1
|
Ochiai N, Etani Y, Noguchi T, Miura T, Kurihara T, Fukuda Y, Hamada H, Uemura K, Takashima K, Tamaki M, Ishibashi T, Ito S, Yamakawa S, Kanamoto T, Okada S, Nakata K, Ebina K. The pivotal role of the Hes1/Piezo1 pathway in the pathophysiology of glucocorticoid-induced osteoporosis. JCI Insight 2024; 9:e179963. [PMID: 39641269 PMCID: PMC11623955 DOI: 10.1172/jci.insight.179963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) lacks fully effective treatments. This study investigated the role of Piezo1, a mechanosensitive ion channel component 1, in GIOP. We found reduced Piezo1 expression in cortical bone osteocytes from patients with GIOP and a GIOP mouse model. Yoda1, a Piezo1 agonist, enhanced the mechanical stress response and bone mass and strength, which were diminished by dexamethasone (DEX) administration in GIOP mice. RNA-seq revealed that Yoda1 elevated Piezo1 expression by activating the key transcription factor Hes1, followed by enhanced CaM kinase II and Akt phosphorylation in osteocytes. This improved the lacuno-canalicular network and reduced sclerostin production and the receptor activator of NF-κB/osteoprotegerin ratio, which were mitigated by DEX. Comparative analysis of mouse models and human GIOP cortical bone revealed downregulation of mechanostimulated osteogenic factors, such as osteocrin, and cartilage differentiation markers in osteoprogenitor cells. In human periosteum-derived cells, DEX suppressed differentiation into osteoblasts, but Yoda1 rescued this effect. Our findings suggest that reduced Piezo1 expression and activity in osteocytes and periosteal cells contribute to GIOP, and Yoda1 may offer a novel therapeutic approach by restoring mechanosensitivity.
Collapse
Affiliation(s)
- Nagahiro Ochiai
- Department of Musculoskeletal Regenerative Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Yuki Etani
- Department of Musculoskeletal Regenerative Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | - Teruya Ishibashi
- Department of Orthopaedic Biomaterial Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shohei Ito
- Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | | | - Takashi Kanamoto
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Ken Nakata
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kosuke Ebina
- Department of Musculoskeletal Regenerative Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Orthopaedic Surgery
| |
Collapse
|
2
|
Göver T, Slezak M. Targeting glucocorticoid receptor signaling pathway for treatment of stress-related brain disorders. Pharmacol Rep 2024; 76:1333-1345. [PMID: 39361217 PMCID: PMC11582215 DOI: 10.1007/s43440-024-00654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a central role in governing stress-related disorders such as major depressive disorder (MDD), anxiety, and post-traumatic stress disorder. Chronic stress or early life trauma, known risk factors of disease, alter HPA axis activity and pattern of glucocorticoid (GC) secretion. These changes have consequences for physiological processes controlled by glucocorticoid receptor (GR) signaling, such as immune response and metabolism. In the brain, the aberrant GR signaling translates to altered behavior, making the GR pathway a viable target for therapies of stress-related disorders. One of the crucial elements of the pathway is FKBP5, a regulator of GR sensitivity and feedback control within the HPA axis, in which genetic variants were shown to moderate the risk of developing psychiatric conditions. The difficulty in targeting the GR-FKBP5 pathway stems from tailoring the intervention to specific brain regions and cell types, in the context of personalized genetic variations in GR and GR-associated genes, like FKBP5. The development of selective inhibitors, antagonists, and approaches based on targeted protein degradation offer insights into mechanistic aspects of disease and pave the way for improved therapy. These strategies can be employed either independently or in conjunction with conventional medications. Concomitant advancements in personalized drug screening (e.g. in vitro models exploiting induced pluripotent stem cells, iPSCs) bring the potential for optimization of therapy aiming to rescue central deficits originating from the HPA imbalance. In this mini-review, we discuss potential therapeutic strategies targeting GR signaling in stress-related disorders, with a focus on personalized approaches and advancements in drug development.
Collapse
Affiliation(s)
- Tansu Göver
- Lukasiewicz Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066, Wroclaw, Poland
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chałubińskiego 3A, 50-368, Wroclaw, Poland
| | - Michal Slezak
- Lukasiewicz Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066, Wroclaw, Poland.
| |
Collapse
|
3
|
Han Z, Wang L, Xu S, Zhang H, Cheng J, Pan S. Microvesicle-Shuttled microRNA-130b Activates the Hepatic Inflammation by Inhibiting Glucocorticoid-Receptor-Mediated Immunosuppression in High-Fat Diet-Induced Obese Mice. Vet Sci 2024; 11:565. [PMID: 39591339 PMCID: PMC11599092 DOI: 10.3390/vetsci11110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolism-disorder-induced liver diseases have become increasingly prevalent worldwide and are clinically linked to obesity and type 2 diabetes. In addition, a large number of previous literature studies have indicated that plasma miR-130b is a promising biomarker for the early diagnosis and treatment of obesity. However, whether miRNA-130b that was positively correlated with obesity resulted in hepatic inflammation needs to be further studied. Therefore, the study aims to determine the effect of microvesicle-shuttled miRNA-130b (miR-130b-MV) on the hepatic inflammation and its potential mechanism in high-fat diet-induced obese mice. Three-week-old C57BL/6 mice were fed a high-fat diet for eight weeks. Then, the obese mice received tail vein injections of MV-packaged scrambled control microRNA (miR-SC-MV) or miR-130b-MV every other day for 10 days. Compared with the control group, the miR-130b-MV injection significantly reduced the body weight while increasing the ratio of liver wet weight to total body weight. In addition, the miR-130b-MV injection significantly activated the hepatic inflammation by increasing the expression of proinflammatory genes, although the plasma concentrations of IL-6 and TNF-α were only slightly increased. Furthermore, the miR-130b-MV injection significantly increased the hepatic miR-130b expression while significantly suppressing the protein expression and phosphorylation of GR, a potential target of miR-130b. Moreover, the miR-130b overexpression results in a decrease in the expression of endogenous GR protein and a decrease in the activity of the luciferase reporter of GR 3'-UTR. In addition, the miR-130b-MV injection significantly upregulated NF-kB (p50) in both the cytoplasm and nucleus, showing enhanced proinflammation response. The above results demonstrated that miR-130b-MV activated the hepatic inflammation by inhibiting GR-mediated immunosuppression in high-fat diet-induced obese mice, suggesting a novel mechanism underlying the obesity-induced hepatic inflammation, and the inhibition of miR-130b may serve as a new molecular therapeutic target for the prevention and treatment of hepatic inflammation.
Collapse
Affiliation(s)
- Zhengqiang Han
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210038, China; (Z.H.); (S.X.)
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.C.)
