1
|
Norman RX, Chen YC, Recchia EE, Loi J, Rosemarie Q, Lesko SL, Patel S, Sherer N, Takaku M, Burkard ME, Suzuki A. One step 4× and 12× 3D-ExM enables robust super-resolution microscopy of nanoscale cellular structures. J Cell Biol 2025; 224:e202407116. [PMID: 39625433 PMCID: PMC11613959 DOI: 10.1083/jcb.202407116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024] Open
Abstract
Super-resolution microscopy has become an indispensable tool across diverse research fields, offering unprecedented insights into biological architectures with nanometer scale resolution. Compared with traditional nanometer-scale imaging methods such as electron microscopy, super-resolution microscopy offers several advantages, including the simultaneous labeling of multiple target biomolecules with high specificity and simpler sample preparation, making it accessible to most researchers. In this study, we introduce two optimized methods of super-resolution imaging: 4-fold and 12-fold 3D-isotropic and preserved Expansion Microscopy (4× and 12× 3D-ExM). 3D-ExM is a straightforward expansion microscopy technique featuring a single-step process, providing robust and reproducible 3D isotropic expansion for both 2D and 3D cell culture models. With standard confocal microscopy, 12× 3D-ExM achieves a lateral resolution of <30 nm, enabling the visualization of nanoscale structures, including chromosomes, kinetochores, nuclear pore complexes, and Epstein-Barr virus particles. These results demonstrate that 3D-ExM provides cost-effective and user-friendly super-resolution microscopy, making it highly suitable for a wide range of cell biology research, including studies on cellular and chromatin architectures.
Collapse
Affiliation(s)
- Roshan X. Norman
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu-Chia Chen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Emma E. Recchia
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan Loi
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Quincy Rosemarie
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney L. Lesko
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Smit Patel
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathan Sherer
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Motoki Takaku
- Department of Biomedical Science, University of North Dakota School of Medicine and Health Science, Grand Forks, ND, USA
| | - Mark E. Burkard
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aussie Suzuki
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Ghosh A, Gupta A, Jena S, Kirti A, Choudhury A, Saha U, Sinha A, Kumari S, Kujawska M, Kaushik A, Verma SK. Advances in posterity of visualization in paradigm of nano‐level ultra‐structures for nano–bio interaction studies. VIEW 2024. [DOI: 10.1002/viw.20240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
AbstractThe progression in contemporary scientific field is facilitated by a multitude of sophisticated and cutting‐edge methodologies that are employed for various research purposes. Among these methodologies, microscopy stands out as a fundamental and essential technique utilized in scientific investigations. Moreover, due to the continuous evolution and enhancement of microscopic methodologies, nanotechnology has reached a highly developed stage within modern scientific realm, particularly renowned for its wide‐ranging applications in the fields of biomedicine and environmental science. When it comes to conducting comprehensive and in‐depth experimental analyses to explore the nanotechnological aspects relevant to biological applications, the concept of nano–biological interaction emerges as the focal point of any research initiative. Nonetheless, this particular study necessitates a meticulous approach toward imaging and visualization at diverse magnification levels to ensure accurate observations and interpretations. It is widely acknowledged that modern microscopy has emerged as a sophisticated and invaluable instrument in this regard. This review aims to provide a comprehensive discussion on the progress made in microscopic techniques specifically tailored for visualizing the interactions between nanostructures and biological entities, thereby facilitating the exploration of the practical applications of nanotechnology in the realm of biological sciences.
Collapse
Affiliation(s)
- Aishee Ghosh
- School of Biotechnology KIIT University Bhubaneswar Odisha India
- Department of Physics and Astronomy Uppsala University Uppsala Sweden
| | - Abha Gupta
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Snehasmita Jena
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Apoorv Kirti
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Anmol Choudhury
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Utsa Saha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Adrija Sinha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Shalini Kumari
- Markham College of Commerce Vinoba Bhave University Hazaribagh Jharkhand India
| | - Małgorzata Kujawska
- Department of Toxicology Poznan University of Medical Sciences Poznan Poland
| | - Ajeet Kaushik
- NanoBioTech Laboratory Department of Environmental Engineering Florida Polytechnic University Lakeland Florida USA
| | - Suresh K. Verma
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| |
Collapse
|
3
|
Olaya-Bravo K, Martínez-Flores D, Rodríguez-Hernández AP, Tobías-Juárez I, Castro-Rodríguez JA, Sampieri A, Vaca L. Resolving viral structural complexity by super-resolution microscopy. Arch Virol 2024; 170:5. [PMID: 39652240 DOI: 10.1007/s00705-024-06192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 12/17/2024]
Abstract
In this review, we discuss different super-resolution microscopy (SRM) techniques employed to study viral structures and virus composition with nanometric resolution. We describe the basic principles of the different microscopy methods utilized to break the light diffraction limit, enabling the study of protein composition in viral structures. Finally, we demonstrate for the first time the differential spatial distribution of two structural proteins in an individual baculovirus using single-molecule super-resolution microscopy. We discuss the future of these powerful methods for virology, medicine, and biotechnology applications.
Collapse
Affiliation(s)
- Kevin Olaya-Bravo
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Daniel Martínez-Flores
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aaron Pavel Rodríguez-Hernández
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ileana Tobías-Juárez
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Jorge A Castro-Rodríguez
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Vaca
- Departamento de BIologia Celular y del Desarrollo. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
4
|
Frolikova M, Blazikova M, Capek M, Chmelova H, Valecka J, Kolackova V, Valaskova E, Gregor M, Komrskova K, Horvath O, Novotny I. Innovative sample preparation using alcohol dehydration and high refractive index medium enables acquisition of two-channel super-resolution 3D STED image of an entire oocyte. J Microsc 2024. [PMID: 39392013 DOI: 10.1111/jmi.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Super-resolution (SR) microscopy is a cutting-edge method that can provide detailed structural information with high resolution. However, the thickness of the specimen has been a major limitation for SR methods, and large biological structures have posed a challenge. To overcome this, the key step is to optimise sample preparation to ensure optical homogeneity and clarity, which can enhance the capabilities of SR methods for the acquisition of thicker structures. Oocytes are the largest cells in the mammalian body and are crucial objects in reproductive biology. They are especially useful for studying membrane proteins. However, oocytes are extremely fragile and sensitive to mechanical manipulation and osmotic shocks, making sample preparation a critical and challenging step. We present an innovative, simple and sensitive approach to oocyte sample preparation for 3D STED acquisition. This involves alcohol dehydration and mounting into a high refractive index medium. This extended preparation procedure allowed us to successfully obtain a unique two-channel 3D STED SR image of an entire mouse oocyte. By optimising sample preparation, it is possible to overcome current limitations of SR methods and obtain high-resolution images of large biological structures, such as oocytes, in order to study fundamental biological processes. Lay Abstract: Super-resolution (SR) microscopy is a cutting-edge tool that allows scientists to view incredibly fine details in biological samples. However, it struggles with larger, thicker specimens, as they need to be optically clear and uniform for the best imaging results. In this study, we refined the sample preparation process to make it more suitable for SR microscopy. Our method includes carefully dehydrating biological samples with alcohol and then transferring them into a mounting medium that enhances optical clarity. This improved protocol enables high-resolution imaging of thick biological structures, which was previously challenging. By optimizing this preparation method, we hope to expand the use of SR microscopy for studying large biological samples, helping scientists better understand complex biological structures.
Collapse
Affiliation(s)
- Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Capek
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Chmelova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Valecka
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Kolackova
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Eliska Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova, Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondrej Horvath
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivan Novotny
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Qu L, Zhao S, Huang Y, Ye X, Wang K, Liu Y, Liu X, Mao H, Hu G, Chen W, Guo C, He J, Tan J, Li H, Chen L, Zhao W. Self-inspired learning for denoising live-cell super-resolution microscopy. Nat Methods 2024; 21:1895-1908. [PMID: 39261639 DOI: 10.1038/s41592-024-02400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances.
