1
|
Liu R, Ma J, Zhang Y, Zhou Z. Integrated transcriptome analysis of CSE1L regarding poor prognosis and immune infiltration in bladder urothelial carcinoma and experimental verification. Front Immunol 2024; 15:1449251. [PMID: 39430746 PMCID: PMC11486715 DOI: 10.3389/fimmu.2024.1449251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is one of the most prevalent tumors globally, with its incidence rising notably in developed countries, significantly affecting human health. CSE1L encodes a protein that is involved in various cellular processes and plays a critical role in cancer initiation and progression. However, its role in BLCA remains underexplored. Methods CSE1L expression in BLCA was analyzed using TCGA data and validated by qRT-PCR and Western blot in clinical samples. Survival analysis and Cox regression models were used to evaluate its prognostic value. Functional enrichment and protein interaction analyses were performed, and immune cell infiltration was assessed using CIBERSORT. Drug sensitivity was analyzed using GDSC data. In vitro assays evaluated the effects of CSE1L knockdown on cell proliferation, migration, and invasion. Results CSE1L was found to be significantly overexpressed in BLCA tissues compared to normal tissues. High CSE1L expression was associated with poor overall survival and unfavorable clinicopathological features. Functional enrichment analysis revealed that DEGs related to CSE1L were involved in cell cycle regulation and immune-related pathways. Immune infiltration analysis indicated a significant correlation between CSE1L expression and various immune cell types, particularly T cells and macrophages. Drug sensitivity analysis identified several chemotherapeutic agents, including MG-132, Palbociclib, and Nutlin-3a, which were more effective in the low-CSE1L expression group, while the high-CSE1L expression group showed sensitivity to drugs like S-Trityl-L-cysteine, Bleomycin, and Cisplatin. In vitro knockdown of CSE1L in BLCA cell lines inhibited cell proliferation, migration, and invasion. Conclusions The overexpression of CSE1L is associated with the progression and poor prognosis of bladder cancer, suggesting it could be a promising target for bladder cancer in the future.
Collapse
Affiliation(s)
- Runze Liu
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Ma
- Beijing National Day School, Beijing, China
| | - Yong Zhang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongbao Zhou
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Liu X, Yang L, Guan K, Chen Z, Yang H. CSE1L Silencing Enhances Cytarabine-mediated Cytotoxicity in Acute Myeloid Leukemia. Indian J Hematol Blood Transfus 2024; 40:629-637. [PMID: 39469152 PMCID: PMC11512944 DOI: 10.1007/s12288-024-01773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose This study aims to investigate the increased toxicity of Cytarabine (Ara-c) by knockdown of chromosome segregation 1-like (CSE1L) in acute myeloid leukemia(AML) cells(Kasumi-1, U937, and THP-1 cells) and to explore its possible mechanisms. Methods Target gene silencing was achieved using the shRNA-mediated lentivirus method. Apoptosis was identified using the Annexin V PE/7-AAD double-staining assay. Cell viability was assessed with the Cell Counting Kit-8 (CCK-8) assay. Protein expression was detected by Western blotting. Results In vitro, knocking down CSE1L promoted caspase-3 and caspase-9 proteins expression and induced apoptosis in AML cells. Knockdown of CSE1L enhanced AML cells' sensitivity to Ara-c. knockdown of CSE1L reduced the expression levels of p-JKA2 and p-STAT3 proteins, while no significant difference was observed in the expression levels of total JAK2 and STAT3 proteins. Furthermore, JAK2 overexpression reversed the increase in Ara-c toxicity to AML cells caused by CSE1L knockdown. Conclusion In conclusion, our study reveals that CSE1L is a potential therapeutic target for overcoming Ara-c resistance in AML cells. Thus, we have gained new insights into the oncogenic process of CSE1L in AML cells and raised the prospect of knockdown of CSE1L in AML in combination with cytarabine-targeted therapy.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Laboratory Medicine, Suining Municipal Hospital of TCM, Suining, China
| | - Lin Yang