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210038, China; (Z.H.); (S.X.)
| | - Horsen Zhang
- Lesaffre (Mingguang) Co., Ltd., Chuzhou 239000, China;
| | - Ji Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Ioniuc IK, Lupu A, Dragan F, Tarnita I, Alexoae MM, Streanga V, Mitrofan C, Thet AA, Nedelcu AH, Salaru DL, Burlea SL, Mitrofan EC, Lupu VV, Azoicai AN. Oxidative Stress and Antioxidants in Pediatric Asthma's Evolution and Management. Antioxidants (Basel) 2024; 13:1331. [PMID: 39594473 PMCID: PMC11590961 DOI: 10.3390/antiox13111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Within the pediatric population, bronchial asthma is one of the most prevalent chronic respiratory system diseases. The number of exacerbations, severity, and duration of symptoms all have a significant impact on children's life quality. In the last decades, the prevention and management strategies of this pathology have focused on maintaining or even increasing the pulmonary function to maximum levels in early childhood, as it has been demonstrated that functional deficits at this level occurring before school age cause pathological manifestations later, in adulthood. The epithelium of the airways and implicitly that of the lung is the first barrier against the lesions caused by pro-oxidative factors. Both oxidative and antioxidative factors can be of endogenous origin (produced by the body) or exogenous (from the environment or diet). Good functioning of antioxidant defense mechanisms from the molecular level to the tissue level, and a balance between pro-oxidative factors and anti- oxidative factors, influence the occurrence of compensatory mechanisms at the level of the respiratory epithelium, causing the delay of local responses to the stress induced by chronic inflammation (bronchial remodeling, thickening of airway smooth muscles, bronchoconstriction, bronchial hyper-reactivity). These mechanisms underlie the pathophysiological changes in asthma. Numerous studies carried out among the pediatric population inclusively have demonstrated the effectiveness of antioxidants in the prophylaxis, slowing down and preventing the progression of this pathology. This review complements the scientific articles, aiming at emphasizing the complexity of oxidative physio-pathological pathways and their importance in the occurrence, development, and therapeutic response in asthma, providing a good understanding of the relationship between oxidative and antioxidative factors, and being a source of future therapeutic strategies.
Collapse
Affiliation(s)
- Ileana Katerina Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Irina Tarnita
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Monica Mihaela Alexoae
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Violeta Streanga
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Aye Aung Thet
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.); (A.A.T.); (A.H.N.); (D.L.S.)
| | - Stefan Lucian Burlea
- Public Health and Management Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| | - Alice Nicoleta Azoicai
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.K.I.); (A.L.); (M.M.A.); (V.S.); (V.V.L.); (A.N.A.)
| |
Collapse
|
5
|
Curci D, Stankovic B, Kotur N, Pugnetti L, Gasic V, Romano M, Zukic B, Decorti G, Stocco G, Lucafò M, Pavlovic S. The long non-coding RNA GAS5 contributes to the suppression of inflammatory responses by inhibiting NF-κB activity. Front Pharmacol 2024; 15:1448136. [PMID: 39444615 PMCID: PMC11496153 DOI: 10.3389/fphar.2024.1448136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Nuclear factor kappa B (NF-κB) is a key regulator of immune and inflammatory responses. Glucocorticoid drugs (GC) act through the glucocorticoid receptor (GR) as immunosuppressant also in pediatric patients inhibiting NF-κB activity. The long non-coding RNA GAS5 interacts with the GR, influencing GC activity. No data on the role of GAS5 on GR-dependent inhibition of NF-κB activity have been published. Methods This study investigated the impact of GAS5 on NF-κB activity in HeLa cells overexpressing GAS5, both under basal conditions and during GC treatment. The study used EMSA, RNA-immunoprecipitation (RIP), Western blotting, and bioinformatic analyses to assess NF-κB DNA binding, GAS5-p65 interaction, and NF-κB signaling pathway modulation. Results GAS5 overexpression increased NF-κB DNA binding activity in untreated cells. RNA-IP confirmed a direct interaction between GAS5 and the NF-κB subunit p65, suggesting a potential regulatory mechanism. GAS5 overexpression led to downregulation of NF-κB target genes, TNF-α, and NR3C1. GC treatment reduced NF-κB DNA binding activity in GAS5-overexpressing cells, indicating a potential synergistic effect. Furthermore, GAS5 overexpression increased IκB levels and reduced p-p65/pan-p65 levels during GC treatment. Discussion GAS5 appears to modulate NF-κB activity in a complex manner, influencing both basal and GC-induced signaling. The interaction between GAS5, GCs, and NF-κB is multi-faceted, and further research is needed to fully elucidate the underlying mechanisms. These findings suggest that GAS5 could be a potential target for personalized therapy, particularly in pediatric patients with inflammatory conditions.
Collapse
Affiliation(s)
- Debora Curci
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Biljana Stankovic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nikola Kotur
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Letizia Pugnetti
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Vladimir Gasic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Branka Zukic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Giuliana Decorti
- Department of Medicine Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medicine Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sonja Pavlovic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Zhai P, Zhang H, Li Q, Hu Z, Zhang H, Yang M, Xing C, Guo Y. SETBP1 activation upon MDM4-enhanced ubiquitination of NR3C1 triggers dissemination of colorectal cancer cells. Clin Exp Metastasis 2024; 41:747-764. [PMID: 38796806 DOI: 10.1007/s10585-024-10294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Colorectal cancer (CRC) presents a growing concern globally, marked by its escalating incidence and mortality rates, thus imposing a substantial health burden. This investigation delves into the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in CRC metastasis and explores the associated mechanism. Through a comprehensive bioinformatics analysis, NR3C1 emerged as a gene with diminished expression levels in CRC. This finding was corroborated by observations of a low-expression pattern of NR3C1 in both CRC tissues and cells. Furthermore, experiments involving NR3C1 knockdown revealed an exacerbation of proliferation, migration, and invasion of CRC cells in vitro. Subsequent assessments in mouse xenograft tumor models, established by injecting human HCT116 cells either through the tail vein or at the cecum termini, demonstrated a reduction in tumor metastasis to the lung and liver, respectively, upon NR3C1 knockdown. Functionally, NR3C1 (glucocorticoid receptor) suppressed SET binding protein 1 (SETBP1) transcription by binding to its promoter region. Notably, mouse double minute 4 (MDM4) was identified as an upstream regulator of NR3C1, orchestrating its downregulation via ubiquitination-dependent proteasomal degradation. Further investigations unveiled that SETBP1 knockdown suppressed migration and invasion, and epithelial to mesenchymal transition of CRC cells, consequently impeding in vivo metastasis in murine models. Conversely, upregulation of MDM4 exacerbated the metastatic phenotype of CRC cells, a propensity mitigated upon additional upregulation of NR3C1. In summary, this study elucidates a cascade wherein MDM4-mediated ubiquitination of NR3C1 enables the transcriptional activation of SETBP1, thereby propelling the dissemination of CRC cells.
