1
|
Pereira IT, Gomes-Júnior R, Hansel-Frose A, França RSV, Liu M, Soliman HAN, Chan SSK, Dudley SC, Kyba M, Dallagiovanna B. Cardiac Development Long Non-Coding RNA ( CARDEL) Is Activated during Human Heart Development and Contributes to Cardiac Specification and Homeostasis. Cells 2024; 13:1050. [PMID: 38920678 PMCID: PMC11201801 DOI: 10.3390/cells13121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Successful heart development depends on the careful orchestration of a network of transcription factors and signaling pathways. In recent years, in vitro cardiac differentiation using human pluripotent stem cells (hPSCs) has been used to uncover the intricate gene-network regulation involved in the proper formation and function of the human heart. Here, we searched for uncharacterized cardiac-development genes by combining a temporal evaluation of human cardiac specification in vitro with an analysis of gene expression in fetal and adult heart tissue. We discovered that CARDEL (CARdiac DEvelopment Long non-coding RNA; LINC00890; SERTM2) expression coincides with the commitment to the cardiac lineage. CARDEL knockout hPSCs differentiated poorly into cardiac cells, and hPSC-derived cardiomyocytes showed faster beating rates after controlled overexpression of CARDEL during differentiation. Altogether, we provide physiological and molecular evidence that CARDEL expression contributes to sculpting the cardiac program during cell-fate commitment.
Collapse
Affiliation(s)
- Isabela T. Pereira
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Rubens Gomes-Júnior
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Aruana Hansel-Frose
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Rhaíza S. V. França
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Man Liu
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (S.C.D.J.)
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
| | - Hossam A. N. Soliman
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sunny S. K. Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel C. Dudley
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (S.C.D.J.)
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| |
Collapse
|
2
|
Mably JD, Wang DZ. Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects. Nat Rev Cardiol 2024; 21:326-345. [PMID: 37985696 PMCID: PMC11031336 DOI: 10.1038/s41569-023-00952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
The surge in reports describing non-coding RNAs (ncRNAs) has focused attention on their possible biological roles and effects on development and disease. ncRNAs have been touted as previously uncharacterized regulators of gene expression and cellular processes, possibly working to fine-tune these functions. The sheer number of ncRNAs identified has outpaced the capacity to characterize each molecule thoroughly and to reliably establish its clinical relevance; it has, nonetheless, created excitement about their potential as molecular targets for novel therapeutic approaches to treat human disease. In this Review, we focus on one category of ncRNAs - long non-coding RNAs - and their expression, functions and molecular mechanisms in cardiac hypertrophy and heart failure. We further discuss the prospects for this specific class of ncRNAs as novel targets for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- John D Mably
- Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
Luo Y, Chen Y, Ge L, Zhou G, Chen Y, Zhu D. Competing endogenous RNA network analysis of Turner syndrome patient-specific iPSC-derived cardiomyocytes reveals dysregulation of autosomal heart development genes by altered dosages of X-inactivation escaping non-coding RNAs. Stem Cell Res Ther 2023; 14:376. [PMID: 38124119 PMCID: PMC10734062 DOI: 10.1186/s13287-023-03601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A 45,X monosomy (Turner syndrome, TS) is the only chromosome haploinsufficiency compatible with life. Nevertheless, the surviving TS patients still suffer from increased morbidity and mortality, with around one-third of them subjecting to heart abnormalities. How loss of one X chromosome drive these conditions remains largely unknown. METHODS Here, we have generated cardiomyocytes (CMs) from wild-type and TS patient-specific induced pluripotent stem cells and profiled the mRNA, lncRNA and circRNA expression in these cells. RESULTS We observed lower beating frequencies and higher mitochondrial DNA copies per nucleus in TS-CMs. Moreover, we have identified a global transcriptome dysregulation of both coding and non-coding RNAs in TS-CMs. The differentially expressed mRNAs were enriched of heart development genes. Further competing endogenous RNA network analysis revealed putative regulatory circuit of autosomal genes relevant with mitochondrial respiratory chain and heart development, such as COQ10A, RARB and WNT2, mediated by X-inactivation escaping lnc/circRNAs, such as lnc-KDM5C-4:1, hsa_circ_0090421 and hsa_circ_0090392. The aberrant expressions of these genes in TS-CMs were verified by qPCR. Further knockdown of lnc-KDM5C-4:1 in wild-type CMs exhibited significantly reduced beating frequencies. CONCLUSIONS Our study has revealed a genomewide ripple effect of X chromosome halpoinsufficiency at post-transcriptional level and provided insights into the molecular mechanisms underlying heart abnormalities in TS patients.