- Department of Laboratory Medicine, Suining Municipal Hospital of TCM, Suining, China
| | - Kunping Guan
- Department of Laboratory Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhen Chen
- Department of Laboratory Medicine, Suining Municipal Hospital of TCM, Suining, China
| | - Hua Yang
- Department of Laboratory Medicine, Suining Municipal Hospital of TCM, Suining, China
| |
Collapse
|
3
|
Li H, Wang L, Ruan Z, Li X, Yang Y, Fang J, Wang R. CSE1L as a prognostic biomarker associated with pan cancer immune infiltration and drug sensitivity. Expert Rev Clin Immunol 2024; 20:1113-1125. [PMID: 38752776 DOI: 10.1080/1744666x.2024.2356747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/13/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND Rising cancer-related mortality underscores the importance of biomarkers for treatment and prognosis, with Chromosome Segregation 1 Like (CSE1L) linked to various cancers yet its roles remain partially understood. This study investigates CSE1L's expression and oncogenic mechanisms in solid tumors. RESEARCH DESIGN AND METHODS We analyzed multi-omics data from 31 solid tumors, measured CSE1L in 41 head and neck carcinoma patients post-chemotherapy via qRT-PCR, and evaluated the impact of CSE1L knockdown on cell proliferation in A549 and HepG2 cells. RESULTS In this study, we observed significantly elevated levels of CSE1L RNA in 13 tumor tissues and protein levels in 8 tumor tissues compared to their corresponding adjacent normal tissues. Additionally, our investigation unveiled a correlation between heightened CSE1L expression in tumor tissues and worsened patient prognosis, poor response to immunotherapy, and diminished effectiveness of neoadjuvant chemotherapy. Through an analysis of CSE1L mechanisms, we discovered its potential involvement in promoting tumor cell proliferation, enhancing drug resistance, and influencing immune infiltration, thereby impacting patient prognosis and treatment outcomes. Finally, we delved into the potential mechanisms underlying upregulation of CSE1L in tumor tissues. CONCLUSION Our findings demonstrate that CSE1L promotes tumor development in various malignancies, highlighting its potential as both a therapeutic target and prognostic indicator.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lingwa Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Ruan
- Department of Major Emerging Infectious Diseases, Changping Laboratory, Beijing, China
| | - Xiaoyan Li
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Mondal V, Higgins PJ, Samarakoon R. Emerging Role of Hippo-YAP (Yes-Associated Protein)/TAZ (Transcriptional Coactivator with PDZ-Binding Motif) Pathway Dysregulation in Renal Cell Carcinoma Progression. Cancers (Basel) 2024; 16:2758. [PMID: 39123485 PMCID: PMC11312123 DOI: 10.3390/cancers16152758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Although Hippo-YAP/TAZ pathway involvement has been extensively studied in the development of certain cancers, the involvement of this cascade in kidney cancer progression is not well-established and, therefore, will be the focus of this review. Renal cell carcinoma (RCC), the most prevalent kidney tumor subtype, has a poor prognosis and a high mortality rate. Core Hippo signaling inactivation (e.g., LATS kinases) leads to the nuclear translocation of YAP/TAZ where they bind to co-transcriptional factors such as TEAD promoting transcription of genes which initiates various fibrotic and neoplastic diseases. Loss of expression of LATS1/2 kinase and activation of YAP/TAZ correlates with poor survival in RCC patients. Renal-specific ablation of LATS1 in mice leads to the spontaneous development of several subtypes of RCC in a YAP/TAZ-dependent manner. Genetic and pharmacological inactivation of YAP/TAZ reverses the oncogenic potential in LATS1-deficient mice, highlighting the therapeutic benefit of network targeting in RCC. Here, we explore the unique upstream controls and downstream consequences of the Hippo-YAP/TAZ pathway deregulation in renal cancer. This review critically evaluates the current literature on the role of the Hippo pathway in RCC progression and highlights the recent scientific evidence designating YAP/TAZ as novel therapeutic targets against kidney cancer.