Collapse
Affiliation(s)
- Peng Zhai
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, People's Republic of China
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, 211200, Jiangsu, People's Republic of China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, People's Republic of China
- Department of Gerneral Surgery, The Second Afilliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Zhifeng Hu
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Huaguo Zhang
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, People's Republic of China.
| | - Yunhu Guo
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Sevilla LM, Pons-Alonso O, Gallego A, Azkargorta M, Elortza F, Pérez P. Glucocorticoid receptor controls atopic dermatitis inflammation via functional interactions with P63 and autocrine signaling in epidermal keratinocytes. Cell Death Dis 2024; 15:535. [PMID: 39069531 DOI: 10.1038/s41419-024-06926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Atopic dermatitis (AD), a prevalent chronic inflammatory disease with multifactorial etiology, features epidermal barrier defects and immune overactivation. Synthetic glucocorticoids (GCs) are widely prescribed for treating AD due to their anti-inflammatory actions; however, mechanisms are incompletely understood. Defective local GC signaling due to decreased production of endogenous ligand and/or GC receptor (GR) levels was reported in prevalent inflammatory skin disorders; whether this is a consequence or contributing factor to AD pathology is unclear. To identify the chromatin-bound cell-type-specific GR protein interactome in keratinocytes, we used rapid immunoprecipitation of endogenous proteins and mass spectrometry identifying 145 interactors that increased upon dexamethasone treatment. GR-interacting proteins were enriched in p53/p63 signaling, including epidermal transcription factors with critical roles in AD pathology. Previous analyses indicating mirrored AD-like phenotypes between P63 overexpression and GR loss in epidermis, and our data show an intricate relationship between these transcription factors in human keratinocytes, identifying TP63 as a direct GR target. Dexamethasone treatment counteracted transcriptional up-regulation of inflammatory markers by IL4/IL13, known to mimic AD, causing opposite shifts in GR and P63 genomic binding. Indeed, IL4/IL13 decreased GR and increased P63 levels in cultured keratinocytes and human epidermal equivalents (HEE), consistent with GR down-regulation and increased P63 expression in AD lesions vs normal skin. Moreover, GR knockdown (GRKD) resulted in constitutive increases in P63, phospho-P38 and S100A9, IL6, and IL33. Also, GRKD culture supernatants showed increased autocrine production of TH2-/TH1-/TH17-TH22-associated factors including IL4, CXCL10, CXCL11, and CXCL8. GRKD HEEs showed AD-like features including hyperplasia and abnormal differentiation, resembling phenotypes observed with GR antagonist or IL4/IL13 treatment. The simultaneous GR/P63 knockdown partially reversed constitutive up-regulation of inflammatory genes in GRKD. In summary, our data support a causative role for GR loss in AD pathogenesis via functional interactions with P63 and autocrine signaling in epidermal keratinocytes.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Omar Pons-Alonso
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Andrea Gallego
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain.
| |
Collapse
|
8
|
Legroux TM, Schymik HS, Gasparoni G, Mohammadi S, Walter J, Libert C, Diesel B, Hoppstädter J, Kiemer AK. Immunomodulation by glucocorticoid-induced leucine zipper in macrophages: enhanced phagocytosis, protection from pyroptosis, and altered mitochondrial function. Front Immunol 2024; 15:1396827. [PMID: 38855102 PMCID: PMC11157436 DOI: 10.3389/fimmu.2024.1396827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Glucocorticoids, which have long served as fundamental therapeutics for diverse inflammatory conditions, are still widely used, despite associated side effects limiting their long-term use. Among their key mediators is glucocorticoid-induced leucine zipper (GILZ), recognized for its anti-inflammatory and immunosuppressive properties. Here, we explore the immunomodulatory effects of GILZ in macrophages through transcriptomic analysis and functional assays. Bulk RNA sequencing of GILZ knockout and GILZ-overexpressing macrophages revealed significant alterations in gene expression profiles, particularly impacting pathways associated with the inflammatory response, phagocytosis, cell death, mitochondrial function, and extracellular structure organization activity. GILZ-overexpression enhances phagocytic and antibacterial activity against Salmonella typhimurium and Escherichia coli, potentially mediated by increased nitric oxide production. In addition, GILZ protects macrophages from pyroptotic cell death, as indicated by a reduced production of reactive oxygen species (ROS) in GILZ transgenic macrophages. In contrast, GILZ KO macrophages produced more ROS, suggesting a regulatory role of GILZ in ROS-dependent pathways. Additionally, GILZ overexpression leads to decreased mitochondrial respiration and heightened matrix metalloproteinase activity, suggesting its involvement in tissue remodeling processes. These findings underscore the multifaceted role of GILZ in modulating macrophage functions and its potential as a therapeutic target for inflammatory disorders, offering insights into the development of novel therapeutic strategies aimed at optimizing the benefits of glucocorticoid therapy while minimizing adverse effects.
Collapse
Affiliation(s)
- Thierry M. Legroux
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Hanna S. Schymik
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Claude Libert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Britta Diesel
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
9
|
Bo T, Nohara H, Yamada KI, Miyata S, Fujii J. Ascorbic Acid Protects Bone Marrow from Oxidative Stress and Transient Elevation of Corticosterone Caused by X-ray Exposure in Akr1a-Knockout Mice. Antioxidants (Basel) 2024; 13:152. [PMID: 38397750 PMCID: PMC10886414 DOI: 10.3390/antiox13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Bone marrow cells are the most sensitive to exposure to X-rays in the body and are selectively damaged even by doses that are generally considered permissive in other organs. Ascorbic acid (Asc) is a potent antioxidant that is reported to alleviate damages caused by X-ray exposure. However, rodents can synthesize Asc, which creates difficulties in rigorously assessing its effects in such laboratory animals. To address this issue, we employed mice with defects in their ability to synthesize Asc due to a genetic ablation of aldehyde reductase (Akr1a-KO). In this study, concentrations of white blood cells (WBCs) were decreased 3 days after exposure to X-rays at 2 Gy and then gradually recovered. At approximately one month, the recovery rate of WBCs was delayed in the Akr1a-KO mouse group, which was reversed via supplementation with Asc. Following exposure to X-rays, Asc levels decreased in plasma, bone marrow cells, and the liver during an early period, and then started to increase. X-ray exposure stimulated the pituitary gland to release adrenocorticotropic hormone (ACTH), which stimulated corticosterone secretion. Asc released from the liver, which was also stimulated by ACTH, appeared to be recruited to the bone marrow. Since corticosterone in high doses is injurious, these collective results imply that Asc protects bone marrow via its antioxidant capacity against ROS produced via exposure to X-rays and the cytotoxic action of transiently elevated corticosterone.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Hidekazu Nohara
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan;
| | - Satoshi Miyata
- Miyata Diabetes and Metabolism Clinic, 5-17-21 Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| |
Collapse
|
10
|
Jeong MS, Mun JY, Yang GE, Kim MH, Lee SY, Choi YH, Kim HS, Nam JK, Kim TN, Leem SH. Exploring the Relationship between CLPTM1L-MS2 Variants and Susceptibility to Bladder Cancer. Genes (Basel) 2023; 15:50. [PMID: 38254939 PMCID: PMC10815179 DOI: 10.3390/genes15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
CLPTM1L (Cleft Lip and Palate Transmembrane Protein 1-Like) has previously been implicated in tumorigenesis and drug resistance in cancer. However, the genetic link between CLPTM1L and bladder cancer remains uncertain. In this study, we investigated the genetic association of variable number of tandem repeats (VNTR; minisatellites, MS) regions within CLPTM1L with bladder cancer. We identified four CLPTM1L-MS regions (MS1~MS4) located in intron regions. To evaluate the VNTR polymorphic alleles, we analyzed 441 cancer-free controls and 181 bladder cancer patients. Our analysis revealed a higher frequency of specific repeat sizes within the MS2 region in bladder cancer cases compared to controls. Notably, 25 and 27 repeats were exclusively present in the bladder cancer group. Moreover, rare alleles within the medium-length repeat range (25-29 repeats) were associated with an elevated bladder cancer risk (odds ratio [OR] = 5.78, 95% confidence interval [CI]: 1.49-22.47, p = 0.004). We confirmed that all MS regions followed Mendelian inheritance, and demonstrated that MS2 alleles increased CLPTM1L promoter activity in the UM-UC3 bladder cancer cells through a luciferase assay. Our findings propose the utility of CLPTM1L-MS regions as DNA typing markers, particularly highlighting the potential of middle-length rare alleles within CLPTM1L-MS2 as predictive markers for bladder cancer risk.