Collapse
Affiliation(s)
- Liying Qu
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Yuanyuan Huang
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xianxin Ye
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Kunhao Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Yuzhen Liu
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Xianming Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Heng Mao
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Chen
- School of Mechanical Science and Engineering, Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, China
| | - Changliang Guo
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Jiaye He
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiubin Tan
- Key Laboratory of Ultra-precision Intelligent Instrumentation of Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China
| | - Haoyu Li
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Ultra-precision Intelligent Instrumentation of Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Weisong Zhao
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Ultra-precision Intelligent Instrumentation of Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
6
|
Miller KK, Wang P, Grillet N. SUB-immunogold-SEM reveals nanoscale distribution of submembranous epitopes. Nat Commun 2024; 15:7864. [PMID: 39256352 PMCID: PMC11387508 DOI: 10.1038/s41467-024-51849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identify four critical sample preparation factors contributing to the method's sensitivity. We validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane protein distribution. We evaluate the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale MYO15A-L rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM extends the application of SEM-based nanoscale protein localization to the detection of intracellular epitopes on the exposed surfaces of any cell.
Collapse
Affiliation(s)
- Katharine K Miller
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Liu X, Li M, Woo S. Subcellular Drug Distribution: Exploring Organelle-Specific Characteristics for Enhanced Therapeutic Efficacy. Pharmaceutics 2024; 16:1167. [PMID: 39339204 PMCID: PMC11434838 DOI: 10.3390/pharmaceutics16091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The efficacy and potential toxicity of drug treatments depends on the drug concentration at its site of action, intricately linked to its distribution within diverse organelles of mammalian cells. These organelles, including the nucleus, endosome, lysosome, mitochondria, endoplasmic reticulum, Golgi apparatus, lipid droplets, exosomes, and membrane-less structures, create distinct sub-compartments within the cell, each with unique biological features. Certain structures within these sub-compartments possess the ability to selectively accumulate or exclude drugs based on their physicochemical attributes, directly impacting drug efficacy. Under pathological conditions, such as cancer, many cells undergo dynamic alterations in subcellular organelles, leading to changes in the active concentration of drugs. A mechanistic and quantitative understanding of how organelle characteristics and abundance alter drug partition coefficients is crucial. This review explores biological factors and physicochemical properties influencing subcellular drug distribution, alongside strategies for modulation to enhance efficacy. Additionally, we discuss physiologically based computational models for subcellular drug distribution, providing a quantifiable means to simulate and predict drug distribution at the subcellular level, with the potential to optimize drug development strategies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| | - Miaomiao Li
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210-1267, USA;
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| |
Collapse
|
8
|
Zulueta Diaz YDLM, Arnspang EC. Super-resolution microscopy to study membrane nanodomains and transport mechanisms in the plasma membrane. Front Mol Biosci 2024; 11:1455153. [PMID: 39290992 PMCID: PMC11405310 DOI: 10.3389/fmolb.2024.1455153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Biological membranes are complex, heterogeneous, and dynamic systems that play roles in the compartmentalization and protection of cells from the environment. It is still a challenge to elucidate kinetics and real-time transport routes for molecules through biological membranes in live cells. Currently, by developing and employing super-resolution microscopy; increasing evidence indicates channels and transporter nano-organization and dynamics within membranes play an important role in these regulatory mechanisms. Here we review recent advances and discuss the major advantages and disadvantages of using super-resolution microscopy to investigate protein organization and transport within plasma membranes.
Collapse
Affiliation(s)
| | - Eva C Arnspang
- Department of Green Technology, SDU Biotechnology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Kim D, Bossi ML, Belov VN, Hell SW. Supramolecular Complex of Cucurbit[7]uril with Diketopyrrolopyrole Dye: Fluorescence Boost, Biolabeling and Optical Microscopy. Angew Chem Int Ed Engl 2024; 63:e202410217. [PMID: 38881490 DOI: 10.1002/anie.202410217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
New photostable and bright supramolecular complexes based on cucurbit[7]uril (CB7) host and diketopyrrolopyrole (DPP) guest dyes having two positively charged 4-(trimethylammonio)phenyl groups were prepared and characterized. The dye core displays large Stokes shift (in H2O, abs./emission max. 480/550 nm; ϵ~19 000, τfl>4 ns), strong binding with the host (~560 nM Kd) and a linker affording fluorescence detection of bioconjugates with antibody and nanobody. Combination of protein-functionalized DPP dye with CB7 improves photostability and affords up to 12-fold emission gain. Two-color confocal and stimulated emission depletion (STED) microscopy with 595 nm or 655 nm STED depletion lasers shows that the presence of CB7 not only leads to improved brightness and image quality, but also results in DPP becoming cell-permeable.
Collapse
Affiliation(s)
- Dojin Kim
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Kokot H, Kokot B, Pišlar A, Esih H, Gabrič A, Urbančič D, El R, Urbančič I, Pajk S. Amphiphilic coumarin-based probes for live-cell STED nanoscopy of plasma membrane. Bioorg Chem 2024; 150:107554. [PMID: 38878753 DOI: 10.1016/j.bioorg.2024.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 07/21/2024]
Abstract
Plasma membranes are vital biological structures, serving as protective barriers and participating in various cellular processes. In the field of super-resolution optical microscopy, stimulated emission depletion (STED) nanoscopy has emerged as a powerful method for investigating plasma membrane-related phenomena. However, many applications of STED microscopy are critically restricted by the limited availability of suitable fluorescent probes. This paper reports on the development of two amphiphilic membrane probes, SHE-2H and SHE-2N, specially designed for STED nanoscopy. SHE-2N, in particular, demonstrates quick and stable plasma membrane labelling with negligible intracellular redistribution. Both probes exhibit outstanding photostability and resolution improvement in STED nanoscopy, and are also suited for two-photon excitation microscopy. Furthermore, microscopy experiments and cytotoxicity tests revealed no noticeable cytotoxicity of probe SHE-2N at concentration used for fluorescence imaging. Spectral analysis and fluorescence lifetime measurements conducted on probe SHE-2N using giant unilamellar vesicles, revealed that emission spectra and fluorescence lifetimes exhibited minimal sensitivity to lipid composition variations. These novel probes significantly augment the arsenal of tools available for high-resolution plasma membrane research, enabling a more profound exploration of cellular processes and dynamics.
Collapse
Affiliation(s)
- Hana Kokot
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Boštjan Kokot
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Anja Pišlar
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Hana Esih
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Alen Gabrič
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Dunja Urbančič
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Rojbin El
- Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Iztok Urbančič
- Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
11
|
Fritsche S, Fronek F, Mach RL, Steiger MG. Applicability of non-invasive and live-cell holotomographic imaging on fungi. J Microbiol Methods 2024; 224:106983. [PMID: 38945304 DOI: 10.1016/j.mimet.2024.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The ability to acquire three-dimensional (3D) information of cellular structures without the need for fluorescent tags or staining makes holotomographic imaging a powerful tool in cellular biology. It provides valuable insights by measuring the refractive index (RI), an optical parameter describing the phase delay of light that passes through the living cell. Here, we demonstrate holotomographic imaging on industrial relevant ascomycete fungi and study their development and morphogenesis. This includes conidial germination, subcellular dynamics, and cytoplasmic flow during hyphal growth in Aspergillus niger. In addition, growth and budding of Aureobasidium pullulans cells are captured using holotomographic microscopy. Coupled to fluorescence imaging, lipid droplets, vacuoles, the mitochondrial network, and nuclei are targeted and analyzed in the 3D RI reconstructed images. While lipid droplets and vacuoles can be assigned to a specific RI pattern, mitochondria and nuclei were not pronounced. We show, that the lower sensitivity of RI measurements derives from the fungal cell wall that acts as an additional barrier for the illumination light of the microscope. After cell wall digest of hyphae and protoplast formation of A. niger expressing GFP-tagged histone H2A, location of nuclei could be determined by non-invasive RI measurements. Furthermore, we used coupled fluorescence microscopy to observe migration of nuclei in unperturbed hyphal segments and duplication during growth on a single-cell level. Detailed micromorphological studies in Saccharomyces cerevisiae and Trichoderma reesei are challenging due to cell size restrictions. Overall, holotomography opens up new avenues for exploring dynamic cellular processes in real time and enables the visualization of fungi from a new perspective.