Collapse
Affiliation(s)
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA;
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA;
| |
Collapse
|
5
|
Hu L, Hong T, He Y, Wang H, Cao J, Pu D, Gao L, Gao C, Cui Y, Wu J, Tan R. Chromosome Segregation-1-like Gene Participates in Ferroptosis in Human Ovarian Granulosa Cells via Nucleocytoplasmic Transport. Antioxidants (Basel) 2024; 13:911. [PMID: 39199156 PMCID: PMC11352033 DOI: 10.3390/antiox13080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Premature ovarian insufficiency (POI) is defined as the depletion of ovarian function before the age of 40 years. The global prevalence of POI is 3.5%. To date, genetic factors account for 23.5% of the etiology of POI. Herein, a previously uncharacterized pathogenic homozygous variant of the chromosome segregation-1-like gene (CSE1L) was identified in POI patients via targeted panel sequencing. It is reported that dysregulated iron metabolism is involved in many reproductive endocrine disorders; however, its precise role in POI remains obscure. In this study, we identified CSE1L as a potential candidate gene that plays an important role in maintaining iron homeostasis. Deficiency of CSE1L led to ferroptosis in human granulosa cells, which was confirmed by transmission electron microscopy. Mechanistically, coimmunoprecipitation identified the direct interaction between CSE1L and FoxO1. Inhibition of CSE1L led to the excessive accumulation of FoxO1 in the nucleus via nucleocytoplasmic transport. Then, FoxO1 bound to the promoter region of NCOA4 and promoted its transcription, which was verified by a chromatin immunoprecipitation assay. Moreover, inhibition of CSE1L in cumulus cell monolayer could impede oocyte maturation, which might be associated with oxidative stress. Consequently, our study first revealed that CSE1L participated in ferroptosis in human ovarian granulosa cells via nucleocytoplasmic transportation, which might be helpful in revealing the molecular mechanism of CSE1L in the development of POI. Importantly, these findings might provide new insights into the application of ferroptosis inhibitors in the treatment of POI.
Collapse
Affiliation(s)
- Luanqian Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Tongtong Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Yuheng He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Huiyuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Jinxiang Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Danhua Pu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Li Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Chao Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Yugui Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Jie Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Rongrong Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
6
|
Patterson MR, Cogan JA, Cassidy R, Theobald DA, Wang M, Scarth JA, Anene CA, Whitehouse A, Morgan EL, Macdonald A. The Hippo pathway transcription factors YAP and TAZ play HPV-type dependent roles in cervical cancer. Nat Commun 2024; 15:5809. [PMID: 38987584 PMCID: PMC11237029 DOI: 10.1038/s41467-024-49965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Human papillomaviruses (HPVs) cause most cervical cancers and an increasing number of anogenital and oral carcinomas, with most cases caused by HPV16 or HPV18. HPV hijacks host signalling pathways to promote carcinogenesis. Understanding these interactions could permit identification of much-needed therapeutics for HPV-driven malignancies. The Hippo signalling pathway is important in HPV+ cancers, with the downstream effector YAP playing a pro-oncogenic role. In contrast, the significance of its paralogue TAZ remains largely uncharacterised in these cancers. We demonstrate that TAZ is dysregulated in a HPV-type dependent manner by a distinct mechanism to that of YAP and controls proliferation via alternative cellular targets. Analysis of cervical cancer cell lines and patient biopsies revealed that TAZ expression was only significantly increased in HPV18+ and HPV18-like cells and TAZ knockdown reduced proliferation, migration and invasion only in HPV18+ cells. RNA-sequencing of HPV18+ cervical cells revealed that YAP and TAZ have distinct targets, suggesting they promote carcinogenesis by different mechanisms. Thus, in HPV18+ cancers, YAP and TAZ play non-redundant roles. This analysis identified TOGARAM2 as a previously uncharacterised TAZ target and demonstrates its role as a key effector of TAZ-mediated proliferation, migration and invasion in HPV18+ cancers.