Collapse
Affiliation(s)
- Yumei Luo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Biologics Test and Evaluation Center, Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Yapei Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lingxia Ge
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guanqing Zhou
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yaoyong Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Detu Zhu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Biologics Test and Evaluation Center, Guangzhou Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
4
|
Amaral P, Carbonell-Sala S, De La Vega FM, Faial T, Frankish A, Gingeras T, Guigo R, Harrow JL, Hatzigeorgiou AG, Johnson R, Murphy TD, Pertea M, Pruitt KD, Pujar S, Takahashi H, Ulitsky I, Varabyou A, Wells CA, Yandell M, Carninci P, Salzberg SL. The status of the human gene catalogue. Nature 2023; 622:41-47. [PMID: 37794265 PMCID: PMC10575709 DOI: 10.1038/s41586-023-06490-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/27/2023] [Indexed: 10/06/2023]
Abstract
Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.
Collapse
Affiliation(s)
- Paulo Amaral
- INSPER Institute of Education and Research, Sao Paulo, Brazil
| | | | - Francisco M De La Vega
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Tempus Labs, Chicago, IL, USA
| | | | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Thomas Gingeras
- Department of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jennifer L Harrow
- Centre for Genomics Research, Discovery Sciences, AstraZeneca, Royston, UK
| | - Artemis G Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, Universithy of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Shashikant Pujar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ales Varabyou
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Christine A Wells
- Stem Cell Systems, Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Mark Yandell
- Departent of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Human Technopole, Milan, Italy.
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Dalal S, Shook PL, Singh M, Singh K. Post-ischemic cardioprotective potential of exogenous ubiquitin in myocardial remodeling late after ischemia/reperfusion injury. Life Sci 2023; 312:121216. [PMID: 36435225 PMCID: PMC9784153 DOI: 10.1016/j.lfs.2022.121216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
AIMS Pretreatment with ubiquitin (UB) associates with preservation of heart function 3 days post-ischemia/reperfusion (I/R) injury. This study investigated the cardioprotective potential of exogenous UB late after myocardial I/R injury. To enhance the clinical relevance, UB treatment was started at the time of reperfusion and continued for 28 days post-I/R. MAIN METHODS Mice underwent ligation of the left anterior descending coronary artery for 45 min. At the time of reperfusion, mice were treated with UB or saline which was continued until 28 days post-I/R. Heart function was measured at 3, 7, 14 and 28 days post-I/R using echocardiography. Biochemical parameters of the heart and serum cytokines/chemokines levels were measured 28 days post-I/R. KEY FINDINGS I/R decreased heart function and induced LV dilation at all time points post-I/R. However, I/R + UB exhibited improved heart function throughout the observation period, while LV dilation was lower in I/R + UB group at 3, 14 and 28 days post-I/R. I/R-mediated increase in myocardial fibrosis, hypertrophy and apoptosis were significantly lower in I/R + UB vs. I/R. Collagen-1α1 and MMP-2 expression was lower, while MMP-9 and TIMP-2 expression was higher in I/R + UB vs. I/R. MYH-7B (hypertrophy marker) expression was lower in I/R + UB vs. I/R. GSK3β activation was lower (vs. Sham), while activation of ERK1/2 (vs. I/R) and AKT (vs. Sham) was higher in I/R + UB. Serum levels of IL-6, G-CSF and IL-2 were lower in I/R + UB vs. I/R. SIGNIFICANCE Post-ischemic UB treatment improves heart function, and associates with decreased myocardial fibrosis, apoptosis, hypertrophy and serum cytokine/chemokine levels.