Collapse
Affiliation(s)
- Susanne Fritsche
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria
| | - Felix Fronek
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria
| | - Matthias G Steiger
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Research Unit of Biochemical Technology, Technische Universität Wien, Gumpendorferstraße 1A, Vienna, Austria.
| |
Collapse
|
12
|
Lin CC, Suzuki A. Calibrating Fluorescence Microscopy With 3D-Speckler (3D Fluorescence Speckle Analyzer). Bio Protoc 2024; 14:e5051. [PMID: 39210955 PMCID: PMC11349494 DOI: 10.21769/bioprotoc.5051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Fluorescence microscopy has been widely accessible and indispensable in cell biology research. This technique enables researchers to label targets, ranging from individual entities to multiple groups, with fluorescent markers. It offers precise determinations of localization, size, and shape, along with accurate quantifications of fluorescence signal intensities. Furthermore, an ideal fluorescence microscope can achieve approximately 250 nm in lateral and 600 nm in axial resolution. Despite its integral role in these measurements, the calibration of fluorescence microscopes is often overlooked. This protocol introduces the use of 3D-Speckler (3D fluorescence speckle analyzer), a semi-automated software tool we have recently developed, for calibrating fluorescence microscopy. Calibration of fluorescence microscopy includes determining resolution limits, validating accuracy in size measurements, evaluating illumination flatness, and determining chromatic aberrations. 3D-Speckler is user-friendly and enables precise quantification of fluorescence puncta, including nanoscale 2D/3D particle size, precise locations, and intensity information. By utilizing multispectral fluorescence beads of known sizes alongside 3D-Speckler, the software can effectively calibrate imaging systems. We emphasize the importance of routine calibration for imaging systems to maintain their integrity and reproducibility, ensuring accurate quantification. This protocol provides a detailed step-by-step guide on using 3D-Speckler to calibrate imaging systems. Key features • Semi-automated particle detection. • Accurate three-dimensional measurement of fluorescent particle sizes. • High-precision three-dimensional localization of fluorescent particles. • Precision analysis of point spread function and chromatic aberration in fluorescence microscopy.
Collapse
Affiliation(s)
- Chieh-Chang Lin
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Norman RX, Chen YC, Recchia EE, Loi J, Rosemarie Q, Lesko SL, Patel S, Sherer N, Takaku M, Burkard ME, Suzuki A. One step 4x and 12x 3D-ExM: robust super-resolution microscopy in cell biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607782. [PMID: 39185153 PMCID: PMC11343106 DOI: 10.1101/2024.08.13.607782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Super-resolution microscopy has become an indispensable tool across diverse research fields, offering unprecedented insights into biological architectures with nanometer scale resolution. Compared to traditional nanometer-scale imaging methods such as electron microscopy, super-resolution microscopy offers several advantages, including the simultaneous labeling of multiple target biomolecules with high specificity and simpler sample preparation, making it accessible to most researchers. In this study, we introduce two optimized methods of super-resolution imaging: 4-fold and 12-fold 3D-isotropic and preserved Expansion Microscopy (4x and 12x 3D-ExM). 3D-ExM is a straightforward expansion microscopy method featuring a single-step process, providing robust and reproducible 3D isotropic expansion for both 2D and 3D cell culture models. With standard confocal microscopy, 12x 3D-ExM achieves a lateral resolution of under 30 nm, enabling the visualization of nanoscale structures, including chromosomes, kinetochores, nuclear pore complexes, and Epstein-Barr virus particles. These results demonstrate that 3D-ExM provides cost-effective and user-friendly super-resolution microscopy, making it highly suitable for a wide range of cell biology research, including studies on cellular and chromatin architectures.
Collapse
Affiliation(s)
- Roshan X Norman
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yu-Chia Chen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Emma E Recchia
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan Loi
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Quincy Rosemarie
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sydney L Lesko
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Smit Patel
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nathan Sherer
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Motoki Takaku
- Department of Biomedical Science, University of North Dakota School of Medicine and Health Science, Grand Forks, North Dakota, USA
| | - Mark E Burkard
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, Hematology/Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aussie Suzuki
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Lead Contact
| |
Collapse
|
14
|
Chota A, Abrahamse H, George BP. Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPcS 4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagnosis Photodyn Ther 2024; 48:104252. [PMID: 38901719 DOI: 10.1016/j.pdpdt.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Breast cancer remains a formidable challenge in oncology despite significant advancements in treatment modalities. Conventional therapies such as surgery, chemotherapy, radiation therapy, and hormonal therapy have been the mainstay in managing breast cancer for decades. However, a subset of patient's experiences treatment failure, leading to disease recurrence and progression. Therefore, this study investigates the therapeutic potential of green-synthesized silver nanoparticles (AgNPs) using an African medicinal plant (Dicoma anomala methanol root extract) as a reducing agent for combating breast cancer. AgNPs were synthesized using the bottom-up approach and later modified with liposomes (Lip) loaded with photosensitizer (PS) zinc phthalocyanine tetrasulfonate (Lip@ZnPcS4) using thin film hydration method. The successful formation and Lip modification of AgNPs, alongside ZnPcS4, were confirmed through various analytical techniques including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Following a 24 h treatment period, MCF-7 cells were assessed for viability using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT viability assay), cell death analysis using mitochondrial membrane potential (MMP) (ΔΨm), Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) kit, and caspase- 3, 8 and 9 activities. The experiments were repeated four times (n = 4), and the results were analyzed using SPSS statistical software version 27, with a confidence interval set at 0.95. The synthesized nanoparticles and nanocomplex, including AgNPs, AgNPs-Lip, Lip@ZnPcS4, and AgNPs-Lip@ZnPcS4, exhibited notable cytotoxicity and therapeutic efficacy against MCF-7 breast cancer cells. Notably, the induction of apoptosis, governed by the upregulation of apoptotic proteins i.e., caspase 8 and 9 activities. In addition, caspase 3 was not expressed by MCF-7 cells in both control and experimental groups. Given the challenging prognosis associated with breast cancer, the findings underscore the promise of liposomal nanoformulations in cancer photodynamic therapy (PDT), thus warranting further exploration in clinical settings.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
15
|
Zhang C, Guan Y, Tao X, Tian L, Chen L, Xiong Y, Liu G, Wu Z, Tian Y. On-line correlative imaging of cryo-PALM and soft X-ray tomography for identification of subcellular structures. OPTICS EXPRESS 2024; 32:27508-27518. [PMID: 39538585 DOI: 10.1364/oe.532138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 11/16/2024]
Abstract
Correlative imaging of fluorescence microscopy and soft X-ray microscopy plays a crucial role in exploring the relationship between structure and function in cellular biology. However, the current correlative imaging methods are limited either to off-line or low-resolution fluorescence imaging. In this study, we developed an integrated on-line cryogenic photoactivated localization microscopy (cryo-PALM) system at a soft X-ray microscopy station. This design eliminates some critical issues such as sample damage and complex post-correlation arising from transferring samples between different cryostages. Furthermore, we successfully achieved correlative imaging of cryopreserved near-native cells, with a resolution of about 50 nm of cryo-PALM. Therefore, the developed on-line correlation imaging platform provides a powerful tool for investigating the intricate relationship between structure and function in biological and molecular interactions, as well as in other life science disciplines.
Collapse
|
16
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
17
|
Liu J, Tan YY, Zheng W, Wang Y, Ju LA, Su QP. Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology. J Nanobiotechnology 2024; 22:363. [PMID: 38910248 PMCID: PMC11194919 DOI: 10.1186/s12951-024-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.