Collapse
Affiliation(s)
- Mi-So Jeong
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan 46033, Republic of Korea
| | - Jeong-Yeon Mun
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
| | - Gi-Eun Yang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Republic of Korea
| | - Min-Hye Kim
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea;
| | - Heui Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| | - Jong-Kil Nam
- Department of Urology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Yangsan 50612, Republic of Korea;
| | - Tae Nam Kim
- Department of Urology, Pusan National University Hospital, Pusan National University School of Medicine, Biomedical Research Institute and Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea; (M.-S.J.); (J.-Y.M.); (G.-E.Y.); (M.-H.K.)
- Department of Health Sciences, The Graduated of Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
11
|
Paglialunga M, Flamini S, Contini R, Febo M, Ricci E, Ronchetti S, Bereshchenko O, Migliorati G, Riccardi C, Bruscoli S. Anti-Inflammatory Effects of Synthetic Peptides Based on Glucocorticoid-Induced Leucine Zipper (GILZ) Protein for the Treatment of Inflammatory Bowel Diseases (IBDs). Cells 2023; 12:2294. [PMID: 37759516 PMCID: PMC10528232 DOI: 10.3390/cells12182294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Glucocorticoids (GCs) are commonly used to treat autoimmune and inflammatory diseases, but their clinical effects and long-term use can lead to serious side effects. New drugs that can replace GCs are needed. Glucocorticoid-induced leucine zipper (GILZ) is induced by GCs and mediates many of their anti-inflammatory effects, such as inhibiting the pro-inflammatory molecule NF-κB. The GILZ C-terminal domain (PER region) is responsible for GILZ/p65NF-κB interaction and consequent inhibition of its transcriptional activity. A set of five short peptides spanning different parts of the PER region of GILZ protein was designed, and their anti-inflammatory activity was tested, both in vitro and in vivo. We tested the biological activity of GILZ peptides in human lymphocytic and monocytic cell lines to evaluate their inhibitory effect on the NF-κB-dependent expression of pro-inflammatory cytokines. Among the tested peptides, the peptide named PEP-1 demonstrated the highest efficacy in inhibiting cell activation in vitro. Subsequently, PEP-1 was further evaluated in two in vivo experimental colitis models (chemically induced by DNBS administration and spontaneous colitis induced in IL-10 knock-out (KO) mice (to assess its effectiveness in counteracting inflammation. Results show that PEP-1 reduced disease severity in both colitis models associated with reduced NF-κB pro-inflammatory activity in colon lamina propria lymphocytes. This study explored GILZ-based 'small peptides' potential efficacy in decreasing lymphocyte activation and inflammation associated with experimental inflammatory bowel diseases (IBDs). Small peptides have several advantages over the entire protein, including higher selectivity, better stability, and bioavailability profile, and are easy to synthesize and cost-effective. Thus, identifying active GILZ peptides could represent a new class of drugs for treating IBD patients.
Collapse
Affiliation(s)
- Musetta Paglialunga
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Sara Flamini
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Raffaele Contini
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Marta Febo
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Erika Ricci
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06123 Perugia, Italy;
| | - Graziella Migliorati
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.F.); (R.C.); (M.F.); (E.R.); (S.R.); (G.M.); (C.R.)
| |
Collapse
|
12
|
Kolb KL, Mira ALS, Auer ED, Bucco ID, de Lima e Silva CE, dos Santos PI, Hoch VBB, Oliveira LC, Hauser AB, Hundt JE, Shuldiner AR, Lopes FL, Boysen TJ, Franke A, Pinto LFR, Soares-Lima SC, Kretzschmar GC, Boldt ABW. Glucocorticoid Receptor Gene ( NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population. Genes (Basel) 2023; 14:1805. [PMID: 37761945 PMCID: PMC10530687 DOI: 10.3390/genes14091805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The regulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with polymorphisms and the methylation degree of the glucocorticoid receptor gene (NR3C1) and is potentially involved in the development of metabolic syndrome (MetS). In order to evaluate the association between MetS with the polymorphisms, methylation, and gene expression of the NR3C1 in the genetically isolated Brazilian Mennonite population, we genotyped 20 NR3C1 polymorphisms in 74 affected (MetS) and 138 unaffected individuals without affected first-degree relatives (Co), using exome sequencing, as well as five variants from non-exonic regions, in 70 MetS and 166 Co, using mass spectrometry. The methylation levels of 11 1F CpG sites were quantified using pyrosequencing (66 MetS and 141 Co), and the NR3C1 expression was evaluated via RT-qPCR (14 MetS and 25 Co). Age, physical activity, and family environment during childhood were associated with MetS. Susceptibility to MetS, independent of these factors, was associated with homozygosity for rs10482605*C (OR = 4.74, pcorr = 0.024) and the haplotype containing TTCGTTGATT (rs3806855*T_ rs3806854*T_rs10482605*C_rs10482614*G_rs6188*T_rs258813*T_rs33944801*G_rs34176759*A_rs17209258*T_rs6196*T, OR = 4.74, pcorr = 0.048), as well as for the CCT haplotype (rs41423247*C_ rs6877893*C_rs258763*T), OR = 6.02, pcorr = 0.030), but not to the differences in methylation or gene expression. Thus, NR3C1 polymorphisms seem to modulate the susceptibility to MetS in Mennonites, independently of lifestyle and early childhood events, and their role seems to be unrelated to DNA methylation and gene expression.
Collapse
Affiliation(s)
- Kathleen Liedtke Kolb
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Ana Luiza Sprotte Mira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Eduardo Delabio Auer
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Isabela Dall’Oglio Bucco
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Carla Eduarda de Lima e Silva
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Priscila Ianzen dos Santos
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Internal Medicine, Medical Clinic Department, UFPR, Rua General Carneiro, 181, 11th Floor, Alto da Glória, Curitiba 80210-170, PR, Brazil
| | - Valéria Bumiller-Bini Hoch
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Luana Caroline Oliveira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Aline Borsato Hauser
- Laboratory School of Clinical Analysis, Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Jardim Botânico, Curitiba 80210-170, PR, Brazil;
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee, 160, Haus 32, 23562 Lübeck, Germany;
| | - Alan R. Shuldiner
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA;
| | - Fabiana Leão Lopes
- Human Genetics Branch, National Institute of Mental Health, 35 Convent Drive, Bethesda, MD 20892, USA;
- Institute of Psychiatry, Federal University Rio de Janeiro, Av. Venceslau Brás, 71, Rio de Janeiro 22290-140, RJ, Brazil
| | - Teide-Jens Boysen
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (T.-J.B.); (A.F.)
