser58 and we compare its characteristics with phosphomimicking mutants that have been used in the past (S58E/D). Our results show that in case of the 14-3-3 proteins, phosphomimicking mutations are not a sufficient replacement for phosphorylation. At physiological concentrations of 14-3-3ζ protein, the dimer-monomer equilibrium of phosphorylated protein is much more shifted towards monomers than that of the phosphomimicking mutants. The oligomeric state also influences protein properties such as thermodynamic stability and hydrophobicity. Moreover, phosphorylation changes the localization of 14-3-3ζ in HeLa and U251 human cancer cells. In summary, our study highlights that phosphomimicking mutations may not faithfully represent the effects of phosphorylation on the protein structure and function and that their use should be justified by comparing to the genuinely phosphorylated counterpart.
Collapse
Affiliation(s)
- Aneta Kozeleková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Tomáš Brom
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Norbert Gašparik
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Šimek
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
- *Correspondence: Jozef Hritz,
| |
Collapse
|
10
|
Ecsédi P, Gógl G, Nyitray L. Studying the Structures of Relaxed and Fuzzy Interactions: The Diverse World of S100 Complexes. Front Mol Biosci 2021; 8:749052. [PMID: 34708078 PMCID: PMC8542695 DOI: 10.3389/fmolb.2021.749052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
S100 proteins are small, dimeric, Ca2+-binding proteins of considerable interest due to their associations with cancer and rheumatic and neurodegenerative diseases. They control the functions of numerous proteins by forming protein–protein complexes with them. Several of these complexes were found to display “fuzzy” properties. Examining these highly flexible interactions, however, is a difficult task, especially from a structural biology point of view. Here, we summarize the available in vitro techniques that can be deployed to obtain structural information about these dynamic complexes. We also review the current state of knowledge about the structures of S100 complexes, focusing on their often-asymmetric nature.
Collapse
Affiliation(s)
- Péter Ecsédi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|