Collapse
Affiliation(s)
- Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuping Yolanda Tan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Wen Zheng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Heart Research Institute, Newtown, NSW, 2042, Australia.
| |
Collapse
|
18
|
Budiarta M, Streit M, Beliu G. Site-specific protein labeling strategies for super-resolution microscopy. Curr Opin Chem Biol 2024; 80:102445. [PMID: 38490137 DOI: 10.1016/j.cbpa.2024.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Super-resolution microscopy (SRM) has transformed our understanding of proteins' subcellular organization and revealed cellular details down to nanometers, far beyond conventional microscopy. While localization precision is independent of the number of fluorophores attached to a biomolecule, labeling density is a decisive factor for resolving complex biological structures. The average distance between adjacent fluorophores should be less than half the desired spatial resolution for optimal clarity. While this was not a major limitation in recent decades, the success of modern microscopy approaching molecular resolution down to the single-digit nanometer range will depend heavily on advancements in fluorescence labeling. This review highlights recent advances and challenges in labeling strategies for SRM, focusing on site-specific labeling technologies. These advancements are crucial for improving SRM precision and expanding our understanding of molecular interactions.
Collapse
Affiliation(s)
- Made Budiarta
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany; Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS, UMR 5297, 33076 Bordeaux, France.
| |
Collapse
|
19
|
Abouelkheir M, Roy T, Krzyscik MA, Özdemir E, Hristova K. Investigations of membrane protein interactions in cells using fluorescence microscopy. Curr Opin Struct Biol 2024; 86:102816. [PMID: 38648680 PMCID: PMC11141325 DOI: 10.1016/j.sbi.2024.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The interactions between proteins in membranes govern many cellular functions. Our ability to probe for such interactions has greatly evolved in recent years due to the introduction of new fluorescence techniques. As a result, we currently have a choice of methods that can be used to assess the spatial distribution of a membrane protein, its association state, and the thermodynamic stability of the oligomers in the native milieu. These biophysical measurements have revealed new insights into important biological processes in cellular membranes.
Collapse
Affiliation(s)
- Mahmoud Abouelkheir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA; Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore MD 21218, USA
| | - Tanaya Roy
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA; Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore MD 21218, USA.
| |
Collapse
|
20
|
Galaz-Montoya JG. The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography. Front Mol Biosci 2024; 11:1390858. [PMID: 38868297 PMCID: PMC11167099 DOI: 10.3389/fmolb.2024.1390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Advances in cryogenic electron microscopy (cryoEM) single particle analysis have revolutionized structural biology by facilitating the in vitro determination of atomic- and near-atomic-resolution structures for fully hydrated macromolecular complexes exhibiting compositional and conformational heterogeneity across a wide range of sizes. Cryogenic electron tomography (cryoET) and subtomogram averaging are rapidly progressing toward delivering similar insights for macromolecular complexes in situ, without requiring tags or harsh biochemical purification. Furthermore, cryoET enables the visualization of cellular and tissue phenotypes directly at molecular, nanometric resolution without chemical fixation or staining artifacts. This forward-looking review covers recent developments in cryoEM/ET and related technologies such as cryogenic focused ion beam milling scanning electron microscopy and correlative light microscopy, increasingly enhanced and supported by artificial intelligence algorithms. Their potential application to emerging concepts is discussed, primarily the prospect of complementing medical histopathology analysis. Machine learning solutions are poised to address current challenges posed by "big data" in cryoET of tissues, cells, and macromolecules, offering the promise of enabling novel, quantitative insights into disease processes, which may translate into the clinic and lead to improved diagnostics and targeted therapeutics.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
21
|
Doležalová A, Beránková D, Koláčková V, Hřibová E. Insight into chromatin compaction and spatial organization in rice interphase nuclei. FRONTIERS IN PLANT SCIENCE 2024; 15:1358760. [PMID: 38863533 PMCID: PMC11165205 DOI: 10.3389/fpls.2024.1358760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Chromatin organization and its interactions are essential for biological processes, such as DNA repair, transcription, and DNA replication. Detailed cytogenetics data on chromatin conformation, and the arrangement and mutual positioning of chromosome territories in interphase nuclei are still widely missing in plants. In this study, level of chromatin condensation in interphase nuclei of rice (Oryza sativa) and the distribution of chromosome territories (CTs) were analyzed. Super-resolution, stimulated emission depletion (STED) microscopy showed different levels of chromatin condensation in leaf and root interphase nuclei. 3D immuno-FISH experiments with painting probes specific to chromosomes 9 and 2 were conducted to investigate their spatial distribution in root and leaf nuclei. Six different configurations of chromosome territories, including their complete association, weak association, and complete separation, were observed in root meristematic nuclei, and four configurations were observed in leaf nuclei. The volume of CTs and frequency of their association varied between the tissue types. The frequency of association of CTs specific to chromosome 9, containing NOR region, is also affected by the activity of the 45S rDNA locus. Our data suggested that the arrangement of chromosomes in the nucleus is connected with the position and the size of the nucleolus.
Collapse
Affiliation(s)
| | | | | | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Science, Centre of Plants Structural and Functional Genomics, Olomouc, Czechia
| |
Collapse
|
22
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
23
|
Hultgren NW, Zhou T, Williams DS. Machine learning-based 3D segmentation of mitochondria in polarized epithelial cells. Mitochondrion 2024; 76:101882. [PMID: 38599302 PMCID: PMC11709008 DOI: 10.1016/j.mito.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondria are dynamic organelles that alter their morphological characteristics in response to functional needs. Therefore, mitochondrial morphology is an important indicator of mitochondrial function and cellular health. Reliable segmentation of mitochondrial networks in microscopy images is a crucial initial step for further quantitative evaluation of their morphology. However, 3D mitochondrial segmentation, especially in cells with complex network morphology, such as in highly polarized cells, remains challenging. To improve the quality of 3D segmentation of mitochondria in super-resolution microscopy images, we took a machine learning approach, using 3D Trainable Weka, an ImageJ plugin. We demonstrated that, compared with other commonly used methods, our approach segmented mitochondrial networks effectively, with improved accuracy in different polarized epithelial cell models, including differentiated human retinal pigment epithelial (RPE) cells. Furthermore, using several tools for quantitative analysis following segmentation, we revealed mitochondrial fragmentation in bafilomycin-treated RPE cells.
Collapse
Affiliation(s)
- Nan W Hultgren
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
| | - Tianli Zhou
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Douglas CM, Bird JE, Kopinke D, Esser KA. An optimized approach to study nanoscale sarcomere structure utilizing super-resolution microscopy with nanobodies. PLoS One 2024; 19:e0300348. [PMID: 38687705 PMCID: PMC11060602 DOI: 10.1371/journal.pone.0300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/23/2024] [Indexed: 05/02/2024] Open
Abstract
The sarcomere is the fundamental contractile unit in skeletal muscle, and the regularity of its structure is critical for function. Emerging data demonstrates that nanoscale changes to the regularity of sarcomere structure can affect the overall function of the protein dense ~2μm sarcomere. Further, sarcomere structure is implicated in many clinical conditions of muscle weakness. However, our understanding of how sarcomere structure changes in disease, especially at the nanoscale, has been limited in part due to the inability to robustly detect and measure at sub-sarcomere resolution. We optimized several methodological steps and developed a robust pipeline to analyze sarcomere structure using structured illumination super-resolution microscopy in conjunction with commercially-available and fluorescently-conjugated Variable Heavy-Chain only fragment secondary antibodies (nanobodies), and achieved a significant increase in resolution of z-disc width (353nm vs. 62nm) compared to confocal microscopy. The combination of these methods provides a unique approach to probe sarcomere protein localization at the nanoscale and may prove advantageous for analysis of other cellular structures.
Collapse
Affiliation(s)
- Collin M. Douglas
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan E. Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
25
|
Carsten A, Wolters M, Aepfelbacher M. Super-resolution fluorescence microscopy for investigating bacterial cell biology. Mol Microbiol 2024; 121:646-658. [PMID: 38041391 DOI: 10.1111/mmi.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Super-resolution fluorescence microscopy technologies developed over the past two decades have pushed the resolution limit for fluorescently labeled molecules into the nanometer range. These technologies have the potential to study bacterial structures, for example, macromolecular assemblies such as secretion systems, with single-molecule resolution on a millisecond time scale. Here we review recent applications of super-resolution fluorescence microscopy with a focus on bacterial secretion systems. We also describe MINFLUX fluorescence nanoscopy, a relatively new technique that promises to one day produce molecular movies of molecular machines in action.