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (T.-J.B.); (A.F.)
| | - Luis Felipe Ribeiro Pinto
- Brazilian National Cancer Institute, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, RJ, Brazil; (L.F.R.P.); (S.C.S.-L.)
| | - Sheila Coelho Soares-Lima
- Brazilian National Cancer Institute, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, RJ, Brazil; (L.F.R.P.); (S.C.S.-L.)
| | - Gabriela Canalli Kretzschmar
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| |
Collapse
|
13
|
Kiriyama Y, Nochi H. Regulation of PD-L1 Expression by Nuclear Receptors. Int J Mol Sci 2023; 24:9891. [PMID: 37373038 DOI: 10.3390/ijms24129891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The suppression of excessive immune responses is necessary to prevent injury to the body, but it also allows cancer cells to escape immune responses and proliferate. Programmed cell death 1 (PD-1) is a co-inhibitory molecule that is present on T cells and is the receptor for programmed cell death ligand 1 (PD-L1). The binding of PD-1 to PD-L1 leads to the inhibition of the T cell receptor signaling cascade. PD-L1 has been found to be expressed in many types of cancers, such as lung, ovarian, and breast cancer, as well as glioblastoma. Furthermore, PD-L1 mRNA is widely expressed in normal peripheral tissues including the heart, skeletal muscle, placenta, lungs, thymus, spleen, kidney, and liver. The expression of PD-L1 is upregulated by proinflammatory cytokines and growth factors via a number of transcription factors. In addition, various nuclear receptors, such as androgen receptor, estrogen receptor, peroxisome-proliferator-activated receptor γ, and retinoic-acid-related orphan receptor γ, also regulate the expression of PD-L1. This review will focus on the current knowledge of the regulation of PD-L1 expression by nuclear receptors.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
- Institute of Neuroscience, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| |
Collapse
|
14
|
Thorne A, Bansal A, Necker-Brown A, Mostafa MM, Gao A, Georgescu A, Kooi C, Leigh R, Newton R. Differential regulation of BIRC2 and BIRC3 expression by inflammatory cytokines and glucocorticoids in pulmonary epithelial cells. PLoS One 2023; 18:e0286783. [PMID: 37289679 PMCID: PMC10249814 DOI: 10.1371/journal.pone.0286783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Roles for the baculoviral inhibitor of apoptosis repeat-containing (BIRC) genes, BIRC2 and BIRC3, may include signaling to the inflammatory transcription factor, nuclear factor-κB (NF-κB) and protection from cell death. However, distinct functions for each BIRC are not well-delineated. Given roles for the epithelium in barrier function and host defence, BIRC2 and BIRC3 expression was characterized in pulmonary epithelial cell lines and primary human bronchial epithelial cells (pHBECs) grown as undifferentiated cells in submersion culture (SC) or as highly differentiated cells at air-liquid interface (ALI). In A549 cells, interleukin-1β (IL1B) and tumor necrosis factor α (TNF) induced BIRC3 mRNA (~20-50-fold), with maximal protein expression from 6-24 h. Similar effects occurred in BEAS-2B and Calu-3 cells, as well as SC and ALI pHBECs. BIRC2 protein was readily detected in unstimulated cells, but was not markedly modulated by IL1B or TNF. Glucocorticoids (dexamethasone, budesonide) modestly increased BIRC3 mRNA and protein, but showed little effect on BIRC2 expression. In A549 cells, BIRC3 mRNA induced by IL1B was unchanged by glucocorticoids and showed supra-additivity with TNF-plus-glucocorticoid. Supra-additivity was also evident for IL1B-plus-budesonide induced-BIRC3 in SC and ALI pHBECs. Using A549 cells, IL1B- and TNF-induced BIRC3 expression, and to a lesser extent, BIRC2, was prevented by NF-κB inhibition. Glucocorticoid-induced BIRC3 expression was prevented by silencing and antagonism of the glucocorticoid receptor. Whereas TNF, but not IL1B, induced degradation of basal BIRC2 and BIRC3 protein, IL1B- and TNF-induced BIRC3 protein remained stable. Differential regulation by cytokines and glucocorticoids shows BIRC2 protein expression to be consistent with roles in rapid signaling events, whereas cytokine-induced BIRC3 may be more important in later effects. While TNF-induced degradation of both BIRCs may restrict their activity, cytokine-enhanced BIRC3 expression could prime for its function. Finally, shielding from glucocorticoid repression, or further enhancement by glucocorticoid, may indicate a key protective role for BIRC3.
Collapse
Affiliation(s)
- Andrew Thorne
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Akanksha Bansal
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M. Mostafa
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alex Gao
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrei Georgescu
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Bain CR, Myles PS, Corcoran T, Dieleman JM. Postoperative systemic inflammatory dysregulation and corticosteroids: a narrative review. Anaesthesia 2023; 78:356-370. [PMID: 36308338 PMCID: PMC10092416 DOI: 10.1111/anae.15896] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 12/15/2022]
Abstract
In some patients, the inflammatory-immune response to surgical injury progresses to a harmful, dysregulated state. We posit that postoperative systemic inflammatory dysregulation forms part of a pathophysiological response to surgical injury that places patients at increased risk of complications and subsequently prolongs hospital stay. In this narrative review, we have outlined the evolution, measurement and prediction of postoperative systemic inflammatory dysregulation, distinguishing it from a healthy and self-limiting host response. We reviewed the actions of glucocorticoids and the potential for heterogeneous responses to peri-operative corticosteroid supplementation. We have then appraised the evidence highlighting the safety of corticosteroid supplementation, and the potential benefits of high/repeated doses to reduce the risks of major complications and death. Finally, we addressed how clinical trials in the future should target patients at higher risk of peri-operative inflammatory complications, whereby corticosteroid regimes should be tailored to modify not only the a priori risk, but also further adjusted in response to markers of an evolving pathophysiological response.
Collapse
Affiliation(s)
- C R Bain
- Department of Anaesthesiology and Peri-operative Medicine, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - P S Myles
- Department of Anaesthesiology and Peri-operative Medicine, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - T Corcoran
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, WA, Australia
| | - J M Dieleman
- Department of Anaesthesia and Peri-operative Medicine, Westmead Hospital, Sydney and Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
16
|
Obrador E, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano P, Estrela JM. Survival Mechanisms of Metastatic Melanoma Cells: The Link between Glucocorticoids and the Nrf2-Dependent Antioxidant Defense System. Cells 2023; 12:cells12030418. [PMID: 36766760 PMCID: PMC9913432 DOI: 10.3390/cells12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Circulating glucocorticoids increase during stress. Chronic stress, characterized by a sustained increase in serum levels of cortisol, has been associated in different cases with an increased risk of cancer and a worse prognosis. Glucocorticoids can promote gluconeogenesis, mobilization of amino acids, fat breakdown, and impair the body's immune response. Therefore, conditions that may favor cancer growth and the acquisition of radio- and chemo-resistance. We found that glucocorticoid receptor knockdown diminishes the antioxidant protection of murine B16-F10 (highly metastatic) melanoma cells, thus leading to a drastic decrease in their survival during interaction with the vascular endothelium. The BRAFV600E mutation is the most commonly observed in melanoma patients. Recent studies revealed that VMF/PLX40-32 (vemurafenib, a selective inhibitor of mutant BRAFV600E) increases mitochondrial respiration and reactive oxygen species (ROS) production in BRAFV600E human melanoma cell lines. Early-stage cancer cells lacking Nrf2 generate high ROS levels and exhibit a senescence-like growth arrest. Thus, it is likely that a glucocorticoid receptor antagonist (RU486) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated melanoma. In fact, during early progression of skin melanoma metastases, RU486 and VMF induced metastases regression. However, treatment at an advanced stage of growth found resistance to RU486 and VMF. This resistance was mechanistically linked to overexpression of proteins of the Bcl-2 family (Bcl-xL and Mcl-1 in different human models). Moreover, melanoma resistance was decreased if AKT and NF-κB signaling pathways were blocked. These findings highlight mechanisms by which metastatic melanoma cells adapt to survive and could help in the development of most effective therapeutic strategies.