Collapse
Affiliation(s)
- Suman Dalal
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA; Department of Health Sciences, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Paige L Shook
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA; James H Quillen Veterans Affairs Medical Center, Mountain Home, TN, USA.
| |
Collapse
|
6
|
Myosins and MyomiR Network in Patients with Obstructive Hypertrophic Cardiomyopathy. Biomedicines 2022; 10:biomedicines10092180. [PMID: 36140281 PMCID: PMC9496008 DOI: 10.3390/biomedicines10092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. The molecular mechanisms determining HCM phenotypes are incompletely understood. Myocardial biopsies were obtained from a group of patients with obstructive HCM (n = 23) selected for surgical myectomy and from 9 unused donor hearts (controls). A subset of tissue-abundant myectomy samples from HCM (n = 10) and controls (n = 6) was submitted to laser-capture microdissection to isolate cardiomyocytes. We investigated the relationship among clinical phenotype, cardiac myosin proteins (MyHC6, MyHC7, and MyHC7b) measured by optimized label-free mass spectrometry, the relative genes (MYH7, MYH7B and MYLC2), and the MyomiR network (myosin-encoded microRNA (miRs) and long-noncoding RNAs (Mhrt)) measured using RNA sequencing and RT-qPCR. MyHC6 was lower in HCM vs. controls, whilst MyHC7, MyHC7b, and MyLC2 were comparable. MYH7, MYH7B, and MYLC2 were higher in HCM whilst MYH6, miR-208a, miR-208b, miR-499 were comparable in HCM and controls. These results are compatible with defective transcription by active genes in HCM. Mhrt and two miR-499-target genes, SOX6 and PTBP3, were upregulated in HCM. The presence of HCM-associated mutations correlated with PTBP3 in myectomies and with SOX6 in cardiomyocytes. Additionally, iPSC-derived cardiomyocytes, transiently transfected with either miR-208a or miR-499, demonstrated a time-dependent relationship between MyomiRs and myosin genes. The transfection end-stage pattern was at least in part similar to findings in HCM myectomies. These data support uncoupling between myosin protein/genes and a modulatory role for the myosin/MyomiR network in the HCM myocardium, possibly contributing to phenotypic diversity and providing putative therapeutic targets.
Collapse
|
7
|
Zhang C, Zhang H, Zhao L, Wei Z, Lai Y, Ma X. Differential Expression of microRNAs in Hypertrophied Myocardium and Their Relationship to Late Gadolinium Enhancement, Left Ventricular Hypertrophy and Remodeling in Hypertrophic Cardiomyopathy. Diagnostics (Basel) 2022; 12:diagnostics12081978. [PMID: 36010328 PMCID: PMC9406969 DOI: 10.3390/diagnostics12081978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Differential expression has been found in a variety of circulating miRNAs in patients with hypertrophic cardiomyopathy (HCM). However, study on myocardial miRNAs is limited and a lot of miRNAs were not studied in previous studies. Methods: Twenty-one HCM patients and four patients who died from non-cardiovascular diseases were prospectively recruited for our study. A total of 26 myocardial tissues were collected, which were stored in liquid nitrogen immediately for miRNA detection using the Agilent Human miRNA Microarray Kit. All HCM patients underwent cardiovascular magnetic resonance (CMR) examination before surgery and cvi42 software was used to analyze cardiac function and myocardial fibrosis. Results: Compared with the control group, the expression of 22 miRNAs was found to be significantly increased in the HCM group, while 46 miRNAs were found to be significantly decreased in the HCM group. The expression levels of hsa-miR-3960 and hsa-miR-652-3p were significantly correlated with left ventricular mass index (r = 0.449 and 0.474, respectively). Meanwhile, Hsa-miR-642a-3p expression was positively correlated to the quantification of late gadolinium enhancement (r = 0.467). Conclusions: Our study found that 68 myocardial miRNAs were significantly increased or decreased in the HCM group. Myocardial miRNA levels could be used as potential biomarkers for LV hypertrophy, fibrosis and remodeling.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Interventional Diagnosis and Treatment, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100020, China
| | - Hongbo Zhang
- Department of Interventional Diagnosis and Treatment, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100020, China
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100020, China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100020, China
| | - Zhipeng Wei
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100020, China
| | - Yongqiang Lai
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100020, China
- Correspondence: (Y.L.); (X.M.)
| | - Xiaohai Ma
- Department of Interventional Diagnosis and Treatment, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing 100020, China
- Correspondence: (Y.L.); (X.M.)