Collapse
Affiliation(s)
- Alexander Carsten
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Manuel Wolters
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Micheva KD, Burden JJ, Schifferer M. Array tomography: trails to discovery. METHODS IN MICROSCOPY 2024; 1:9-17. [PMID: 39119254 PMCID: PMC11308915 DOI: 10.1515/mim-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 08/10/2024]
Abstract
Tissue slicing is at the core of many approaches to studying biological structures. Among the modern volume electron microscopy (vEM) methods, array tomography (AT) is based on serial ultramicrotomy, section collection onto solid support, imaging via light and/or scanning electron microscopy, and re-assembly of the serial images into a volume for analysis. While AT largely uses standard EM equipment, it provides several advantages, including long-term preservation of the sample and compatibility with multi-scale and multi-modal imaging. Furthermore, the collection of serial ultrathin sections improves axial resolution and provides access for molecular labeling, which is beneficial for light microscopy and immunolabeling, and facilitates correlation with EM. Despite these benefits, AT techniques are underrepresented in imaging facilities and labs, due to their perceived difficulty and lack of training opportunities. Here we point towards novel developments in serial sectioning and image analysis that facilitate the AT pipeline, and solutions to overcome constraints. Because no single vEM technique can serve all needs regarding field of view and resolution, we sketch a decision tree to aid researchers in navigating the plethora of options available. Lastly, we elaborate on the unexplored potential of AT approaches to add valuable insight in diverse biological fields.
Collapse
Affiliation(s)
| | | | - Martina Schifferer
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
27
|
Yang RS, Traver M, Barefoot N, Stephens T, Alabanza C, Manzella-Lapeira J, Zou G, Wolff J, Li Y, Resto M, Shadrick W, Yang Y, Ivleva VB, Tsybovsky Y, Carlton K, Brzostowski J, Gall JG, Lei QP. Mosaic quadrivalent influenza vaccine single nanoparticle characterization. Sci Rep 2024; 14:4534. [PMID: 38402303 PMCID: PMC10894272 DOI: 10.1038/s41598-024-54876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Recent work by our laboratory and others indicates that co-display of multiple antigens on protein-based nanoparticles may be key to induce cross-reactive antibodies that provide broad protection against disease. To reach the ultimate goal of a universal vaccine for seasonal influenza, a mosaic influenza nanoparticle vaccine (FluMos-v1) was developed for clinical trial (NCT04896086). FluMos-v1 is unique in that it is designed to co-display four recently circulating haemagglutinin (HA) strains; however, current vaccine analysis techniques are limited to nanoparticle population analysis, thus, are unable to determine the valency of an individual nanoparticle. For the first time, we demonstrate by total internal reflection fluorescence microscopy and supportive physical-chemical methods that the co-display of four antigens is indeed achieved in single nanoparticles. Additionally, we have determined percentages of multivalent (mosaic) nanoparticles with four, three, or two HA proteins. The integrated imaging and physicochemical methods we have developed for single nanoparticle multivalency will serve to further understand immunogenicity data from our current FluMos-v1 clinical trial.
Collapse
Affiliation(s)
- Rong Sylvie Yang
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Maria Traver
- Twinbrook Imaging Facility, LIG, NIAID, NIH, Gaithersburg, MD, USA
| | - Nathan Barefoot
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Casper Alabanza
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | | | - Guozhang Zou
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Jeremy Wolff
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Yile Li
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Melissa Resto
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - William Shadrick
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Yanhong Yang
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kevin Carlton
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | | | - Jason G Gall
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA.
| |
Collapse
|
28
|
Sobo JM, Alagna NS, Sun SX, Wilson KL, Reddy KL. Lamins: The backbone of the nucleocytoskeleton interface. Curr Opin Cell Biol 2024; 86:102313. [PMID: 38262116 DOI: 10.1016/j.ceb.2023.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The nuclear lamina (NL) is a crucial component of the inner nuclear membrane (INM) and consists of lamin filaments and associated proteins. Lamins are type V intermediate filament proteins essential for maintaining the integrity and mechanical properties of the nucleus. In human cells, 'B-type' lamins (lamin B1 and lamin B2) are ubiquitously expressed, while 'A-type' lamins (lamin A, lamin C, and minor isoforms) are expressed in a tissue- and development-specific manner. Lamins homopolymerize to form filaments that localize primarily near the INM, but A-type lamins also localize to and function in the nucleoplasm. Lamins play central roles in the assembly, structure, positioning, and mechanics of the nucleus, modulating cell signaling and influencing development, differentiation, and other activities. This review highlights recent findings on the structure and regulation of lamin filaments, providing insights into their multifaceted functions, including their role as "mechanosensors", delving into the emerging significance of lamin filaments as vital links between cytoskeletal and nuclear structures, chromatin organization, and the genome.
Collapse
Affiliation(s)
- Joan M Sobo
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nicholas S Alagna
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katherine L Wilson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
30
|
Sekine S, Tarama M, Wada H, Sami MM, Shibata T, Hayashi S. Emergence of periodic circumferential actin cables from the anisotropic fusion of actin nanoclusters during tubulogenesis. Nat Commun 2024; 15:464. [PMID: 38267421 PMCID: PMC10808230 DOI: 10.1038/s41467-023-44684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
The periodic circumferential cytoskeleton supports various tubular tissues. Radial expansion of the tube lumen causes anisotropic tensile stress, which can be exploited as a geometric cue. However, the molecular machinery linking anisotropy to robust circumferential patterning is poorly understood. Here, we aim to reveal the emergent process of circumferential actin cable formation in a Drosophila tracheal tube. During luminal expansion, sporadic actin nanoclusters emerge and exhibit circumferentially biased motion and fusion. RNAi screening reveals the formin family protein, DAAM, as an essential component responding to tissue anisotropy, and non-muscle myosin II as a component required for nanocluster fusion. An agent-based model simulation suggests that crosslinkers play a crucial role in nanocluster formation and cluster-to-cable transition occurs in response to mechanical anisotropy. Altogether, we propose that an actin nanocluster is an organizational unit that responds to stress in the cortical membrane and builds a higher-order cable structure.
Collapse
Affiliation(s)
- Sayaka Sekine
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Mitsusuke Tarama
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Department of Physics, Faculty of Science, Kyushu University, Fukuoka, Japan.
| | - Housei Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mustafa M Sami
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
31
|
Miller KK, Wang P, Grillet N. SUB-Immunogold-SEM reveals nanoscale distribution of submembranous epitopes. RESEARCH SQUARE 2024:rs.3.rs-3876898. [PMID: 38343799 PMCID: PMC10854333 DOI: 10.21203/rs.3.rs-3876898/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identified four critical sample preparation factors that contribute to the method's sensitivity and validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane proteins. We evaluated the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale Myosin rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM provides a novel solution for nanoscale protein localization at the exposed surface of any cell.