Collapse
Affiliation(s)
- Molly R Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - Joseph A Cogan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rosa Cassidy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Daisy A Theobald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - James A Scarth
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Chinedu A Anene
- Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Biomedical Science Research, Leeds Beckett University, Leeds, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
7
|
Laskar RS, Qu C, Huyghe JR, Harrison T, Hayes RB, Cao Y, Campbell PT, Steinfelder R, Talukdar FR, Brenner H, Ogino S, Brendt S, Bishop DT, Buchanan DD, Chan AT, Cotterchio M, Gruber SB, Gsur A, van Guelpen B, Jenkins MA, Keku TO, Lynch BM, Le Marchand L, Martin RM, McCarthy K, Moreno V, Pearlman R, Song M, Tsilidis KK, Vodička P, Woods MO, Wu K, Hsu L, Gunter MJ, Peters U, Murphy N. Genome-wide association studies and Mendelian randomization analyses provide insights into the causes of early-onset colorectal cancer. Ann Oncol 2024; 35:523-536. [PMID: 38408508 PMCID: PMC11213623 DOI: 10.1016/j.annonc.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The incidence of early-onset colorectal cancer (EOCRC; diagnosed <50 years of age) is rising globally; however, the causes underlying this trend are largely unknown. CRC has strong genetic and environmental determinants, yet common genetic variants and causal modifiable risk factors underlying EOCRC are unknown. We conducted the first EOCRC-specific genome-wide association study (GWAS) and Mendelian randomization (MR) analyses to explore germline genetic and causal modifiable risk factors associated with EOCRC. PATIENTS AND METHODS We conducted a GWAS meta-analysis of 6176 EOCRC cases and 65 829 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colorectal Transdisciplinary Study (CORECT), the Colon Cancer Family Registry (CCFR), and the UK Biobank. We then used the EOCRC GWAS to investigate 28 modifiable risk factors using two-sample MR. RESULTS We found two novel risk loci for EOCRC at 1p34.1 and 4p15.33, which were not previously associated with CRC risk. We identified a deleterious coding variant (rs36053993, G396D) at polyposis-associated DNA repair gene MUTYH (odds ratio 1.80, 95% confidence interval 1.47-2.22) but show that most of the common genetic susceptibility was from noncoding signals enriched in epigenetic markers present in gastrointestinal tract cells. We identified new EOCRC-susceptibility genes, and in addition to pathways such as transforming growth factor (TGF) β, suppressor of Mothers Against Decapentaplegic (SMAD), bone morphogenetic protein (BMP) and phosphatidylinositol kinase (PI3K) signaling, our study highlights a role for insulin signaling and immune/infection-related pathways in EOCRC. In our MR analyses, we found novel evidence of probable causal associations for higher levels of body size and metabolic factors-such as body fat percentage, waist circumference, waist-to-hip ratio, basal metabolic rate, and fasting insulin-higher alcohol drinking, and lower education attainment with increased EOCRC risk. CONCLUSIONS Our novel findings indicate inherited susceptibility to EOCRC and suggest modifiable lifestyle and metabolic targets that could also be used to risk-stratify individuals for personalized screening strategies or other interventions.
Collapse
Affiliation(s)
- R S Laskar
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France; Early Cancer Institute, Department of Oncology, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - C Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle
| | - J R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle
| | - T Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle
| | - R B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York
| | - Y Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis; Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis; Alvin J. Siteman Cancer Center, St Louis
| | - P T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA
| | - R Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle
| | - F R Talukdar
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - H Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston
| | - S Brendt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - D T Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - D D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia
| | - A T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - M Cotterchio
- Ontario Health (Cancer Care Ontario), Toronto; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - S B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, USA
| | - A Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - B van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - M A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - T O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, USA
| | - B M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne; Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - R M Martin
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol; National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol
| | - K McCarthy
- Department of Colorectal Surgery, North Bristol NHS Trust, Bristol, UK
| | - V Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - R Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus
| | - M Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA
| | - K K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - P Vodička
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - M O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - K Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA
| | - L Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle
| | - M J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - U Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle; Department of Epidemiology, University of Washington, Seattle, USA
| | - N Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France.