Collapse
Affiliation(s)
- Elena Obrador
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| | - Rosario Salvador-Palmer
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | - María Oriol-Caballo
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | | | - José M. Estrela
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| |
Collapse
|
17
|
Abstract
Cell death, particularly that of tubule epithelial cells, contributes critically to the pathophysiology of kidney disease. A body of evidence accumulated over the past 15 years has ascribed a central pathophysiological role to a particular form of regulated necrosis, termed necroptosis, to acute tubular necrosis, nephron loss and maladaptive renal fibrogenesis. Unlike apoptosis, which is a non-immunogenic process, necroptosis results in the release of cellular contents and cytokines, which triggers an inflammatory response in neighbouring tissue. This necroinflammatory environment can lead to severe organ dysfunction and cause lasting tissue injury in the kidney. Despite evidence of a link between necroptosis and various kidney diseases, there are no available therapeutic options to target this process. Greater understanding of the molecular mechanisms, triggers and regulators of necroptosis in acute and chronic kidney diseases may identify shortcomings in current approaches to therapeutically target necroptosis regulators and lead to the development of innovative therapeutic approaches.
Collapse
|
18
|
Höllbacher B, Strickland B, Greulich F, Uhlenhaut NH, Heinig M. Machine learning reveals STAT motifs as predictors for GR-mediated gene repression. Comput Struct Biotechnol J 2023; 21:1697-1710. [PMID: 36879886 PMCID: PMC9984779 DOI: 10.1016/j.csbj.2023.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Glucocorticoids are potent immunosuppressive drugs, but long-term treatment leads to severe side-effects. While there is a commonly accepted model for GR-mediated gene activation, the mechanism behind repression remains elusive. Understanding the molecular action of the glucocorticoid receptor (GR) mediated gene repression is the first step towards developing novel therapies. We devised an approach that combines multiple epigenetic assays with 3D chromatin data to find sequence patterns predicting gene expression change. We systematically tested> 100 models to evaluate the best way to integrate the data types and found that GR-bound regions hold most of the information needed to predict the polarity of Dex-induced transcriptional changes. We confirmed NF-κB motif family members as predictors for gene repression and identified STAT motifs as additional negative predictors.
Collapse
Affiliation(s)
- Barbara Höllbacher
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich 85764, Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, 85748 Garching, Germany
| | - Benjamin Strickland
- Metabolic Programming, TUM School of Life Sciences, Weihenstephan & ZIEL-Institute for Food & Health, Freising, Germany
| | - Franziska Greulich
- Metabolic Programming, TUM School of Life Sciences, Weihenstephan & ZIEL-Institute for Food & Health, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, TUM School of Life Sciences, Weihenstephan & ZIEL-Institute for Food & Health, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich 85764, Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, 85748 Garching, Germany
| |
Collapse
|
19
|
Antipsychotics impair regulation of glucose metabolism by central glucose. Mol Psychiatry 2022; 27:4741-4753. [PMID: 36241692 DOI: 10.1038/s41380-022-01798-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Hypothalamic detection of elevated circulating glucose triggers suppression of endogenous glucose production (EGP) to maintain glucose homeostasis. Antipsychotics alleviate symptoms associated with schizophrenia but also increase the risk for impaired glucose metabolism. In the current study, we examined whether two acutely administered antipsychotics from different drug classes, haloperidol (first generation antipsychotic) and olanzapine (second generation antipsychotic), affect the ability of intracerebroventricular (ICV) glucose infusion approximating postprandial levels to suppress EGP. The experimental protocol consisted of a pancreatic euglycemic clamp, followed by kinomic and RNA-seq analyses of hypothalamic samples to determine changes in serine/threonine kinase activity and gene expression, respectively. Both antipsychotics inhibited ICV glucose-mediated increases in glucose infusion rate during the clamp, a measure of whole-body glucose metabolism. Similarly, olanzapine and haloperidol blocked central glucose-induced suppression of EGP. ICV glucose stimulated the vascular endothelial growth factor (VEGF) pathway, phosphatidylinositol 3-kinase (PI3K) pathway, and kinases capable of activating KATP channels in the hypothalamus. These effects were inhibited by both antipsychotics. In conclusion, olanzapine and haloperidol impair central glucose sensing. Although results of hypothalamic analyses in our study do not prove causality, they are novel and provide the basis for a multitude of future studies.
Collapse
|
20
|
Microglia involvement in sex-dependent behaviors and schizophrenia occurrence in offspring with maternal dexamethasone exposure. SCHIZOPHRENIA 2022; 8:71. [PMID: 36075925 PMCID: PMC9458670 DOI: 10.1038/s41537-022-00280-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
Abstract
Fetal microglia that are particularly sensitive cells to the changes in utero environment might be involved in the sex-biased onset and vulnerability to psychiatric disorders. To address this issue, we administered a 50 µg/kg dexamethasone (DEX) to dams subcutaneously from gestational days 16 to 18 and a series of behavioral assessments were performed in the offspring. Prenatal exposure to dexamethasone (PN-DEX) induced schizophrenia (SCZ)-relevant behaviors in male mice and depressive-like behavior in female mice. SCZ-relevant behavioral patterns occurred in 10-week-old (10 W) male mice but not in 4-week-old (4 W) male mice. Microglia in the medial prefrontal cortex (mPFC) and the striatum (STR) of 10 W males prenatally treated with dexamethasone (10 W PN-DEX-M) showed hyper-ramified morphology and dramatically reduced spine density in mPFC. Immunofluorescence studies indicated that microglia in the mPFC of the 10 W PN-DEX-M group interacted with pre-synaptic Bassoon and post-synaptic density 95 (PSD95) puncta. PN-DEX-M also showed significantly changed dopamine system proteins. However, a testosterone surge during adolescence was not a trigger on SCZ-relevant behavior occurrence in 10 W PN-DEX-M. Furthermore, females prenatally treated with dexamethasone (PN-DEX-F) displayed depressive-like behavior, in addition to HPA-axis activation and inflammatory microglial phenotypes in their hippocampus (HPC). We propose that altered microglial function, such as increased synaptic pruning, may be involved in the occurrence of SCZ-relevant behavior in PN-DEX-M and sex-biased abnormal behavior in the PN-DEX model.