Collapse
Affiliation(s)
- Katharine K. Miller
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Gormal RS, Martinez-Marmol R, Brooks AJ, Meunier FA. Location, location, location: Protein kinase nanoclustering for optimised signalling output. eLife 2024; 13:e93902. [PMID: 38206309 PMCID: PMC10783869 DOI: 10.7554/elife.93902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates and perform their critical functions, PK localisation is therefore tightly regulated in space and time, relying upon a range of clustering mechanisms. These include post-translational modifications, protein-protein and protein-lipid interactions, as well as liquid-liquid phase separation, allowing spatial restriction and ultimately regulating access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclustering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a cellular quantal unit of signalling output capable of integration and regulation in space and time. We will specifically outline the various super-resolution microscopy approaches currently used to elucidate the composition and mechanisms driving PK nanoscale clustering and explore the pathological consequences of altered kinase clustering in the context of neurodegenerative disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Andrew J Brooks
- Frazer Institute, The University of QueenslandWoolloongabbaAustralia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- School of Biomedical Sciences, The University of QueenslandSt LuciaAustralia
| |
Collapse
|
33
|
Saguy A, Alalouf O, Opatovski N, Jang S, Heilemann M, Shechtman Y. DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning. Nat Methods 2023; 20:1939-1948. [PMID: 37500760 DOI: 10.1038/s41592-023-01966-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Single-molecule localization microscopy (SMLM) has revolutionized biological imaging, improving the spatial resolution of traditional microscopes by an order of magnitude. However, SMLM techniques require long acquisition times, typically a few minutes, to yield a single super-resolved image, because they depend on accumulation of many localizations over thousands of recorded frames. Hence, the capability of SMLM to observe dynamics at high temporal resolution has always been limited. In this work, we present DBlink, a deep-learning-based method for super spatiotemporal resolution reconstruction from SMLM data. The input to DBlink is a recorded video of SMLM data and the output is a super spatiotemporal resolution video reconstruction. We use a convolutional neural network combined with a bidirectional long short-term memory network architecture, designed for capturing long-term dependencies between different input frames. We demonstrate DBlink performance on simulated filaments and mitochondria-like structures, on experimental SMLM data under controlled motion conditions and on live-cell dynamic SMLM. DBlink's spatiotemporal interpolation constitutes an important advance in super-resolution imaging of dynamic processes in live cells.
Collapse
Affiliation(s)
- Alon Saguy
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Onit Alalouf
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nadav Opatovski
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Soohyen Jang
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, IMPRS on Cellular Biophysics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, IMPRS on Cellular Biophysics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Yoav Shechtman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
34
|
Puchkov D, Müller PM, Lehmann M, Matthaeus C. Analyzing the cellular plasma membrane by fast and efficient correlative STED and platinum replica EM. Front Cell Dev Biol 2023; 11:1305680. [PMID: 38099299 PMCID: PMC10720448 DOI: 10.3389/fcell.2023.1305680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
The plasma membrane of mammalian cells links transmembrane receptors, various structural components, and membrane-binding proteins to subcellular processes, allowing inter- and intracellular communication. Therefore, membrane-binding proteins, together with structural components such as actin filaments, modulate the cell membrane in their flexibility, stiffness, and curvature. Investigating membrane components and curvature in cells remains challenging due to the diffraction limit in light microscopy. Preparation of 5-15-nm-thin plasma membrane sheets and subsequent inspection by metal replica transmission electron microscopy (TEM) reveal detailed information about the cellular membrane topology, including the structure and curvature. However, electron microscopy cannot identify proteins associated with specific plasma membrane domains. Here, we describe a novel adaptation of correlative super-resolution light microscopy and platinum replica TEM (CLEM-PREM), allowing the analysis of plasma membrane sheets with respect to their structural details, curvature, and associated protein composition. We suggest a number of shortcuts and troubleshooting solutions to contemporary PREM protocols. Thus, implementation of super-resolution stimulated emission depletion (STED) microscopy offers significant reduction in sample preparation time and reduced technical challenges for imaging and analysis. Additionally, highly technical challenges associated with replica preparation and transfer on a TEM grid can be overcome by scanning electron microscopy (SEM) imaging. The combination of STED microscopy and platinum replica SEM or TEM provides the highest spatial resolution of plasma membrane proteins and their underlying membrane and is, therefore, a suitable method to study cellular events like endocytosis, membrane trafficking, or membrane tension adaptations.
Collapse
Affiliation(s)
- Dmytro Puchkov
- Cellular Imaging Facility, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Paul Markus Müller
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martin Lehmann
- Cellular Imaging Facility, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Claudia Matthaeus
- Cellular Physiology of Nutrition, Institute for Nutritional Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
35
|
Graziotto ME, Kidman CJ, Adair LD, James SA, Harris HH, New EJ. Towards multimodal cellular imaging: optical and X-ray fluorescence. Chem Soc Rev 2023; 52:8295-8318. [PMID: 37910139 DOI: 10.1039/d3cs00509g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Imaging techniques permit the study of the molecular interactions that underlie health and disease. Each imaging technique collects unique chemical information about the cellular environment. Multimodal imaging, using a single probe that can be detected by multiple imaging modalities, can maximise the information extracted from a single cellular sample by combining the results of different imaging techniques. Of particular interest in biological imaging is the combination of the specificity and sensitivity of optical fluorescence microscopy (OFM) with the quantitative and element-specific nature of X-ray fluorescence microscopy (XFM). Together, these techniques give a greater understanding of how native elements or therapeutics affect the cellular environment. This review focuses on recent studies where both techniques were used in conjunction to study cellular systems, demonstrating the breadth of biological models to which this combination of techniques can be applied and the potential for these techniques to unlock untapped knowledge of disease states.
Collapse
Affiliation(s)
- Marcus E Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Clinton J Kidman
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon A James
- Australian Nuclear Science and Technology Organisation, Clayton, Victoria, 3168, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
36
|
García Fernández F, Huet S, Miné-Hattab J. Multi-Scale Imaging of the Dynamic Organization of Chromatin. Int J Mol Sci 2023; 24:15975. [PMID: 37958958 PMCID: PMC10649806 DOI: 10.3390/ijms242115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chromatin is now regarded as a heterogeneous and dynamic structure occupying a non-random position within the cell nucleus, where it plays a key role in regulating various functions of the genome. This current view of chromatin has emerged thanks to high spatiotemporal resolution imaging, among other new technologies developed in the last decade. In addition to challenging early assumptions of chromatin being regular and static, high spatiotemporal resolution imaging made it possible to visualize and characterize different chromatin structures such as clutches, domains and compartments. More specifically, super-resolution microscopy facilitates the study of different cellular processes at a nucleosome scale, providing a multi-scale view of chromatin behavior within the nucleus in different environments. In this review, we describe recent imaging techniques to study the dynamic organization of chromatin at high spatiotemporal resolution. We also discuss recent findings, elucidated by these techniques, on the chromatin landscape during different cellular processes, with an emphasis on the DNA damage response.
Collapse
Affiliation(s)
- Fabiola García Fernández
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, 75005 Paris, France;
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, 35000 Rennes, France;
- Institut Universitaire de France, 75231 Paris, France
| | - Judith Miné-Hattab
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, 75005 Paris, France;
| |
Collapse
|
37
|
Geiser A, Foylan S, Tinning PW, Bryant NJ, Gould GW. GLUT4 dispersal at the plasma membrane of adipocytes: a super-resolved journey. Biosci Rep 2023; 43:BSR20230946. [PMID: 37791639 PMCID: PMC10600063 DOI: 10.1042/bsr20230946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023] Open
Abstract
In adipose tissue, insulin stimulates glucose uptake by mediating the translocation of GLUT4 from intracellular vesicles to the plasma membrane. In 2010, insulin was revealed to also have a fundamental impact on the spatial distribution of GLUT4 within the plasma membrane, with the existence of two GLUT4 populations at the plasma membrane being defined: (1) as stationary clusters and (2) as diffusible monomers. In this model, in the absence of insulin, plasma membrane-fused GLUT4 are found to behave as clusters. These clusters are thought to arise from exocytic events that retain GLUT4 at their fusion sites; this has been proposed to function as an intermediate hub between GLUT4 exocytosis and re-internalisation. By contrast, insulin stimulation induces the dispersal of GLUT4 clusters into monomers and favours a distinct type of GLUT4-vesicle fusion event, known as fusion-with-release exocytosis. Here, we review how super-resolution microscopy approaches have allowed investigation of the characteristics of plasma membrane-fused GLUT4 and further discuss regulatory step(s) involved in the GLUT4 dispersal machinery, introducing the scaffold protein EFR3 which facilitates localisation of phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) to the cell surface. We consider how dispersal may be linked to the control of transporter activity, consider whether macro-organisation may be a widely used phenomenon to control proteins within the plasma membrane, and speculate on the origin of different forms of GLUT4-vesicle exocytosis.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Shannan Foylan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Peter W Tinning
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Nia J Bryant
- Department of Biology, University of York, Heslington, York, U.K
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
38
|
Saunders C, de Villiers CA, Stevens MM. Single Particle Chemical Characterisation of Nanoformulations for Cargo Delivery. AAPS J 2023; 25:94. [PMID: 37783923 DOI: 10.1208/s12248-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023] Open
Abstract
Nanoparticles can encapsulate a range of therapeutics, from small molecule drugs to sensitive biologics, to significantly improve their biodistribution and biostability. Whilst the regulatory approval of several of these nanoformulations has proven their translatability, there remain several hurdles to the translation of future nanoformulations, leading to a high rate of candidate nanoformulations failing during the drug development process. One barrier is that the difficulty in tightly controlling nanoscale particle synthesis leads to particle-to-particle heterogeneity, which hinders manufacturing and quality control, and regulatory quality checks. To understand and mitigate this heterogeneity requires advancements in nanoformulation characterisation beyond traditional bulk methods to more precise, single particle techniques. In this review, we compare commercially available single particle techniques, with a particular focus on single particle Raman spectroscopy, to provide a guide to adoption of these methods into development workflows, to ultimately reduce barriers to the translation of future nanoformulations.