| |
Collapse
|
8
|
Circulating miR-499a-5p Is a Potential Biomarker of MYH7-Associated Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23073791. [PMID: 35409153 PMCID: PMC8998764 DOI: 10.3390/ijms23073791] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited myocardial disease with significant genetic and phenotypic heterogeneity. To search for novel biomarkers, which could increase the accuracy of HCM diagnosis and improve understanding of its phenotype formation, we analyzed the levels of circulating miRNAs—stable non-coding RNAs involved in post-transcriptional gene regulation. Performed high throughput sequencing of miRNAs in plasma of HCM patients and controls pinpointed miR-499a-5p as one of 35 miRNAs dysregulated in HCM. Further investigation on enlarged groups of individuals showed that its level was higher in carriers of pathogenic/likely pathogenic (P/LP) variants in MYH7 gene compared to controls (fold change, FC = 8.9; p < 0.0001). Just as important, carriers of variants in MYH7 gene were defined with higher miRNA levels than carriers of variants in the MYBPC3 gene (FC = 14.1; p = 0.0003) and other patients (FC = 4.1; p = 0.0008). The receiver operating characteristic analysis analysis showed the ability of miR-499a-5p to identify MYH7 variant carriers with the HCM phenotype with area under the curve value of 0.95 (95% confidence interval: 0.88−1.03, p = 0.0004); sensitivity and specificity were 0.86 and 0.91 (cut-off = 0.0014). Therefore, miR-499a-5p could serve as a circulating biomarker of HCM, caused by P/LP variants in MYH7 gene.
Collapse
|
9
|
Ilieva M, Uchida S. Long Non-Coding RNAs in Induced Pluripotent Stem Cells and Their Differentiation. Am J Physiol Cell Physiol 2022; 322:C769-C774. [PMID: 35235428 DOI: 10.1152/ajpcell.00059.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The breakthrough technology for reprogramming somatic cells into induced pluripotent stem cells (iPSC) has created a new path for science and medicine. The iPSC technology provides a powerful tool for elucidating the mechanisms of cellular differentiation and cell fate decision as well as to study targets and pathways relevant to pathological processes. Since they can be generated from any person, iPSC are a promising resource for regenerative medicine potentiating the possibility to discover new drugs in a high-throughput screening format and treat diseases through personalized cell therapy-based strategies. However, the reprogramming process is complex, and its regulation needs fine tuning. The regulatory mechanisms of cell reprogramming and differentiation are still not elucidated, but significant results show that multiple long non-coding RNAs (lncRNAs) play essential roles. In this mini review, we discuss the latest research on lncRNAs in iPSC stemness, neuronal and cardiac differentiation.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark
| |
Collapse
|
10
|
Crocini C, Gotthardt M. Cardiac sarcomere mechanics in health and disease. Biophys Rev 2021; 13:637-652. [PMID: 34745372 PMCID: PMC8553709 DOI: 10.1007/s12551-021-00840-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardiomyopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac contraction and filling.
Collapse
Affiliation(s)
- Claudia Crocini
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- BioFrontiers Institute & Department of Molecular and Cellular Development, University of Colorado Boulder, Boulder, USA
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
11
|
Advances in Cardiac Development and Regeneration Using Zebrafish as a Model System for High-Throughput Research. J Dev Biol 2021; 9:jdb9040040. [PMID: 34698193 PMCID: PMC8544412 DOI: 10.3390/jdb9040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Heart disease is the leading cause of death in the United States and worldwide. Understanding the molecular mechanisms of cardiac development and regeneration will improve diagnostic and therapeutic interventions against heart disease. In this direction, zebrafish is an excellent model because several processes of zebrafish heart development are largely conserved in humans, and zebrafish has several advantages as a model organism. Zebrafish transcriptomic profiles undergo alterations during different stages of cardiac development and regeneration which are revealed by RNA-sequencing. ChIP-sequencing has detected genome-wide occupancy of histone post-translational modifications that epigenetically regulate gene expression and identified a locus with enhancer-like characteristics. ATAC-sequencing has identified active enhancers in cardiac progenitor cells during early developmental stages which overlap with occupancy of histone modifications of active transcription as determined by ChIP-sequencing. CRISPR-mediated editing of the zebrafish genome shows how chromatin modifiers and DNA-binding proteins regulate heart development, in association with crucial signaling pathways. Hence, more studies in this direction are essential to improve human health because they answer fundamental questions on cardiac development and regeneration, their differences, and why zebrafish hearts regenerate upon injury, unlike humans. This review focuses on some of the latest studies using state-of-the-art technology enabled by the elegant yet simple zebrafish.
Collapse
|