Collapse
|
21
|
Intranasal Methylprednisolone Ameliorates Neuroinflammation Induced by Chronic Toluene Exposure. Pharmaceutics 2022; 14:pharmaceutics14061195. [PMID: 35745768 PMCID: PMC9230943 DOI: 10.3390/pharmaceutics14061195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Inhalants are chemical substances that induce intoxication, and toluene is the main component of them. Increasing evidence indicates that a dependence on inhalants involves a state of chronic stress associated to the activation of immune cells in the central nervous system and release of proinflammatory mediators, especially in some brain areas such as the nucleus accumbens and frontal cortex, where the circuits of pleasure and reward are. In this study, anti-neuroinflammatory treatment based on a single dose of intranasal methylprednisolone was assessed in a murine model of chronic toluene exposure. The levels of proinflammatory mediators, expression levels of Iba-1 and GFAP, and histological changes in the frontal cortex and nucleus accumbens were evaluated after the treatment. The chronic exposure to toluene significantly increased the levels of TNF-α, IL-6, and NO, the expression of GFAP, and induced histological alterations in mouse brains. The treatment with intranasally administered MP significantly reduced the expression of TNF-α and NO and the expression of GFAP (p < 0.05); additionally, it reversed the central histological damage. These results indicate that intranasally administered methylprednisolone could be considered as a treatment to reverse neuroinflammation and histological damages associated with the use of inhalants.
Collapse
|
22
|
Strickland BA, Ansari SA, Dantoft W, Uhlenhaut NH. How to tame your genes: mechanisms of inflammatory gene repression by glucocorticoids. FEBS Lett 2022; 596:2596-2616. [PMID: 35612756 DOI: 10.1002/1873-3468.14409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favorable clinical outcomes. We describe current knowledge about 3D genome organization and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarize the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterizing these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.
Collapse
Affiliation(s)
- Benjamin A Strickland
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Suhail A Ansari
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Widad Dantoft
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
23
|
Jackson D, Walum J, Banerjee P, Lewis BW, Prakash YS, Sathish V, Xu Z, Britt RD. Th1 cytokines synergize to change gene expression and promote corticosteroid insensitivity in pediatric airway smooth muscle. Respir Res 2022; 23:126. [PMID: 35578269 PMCID: PMC9109364 DOI: 10.1186/s12931-022-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Corticosteroids remain a key therapy for treating children with asthma. Patients with severe asthma are insensitive, resistant, or refractory to corticosteroids and have poorly controlled symptoms that involve airway inflammation, airflow obstruction, and frequent exacerbations. While the pathways that mediate corticosteroid insensitivity in asthma remain poorly defined, recent studies suggest that enhanced Th1 pathways, mediated by TNFα and IFNγ, may play a role. We previously reported that the combined effects of TNFα and IFNγ promote corticosteroid insensitivity in developing human airway smooth muscle (ASM).
Methods
To further understand the effects of TNFα and IFNγ on corticosteroid sensitivity in the context of neonatal and pediatric asthma, we performed RNA sequencing (RNA-seq) on human pediatric ASM treated with fluticasone propionate (FP), TNFα, and/or IFNγ.
Results
We found that TNFα had a greater effect on gene expression (~ 1000 differentially expressed genes) than IFNγ (~ 500 differentially expressed genes). Pathway and transcription factor analyses revealed enrichment of several pro-inflammatory responses and signaling pathways. Interestingly, treatment with TNFα and IFNγ augmented gene expression with more than 4000 differentially expressed genes. Effects of TNFα and IFNγ enhanced several pro-inflammatory genes and pathways related to ASM and its contributions to asthma pathogenesis, which persisted in the presence of corticosteroids. Co-expression analysis revealed several gene networks related to TNFα- and IFNγ-mediated signaling, pro-inflammatory mediator production, and smooth muscle contractility. Many of the co-expression network hubs were associated with genes that are insensitive to corticosteroids.
Conclusions
Together, these novel studies show the combined effects of TNFα and IFNγ on pediatric ASM and implicate Th1-associated cytokines in promoting ASM inflammation and hypercontractility in severe asthma.
Collapse
|
24
|
Lewis BW, Ford ML, Khan AQ, Walum J, Britt RD. Chronic Allergen Challenge Induces Corticosteroid Insensitivity With Persistent Airway Remodeling and Type 2 Inflammation. Front Pharmacol 2022; 13:855247. [PMID: 35479312 PMCID: PMC9035517 DOI: 10.3389/fphar.2022.855247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2-high severe asthma is described as a distinct endotype with Th2 inflammation, high eosinophil lung infiltration, impaired lung function, and reduced corticosteroid sensitivity. While the inflammatory milieu is similar to mild asthma, patients with type 2-high severe asthma likely have underlying mechanisms that sustain asthma pathophysiology despite corticosteroid treatments. Acute and chronic allergen models induce robust type 2 inflammatory responses, however differences in corticosteroid sensitivity remains poorly understood. In the present study, we sensitized and challenged mice with ovalbumin (OVA; acute model) or mixed allergens (MA; chronic model). Corticosteroid sensitivity was assessed by administering vehicle, 1, or 3 mg/kg fluticasone propionate (FP) and examining key asthmatic features such as airway inflammation, remodeling, hyperresponsiveness, and antioxidant capacity. Both acute and chronic allergen exposure exhibited enhanced AHR, immune cell infiltration, airway inflammation, and remodeling, but corticosteroids were unable to fully alleviate inflammation, AHR, and airway smooth muscle mass in MA-challenged mice. While there were no differences in antioxidant capacity, persistent IL-4+ Th2 cell population suggests the MA model induces type 2 inflammation that is insensitive to corticosteroids. Our data indicate that chronic allergen exposure is associated with more persistent type 2 immune responses and corticosteroid insensitivity. Understanding differences between acute and chronic allergen models could unlock underlying mechanisms related to type 2-high severe asthma.
Collapse
Affiliation(s)
- Brandon W. Lewis
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Maria L. Ford
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aiman Q. Khan
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Joshua Walum
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Rodney D. Britt
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- *Correspondence: Rodney D. Britt Jr,
| |
Collapse
|
25
|
Loft A, Schmidt SF, Caratti G, Stifel U, Havelund J, Sekar R, Kwon Y, Sulaj A, Chow KK, Alfaro AJ, Schwarzmayr T, Rittig N, Svart M, Tsokanos FF, Maida A, Blutke A, Feuchtinger A, Møller N, Blüher M, Nawroth P, Szendrödi J, Færgeman NJ, Zeigerer A, Tuckermann J, Herzig S. A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis. Cell Metab 2022; 34:473-486.e9. [PMID: 35120589 DOI: 10.1016/j.cmet.2022.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
Fasting metabolism and immunity are tightly linked; however, it is largely unknown how immune cells contribute to metabolic homeostasis during fasting in healthy subjects. Here, we combined cell-type-resolved genomics and computational approaches to map crosstalk between hepatocytes and liver macrophages during fasting. We identified the glucocorticoid receptor (GR) as a key driver of fasting-induced reprogramming of the macrophage secretome including fasting-suppressed cytokines and showed that lack of macrophage GR impaired induction of ketogenesis during fasting as well as endotoxemia. Mechanistically, macrophage GR suppressed the expression of tumor necrosis factor (TNF) and promoted nuclear translocation of hepatocyte GR to activate a fat oxidation/ketogenesis-related gene program, cooperatively induced by GR and peroxisome proliferator-activated receptor alpha (PPARα) in hepatocytes. Together, our results demonstrate how resident liver macrophages directly influence ketogenesis in hepatocytes, thereby also outlining a strategy by which the immune system can set the metabolic tone during inflammatory disease and infection.