Collapse
Affiliation(s)
- Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Camille A de Villiers
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
- Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
39
|
Kikuchi K, Kaur A. Picture Perfect Precision: Biorthogonal Photoactivatable Tools Achieve Imaging with Molecular-Scale Precision. ACS CENTRAL SCIENCE 2023; 9:1518-1521. [PMID: 37637728 PMCID: PMC10450868 DOI: 10.1021/acscentsci.3c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, Monash University, Melbourne 3800, Australia
| | - Amandeep Kaur
- Medicinal Chemistry,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, Monash University, Melbourne 3800, Australia
| |
Collapse
|
40
|
Zhuang Y, Shi X. Expansion microscopy: A chemical approach for super-resolution microscopy. Curr Opin Struct Biol 2023; 81:102614. [PMID: 37253290 PMCID: PMC11103276 DOI: 10.1016/j.sbi.2023.102614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
Super-resolution microscopy is a series of imaging techniques that bypass the diffraction limit of resolution. Since the 1990s, optical approaches, such as single-molecular localization microscopy, have allowed us to visualize biological samples from the sub-organelle to the molecular level. Recently, a chemical approach called expansion microscopy emerged as a new trend in super-resolution microscopy. It physically enlarges cells and tissues, which leads to an increase in the effective resolution of any microscope by the length expansion factor. Compared with optical approaches, expansion microscopy has a lower cost and higher imaging depth but requires a more complex procedure. The integration of expansion microscopy and advanced microscopes significantly pushed forward the boundary of super-resolution microscopy. This review covers the current state of the art in expansion microscopy, including the latest methods and their applications, as well as challenges and opportunities for future research.
Collapse
Affiliation(s)
- Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA. https://twitter.com/YinyinZhuang
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
41
|
Tholen MME, Tas RP, Wang Y, Albertazzi L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem Commun (Camb) 2023; 59:8332-8342. [PMID: 37306078 PMCID: PMC10318573 DOI: 10.1039/d3cc00757j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
In the last decade, point accumulation for imaging in nanoscale topography (PAINT) has emerged as a versatile tool for single-molecule localization microscopy (SMLM). Currently, DNA-PAINT is the most widely used, in which a transient stochastically binding DNA docking-imaging pair is used to reconstruct specific characteristics of biological or synthetic materials on a single-molecule level. Slowly, the need for PAINT probes that are not dependent on DNA has emerged. These probes can be based on (i) endogenous interactions, (ii) engineered binders, (iii) fusion proteins, or (iv) synthetic molecules and provide complementary applications for SMLM. Therefore, researchers have been expanding the PAINT toolbox with new probes. In this review, we provide an overview of the currently existing probes that go beyond DNA and their applications and challenges.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Roderick P Tas
- Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
42
|
Gurkar AU, Gerencser AA, Mora AL, Nelson AC, Zhang AR, Lagnado AB, Enninful A, Benz C, Furman D, Beaulieu D, Jurk D, Thompson EL, Wu F, Rodriguez F, Barthel G, Chen H, Phatnani H, Heckenbach I, Chuang JH, Horrell J, Petrescu J, Alder JK, Lee JH, Niedernhofer LJ, Kumar M, Königshoff M, Bueno M, Sokka M, Scheibye-Knudsen M, Neretti N, Eickelberg O, Adams PD, Hu Q, Zhu Q, Porritt RA, Dong R, Peters S, Victorelli S, Pengo T, Khaliullin T, Suryadevara V, Fu X, Bar-Joseph Z, Ji Z, Passos JF. Spatial mapping of cellular senescence: emerging challenges and opportunities. NATURE AGING 2023; 3:776-790. [PMID: 37400722 PMCID: PMC10505496 DOI: 10.1038/s43587-023-00446-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Cellular senescence is a well-established driver of aging and age-related diseases. There are many challenges to mapping senescent cells in tissues such as the absence of specific markers and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed unprecedented characterization of senescence; however, many methodologies fail to provide spatial insights. The spatial component is essential, as senescent cells communicate with neighboring cells, impacting their function and the composition of extracellular space. The Cellular Senescence Network (SenNet), a National Institutes of Health (NIH) Common Fund initiative, aims to map senescent cells across the lifespan of humans and mice. Here, we provide a comprehensive review of the existing and emerging methodologies for spatial imaging and their application toward mapping senescent cells. Moreover, we discuss the limitations and challenges inherent to each technology. We argue that the development of spatially resolved methods is essential toward the goal of attaining an atlas of senescent cells.
Collapse
Affiliation(s)
- Aditi U Gurkar
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ana L Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anru R Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine and Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Anthony B Lagnado
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Pilar, Argentina
| | - Delphine Beaulieu
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Thompson
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Fei Wu
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Fernanda Rodriguez
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Grant Barthel
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hao Chen
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hemali Phatnani
- Columbia University Irving Medical Center and New York Genome Center, Columbia University, New York, NY, USA
| | | | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeremy Horrell
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Joana Petrescu
- Columbia University Irving Medical Center and New York Genome Center, Columbia University, New York, NY, USA
| | - Jonathan K Alder
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laura J Niedernhofer
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Manoj Kumar
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Melanie Königshoff
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marta Bueno
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Miiko Sokka
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Oliver Eickelberg
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Qianjiang Hu
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Quan Zhu
- University of California, San Diego, CA, USA
| | - Rebecca A Porritt
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Runze Dong
- Department of Biochemistry, Institute for Protein Design and Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Samuel Peters
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Thomas Pengo
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Timur Khaliullin
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Xiaonan Fu
- Department of Biochemistry, Institute for Protein Design and Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhicheng Ji
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine and Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
43
|
Parisi M, Lucidi M, Visca P, Cincotti G. Super-Resolution Optical Imaging of Bacterial Cells. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2023; 29:1-13. [DOI: 10.1109/jstqe.2022.3228121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Miranda Parisi
- Engineering Department, University Roma Tre, Rome, Italy
| | | | - Paolo Visca
- Science Department, University Roma Tre, Rome, Italy
| | | |
Collapse
|
44
|
Dai J, Wu Z, Li D, Peng G, Liu G, Zhou R, Wang C, Yan X, Liu F, Sun P, Zhou J, Lu G. Super-resolution dynamic tracking of cellular lipid droplets employing with a photostable deep red fluorogenic probe. Biosens Bioelectron 2023; 229:115243. [PMID: 36989580 DOI: 10.1016/j.bios.2023.115243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Lipid droplets (LDs) are critical organelles involved in many physiological processes in eukaryotic cells. To visualize and study LDs, particular the small/nascent LDs, the emerging super-resolution fluorescence imaging techniques with nanoscale resolution would be much more powerful in comparison to the conventional confocal/wide-field imaging techniques. However, directly limited by the availability of advanced LDs probes, super-resolution fluorescence imaging of LDs is a practically challenging task. In this context, a superior LDs fluorescent probe named Lipi-Deep Red is newly developed for structured illumination microscopy (SIM) super-resolution imaging. This fluorescent probe features with the advantages of strong deep red/NIR emission, fluorogenic character, high LDs specificity, and outstanding photostability. These advantages enable the fluorescent probe to be finely applied in SIM super-resolution imaging, e.g. time-lapse imaging (up to 1000 frames) to monitor the LDs dynamics at nanoscale (159 nm), two-color time-lapse imaging to discover the nearby contact/interaction between LDs and mitochondria. Consequently, the fusion processes of LDs are impressively visualized at a high spatial and temporal resolution. Two kinds of contact models between LDs and mitochondria (dynamic contact and stable contact) newly proposed in the recent literatures are successfully revealed.