Collapse
Affiliation(s)
- Anne Loft
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense 5230, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), SDU, Odense 5230, Denmark
| | - Søren Fisker Schmidt
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense 5230, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), SDU, Odense 5230, Denmark.
| | - Giorgio Caratti
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm 89081, Germany
| | - Ulrich Stifel
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm 89081, Germany
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense 5230, Denmark
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Yun Kwon
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Alba Sulaj
- German Center for Diabetes Research, Neuherberg 85764, Germany; Department of Endocrinology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Kan Kau Chow
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Ana Jimena Alfaro
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Nikolaj Rittig
- Department of Internal Medicine and Endocrinology (Multilateral Environmental Agreement) and Medical Research Laboratory, Aarhus University Hospital, Aarhus C 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University, Hedeager 3, 2nd Floor, 8200 Aarhus N, Denmark
| | - Mads Svart
- Department of Internal Medicine and Endocrinology (Multilateral Environmental Agreement) and Medical Research Laboratory, Aarhus University Hospital, Aarhus C 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University, Hedeager 3, 2nd Floor, 8200 Aarhus N, Denmark
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Adriano Maida
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Niels Møller
- Department of Internal Medicine and Endocrinology (Multilateral Environmental Agreement) and Medical Research Laboratory, Aarhus University Hospital, Aarhus C 8000, Denmark
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany
| | - Peter Nawroth
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Department of Endocrinology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Julia Szendrödi
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Department of Endocrinology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense 5230, Denmark
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Jan Tuckermann
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm 89081, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg 85764, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany; German Center for Diabetes Research, Neuherberg 85764, Germany.
| |
Collapse
|
26
|
Dinarello A, Tesoriere A, Martini P, Fontana CM, Volpato D, Badenetti L, Terrin F, Facchinello N, Romualdi C, Carnevali O, Dalla Valle L, Argenton F. Zebrafish Mutant Lines Reveal the Interplay between nr3c1 and nr3c2 in the GC-Dependent Regulation of Gene Transcription. Int J Mol Sci 2022; 23:2678. [PMID: 35269817 PMCID: PMC8910431 DOI: 10.3390/ijms23052678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Glucocorticoids mainly exert their biological functions through their cognate receptor, encoded by the nr3c1 gene. Here, we analysed the glucocorticoids mechanism of action taking advantage of the availability of different zebrafish mutant lines for their receptor. The differences in gene expression patterns between the zebrafish gr knock-out and the grs357 mutant line, in which a point mutation prevents binding of the receptor to the hormone-responsive elements, reveal an intricate network of GC-dependent transcription. Particularly, we show that Stat3 transcriptional activity mainly relies on glucocorticoid receptor GR tethering activity: several Stat3 target genes are induced upon glucocorticoid GC exposure both in wild type and in grs357/s357 larvae, but not in gr knock-out zebrafish. To understand the interplay between GC, their receptor, and the mineralocorticoid receptor, which is evolutionarily and structurally related to the GR, we generated an mr knock-out line and observed that several GC-target genes also need a functional mineralocorticoid receptor MR to be correctly transcribed. All in all, zebrafish mutants and transgenic models allow in vivo analysis of GR transcriptional activities and interactions with other transcription factors such as MR and Stat3 in an in-depth and rapid way.
Collapse
Affiliation(s)
- Alberto Dinarello
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Annachiara Tesoriere
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Camilla Maria Fontana
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Davide Volpato
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Lorenzo Badenetti
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Francesca Terrin
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Chiara Romualdi
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| | - Francesco Argenton
- Department of Biology, University of Padova, 35121 Padova, Italy; (A.D.); (A.T.); (C.M.F.); (D.V.); (L.B.); (F.T.); (N.F.); (C.R.); (F.A.)
| |
Collapse
|
27
|
Datta RR, Rister J. The power of the (imperfect) palindrome: Sequence-specific roles of palindromic motifs in gene regulation. Bioessays 2022; 44:e2100191. [PMID: 35195290 PMCID: PMC8957550 DOI: 10.1002/bies.202100191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/22/2022]
Abstract
In human languages, a palindrome reads the same forward as backward (e.g., 'madam'). In regulatory DNA, a palindrome is an inverted sequence repeat that allows a transcription factor to bind as a homodimer or as a heterodimer with another type of transcription factor. Regulatory palindromes are typically imperfect, that is, the repeated sequences differ in at least one base pair, but the functional significance of this asymmetry remains poorly understood. Here, we review the use of imperfect palindromes in Drosophila photoreceptor differentiation and mammalian steroid receptor signaling. Moreover, we discuss mechanistic explanations for the predominance of imperfect palindromes over perfect palindromes in these two gene regulatory contexts. Lastly, we propose to elucidate whether specific imperfectly palindromic variants have specific regulatory functions in steroid receptor signaling and whether such variants can help predict transcriptional outcomes as well as the response of individual patients to drug treatments.
Collapse
Affiliation(s)
- Rhea R Datta
- Department of Biology, Hamilton College, Clinton, New York, USA
| | - Jens Rister
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, Boston, Massachusetts, USA
| |
Collapse
|
28
|
O'Shaughnessy RFL. Understanding the paradoxical proinflammatory effects of an immunosuppressant. Br J Dermatol 2021; 185:1091-1092. [PMID: 34748219 DOI: 10.1111/bjd.20778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Affiliation(s)
- R F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
29
|
Shimba A, Ejima A, Ikuta K. Pleiotropic Effects of Glucocorticoids on the Immune System in Circadian Rhythm and Stress. Front Immunol 2021; 12:706951. [PMID: 34691020 PMCID: PMC8531522 DOI: 10.3389/fimmu.2021.706951] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) are a class of steroid hormones secreted from the adrenal cortex. Their production is controlled by circadian rhythm and stress, the latter of which includes physical restraint, hunger, and inflammation. Importantly, GCs have various effects on immunity, metabolism, and cognition, including pleiotropic effects on the immune system. In general, GCs have strong anti-inflammatory and immunosuppressive effects. Indeed, they suppress inflammatory cytokine expression and cell-mediated immunity, leading to increased risks of some infections. However, recent studies have shown that endogenous GCs induced by the diurnal cycle and dietary restriction enhance immune responses against some infections by promoting the survival, redistribution, and response of T and B cells via cytokine and chemokine receptors. Furthermore, although GCs are reported to reduce expression of Th2 cytokines, GCs enhance type 2 immunity and IL-17-associated immunity in some stress conditions. Taken together, GCs have both immunoenhancing and immunosuppressive effects on the immune system.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|