Collapse
|
45
|
Stoneman MR, Raicu V. Fluorescence-Based Detection of Proteins and Their Interactions in Live Cells. J Phys Chem B 2023. [PMID: 37205844 DOI: 10.1021/acs.jpcb.3c01419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in fluorescence-based microscopy techniques, such as single molecule fluorescence, Förster resonance energy transfer (FRET), fluorescence intensity fluctuations analysis, and super-resolution microscopy have expanded our ability to study proteins in greater detail within their native cellular environment and to investigate the roles that protein interactions play in biological functions, such as inter- and intracellular signaling and cargo transport. In this Perspective, we provide an up-to-date overview of the current state of the art in fluorescence-based detection of proteins and their interactions in living cells with an emphasis on recent developments that have facilitated the characterization of the spatial and temporal organization of proteins into oligomeric complexes in the presence and absence of natural and artificial ligands. Further advancements in this field will only deepen our understanding of the underlying mechanisms of biological processes and help develop new therapeutic targets.
Collapse
Affiliation(s)
- Michael R Stoneman
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Valerică Raicu
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
46
|
Abstract
Super-resolution fluorescence microscopy allows the investigation of cellular structures at nanoscale resolution using light. Current developments in super-resolution microscopy have focused on reliable quantification of the underlying biological data. In this review, we first describe the basic principles of super-resolution microscopy techniques such as stimulated emission depletion (STED) microscopy and single-molecule localization microscopy (SMLM), and then give a broad overview of methodological developments to quantify super-resolution data, particularly those geared toward SMLM data. We cover commonly used techniques such as spatial point pattern analysis, colocalization, and protein copy number quantification but also describe more advanced techniques such as structural modeling, single-particle tracking, and biosensing. Finally, we provide an outlook on exciting new research directions to which quantitative super-resolution microscopy might be applied.
Collapse
Affiliation(s)
- Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - P L Colosi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Stockhausen A, Rodriguez-Gatica JE, Schweihoff J, Schwarz MK, Kubitscheck U. Airy beam light sheet microscopy boosted by deep learning deconvolution. OPTICS EXPRESS 2023; 31:10918-10935. [PMID: 37157627 DOI: 10.1364/oe.485699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Common light sheet microscopy comes with a trade-off between light sheet width defining the optical sectioning and the usable field of view arising from the divergence of the illuminating Gaussian beam. To overcome this, low-diverging Airy beams have been introduced. Airy beams, however, exhibit side lobes degrading image contrast. Here, we constructed an Airy beam light sheet microscope, and developed a deep learning image deconvolution to remove the effects of the side lobes without knowledge of the point spread function. Using a generative adversarial network and high-quality training data, we significantly enhanced image contrast and improved the performance of a bicubic upscaling. We evaluated the performance with fluorescently labeled neurons in mouse brain tissue samples. We found that deep learning-based deconvolution was about 20-fold faster than the standard approach. The combination of Airy beam light sheet microscopy and deep learning deconvolution allows imaging large volumes rapidly and with high quality.
Collapse
|
48
|
Siu DMD, Lee KCM, Chung BMF, Wong JSJ, Zheng G, Tsia KK. Optofluidic imaging meets deep learning: from merging to emerging. LAB ON A CHIP 2023; 23:1011-1033. [PMID: 36601812 DOI: 10.1039/d2lc00813k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Propelled by the striking advances in optical microscopy and deep learning (DL), the role of imaging in lab-on-a-chip has dramatically been transformed from a silo inspection tool to a quantitative "smart" engine. A suite of advanced optical microscopes now enables imaging over a range of spatial scales (from molecules to organisms) and temporal window (from microseconds to hours). On the other hand, the staggering diversity of DL algorithms has revolutionized image processing and analysis at the scale and complexity that were once inconceivable. Recognizing these exciting but overwhelming developments, we provide a timely review of their latest trends in the context of lab-on-a-chip imaging, or coined optofluidic imaging. More importantly, here we discuss the strengths and caveats of how to adopt, reinvent, and integrate these imaging techniques and DL algorithms in order to tailor different lab-on-a-chip applications. In particular, we highlight three areas where the latest advances in lab-on-a-chip imaging and DL can form unique synergisms: image formation, image analytics and intelligent image-guided autonomous lab-on-a-chip. Despite the on-going challenges, we anticipate that they will represent the next frontiers in lab-on-a-chip imaging that will spearhead new capabilities in advancing analytical chemistry research, accelerating biological discovery, and empowering new intelligent clinical applications.
Collapse
Affiliation(s)
- Dickson M D Siu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Kelvin C M Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Bob M F Chung
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Justin S J Wong
- Conzeb Limited, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
49
|
Sakamoto S, Hamachi I. Ligand‐Directed Chemistry for Protein Labeling for Affinity‐Based Protein Analysis. Isr J Chem 2023. [DOI: 10.1002/ijch.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Seiji Sakamoto
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku 615-8510 Kyoto Japan
- JST-ERATO Hamachi Innovative Molecular Technology for Neuroscience 615-8530 Kyoto Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku 615-8510 Kyoto Japan
- JST-ERATO Hamachi Innovative Molecular Technology for Neuroscience 615-8530 Kyoto Japan
| |
Collapse
|
50
|
Herdly L, Tinning PW, Geiser A, Taylor H, Gould GW, van de Linde S. Benchmarking Thiolate-Driven Photoswitching of Cyanine Dyes. J Phys Chem B 2023; 127:732-741. [PMID: 36638265 PMCID: PMC9884076 DOI: 10.1021/acs.jpcb.2c06872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Carbocyanines are among the best performing dyes in single-molecule localization microscopy (SMLM), but their performance critically relies on optimized photoswitching buffers. Here, we study the versatile role of thiols in cyanine photoswitching at varying intensities generated in a single acquisition by a microelectromechanical systems (MEMS) mirror placed in the excitation path. The key metrics we have analyzed as a function of the thiolate concentration are photon budget, on-state and off-state lifetimes and the corresponding impact on image resolution. We show that thiolate acts as a concentration bandpass filter for the maximum achievable resolution and determine a minimum of ∼1 mM is necessary to facilitate SMLM measurements. We also identify a concentration bandwidth of 1-16 mM in which the photoswitching performance can be balanced between high molecular brightness and high off-time to on-time ratios. Furthermore, we monitor the performance of the popular oxygen scavenger system based on glucose and glucose oxidase over time and show simple measures to avoid acidification during prolonged measurements. Finally, the impact of buffer settings is quantitatively tested on the distribution of the glucose transporter protein 4 within the plasma membrane of adipocytes. Our work provides a general strategy for achieving optimal resolution in SMLM with relevance for the development of novel buffers and dyes.
Collapse
Affiliation(s)
- Lucas Herdly
- Department
of Physics, SUPA, University of Strathclyde, GlasgowG4 0NG, Scotland, United Kingdom
| | - Peter W. Tinning
- Department
of Physics, SUPA, University of Strathclyde, GlasgowG4 0NG, Scotland, United Kingdom
| | - Angéline Geiser
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, Scotland, United Kingdom
| | - Holly Taylor
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, Scotland, United Kingdom
| | - Gwyn W. Gould
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, Scotland, United Kingdom
| | - Sebastian van de Linde
- Department
of Physics, SUPA, University of Strathclyde, GlasgowG4 0NG, Scotland, United Kingdom,
| |
Collapse
|