| |
Collapse
|
8
|
Liu XY, Wang YH, Wang J, Quan JK, Li XD, Guan KP. The role of CSE1L silencing in the regulation of proliferation and apoptosis via the AMPK/mTOR signaling pathway in chronic myeloid leukemia. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2023; 28:1-9. [PMID: 36652402 DOI: 10.1080/16078454.2022.2161201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Chromosome segregation 1-like (CSE1L) is abundant and strongly expressed in solid tumors. However, the expression and role of CSE1L in chronic myeloid leukemia(CML) remain largely unknown. MATERIALS AND METHODS The relative expression levels of CSE1L in bone marrow granulocytes from patients with primary CML and non-hematologic controls were measured by flow cytometry. Cell counting kit-8 analysis, DNA Content Quantitation Assay, and Annexin V-PE/7-AAD staining were applied to assess the effects of CSE1L knockdown on cell proliferation, cell cycle progression, and apoptosis. RESULTS Elevated expression of CSE1L was detected in bone marrow granulocytes of patients with primary CML. In the CML cell line K562 cells, CSE1L knockdown impaired cell proliferation blocked the cell cycle shift from G0/G1 phase to the S phase, and promoted apoptosis. Knockdown of CSE1L reduced Bcl-2 protein expression and increased Bax protein expression. Meanwhile, knockdown of CSE1L enhanced the expression of phospho-AMPK protein and decreased the expression of phospho-mTOR protein. The expression of total AMPK and mTOR proteins was not affected. In addition, CSE1L expression levels were decreased in imatinib-treated K562 cells. CONCLUSIONS CSE1L plays a pivotal role in K562 cell survival and growth. These functions may be partially dependent on the AMPK/mTOR signaling pathway to achieve. In addition, CSE1L may have had a future impact on the treatment of CML patients.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yong-Hong Wang
- Laboratory Department, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jing Wang
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ji-Kun Quan
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xu-Dong Li
- Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kun-Ping Guan
- Laboratory Department, The Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
9
|
Kofler M, Kapus A. Nuclear Import and Export of YAP and TAZ. Cancers (Basel) 2023; 15:4956. [PMID: 37894323 PMCID: PMC10605228 DOI: 10.3390/cancers15204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
10
|
Wu S, He H, Huang J, Jiang S, Deng X, Huang J, Chen Y, Jiang Y. FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:9295-9320. [PMID: 35942760 DOI: 10.3934/mbe.2022432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
WW domain-containing transcription regulator 1 (TAZ, or WWTR1) and Yes-associated protein 1 (YAP) are both important effectors of the Hippo pathway and exhibit different functions. However, few studies have explored their co-regulatory mechanisms in kidney renal clear cell carcinoma (KIRC). Here, we used bioinformatics approaches to evaluate the co-regulatory roles of TAZ/YAP and screen novel biomarkers in KIRC. GSE121689 and GSE146354 were downloaded from the GEO. The limma was applied to identify the differential expression genes (DEGs) and the Venn diagram was utilized to screen co-expressed DEGs. Co-expressed DEGs obtained the corresponding pathways through GO and KEGG analysis. The protein-protein interaction (PPI) network was constructed using STRING. The hub genes were selected applying MCODE and CytoHubba. GSEA was further applied to identify the hub gene-related signaling pathways. The expression, survival, receiver operating character (ROC), and immune infiltration of the hub genes were analyzed by HPA, UALCAN, GEPIA, pROC, and TIMER. A total of 51 DEGs were co-expressed in the two datasets. The KEGG results showed that the enriched pathways were concentrated in the TGF-β signaling pathway and endocytosis. In the PPI network, the hub genes (STAU2, AGO2, FMR1) were identified by the MCODE and CytoHubba. The GSEA results revealed that the hub genes were correlated with the signaling pathways of metabolism and immunomodulation. We found that STAU2 and FMR1 were weakly expressed in tumors and were negatively associated with the tumor stages. The overall survival (OS) and disease-free survival (DFS) rate of the high-expressed group of FMR1 was greater than that of the low-expressed group. The ROC result exhibited that FMR1 had certainly a predictive ability. The TIMER results indicated that FMR1 was positively correlated to immune cell infiltration. The abovementioned results indicated that TAZ/YAP was involved in the TGF-β signaling pathway and endocytosis. FMR1 possibly served as an immune-related novel prognostic gene in KIRC.
Collapse
Affiliation(s)
- Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Xiyun Deng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| |
Collapse
|
11
|
Wang Z, Zhang Y, Li Q, Zou Q, Liu Q. A road map for happiness: The psychological factors related cell types in various parts of human body from single cell RNA-seq data analysis. Comput Biol Med 2022; 143:105286. [PMID: 35183972 DOI: 10.1016/j.compbiomed.2022.105286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
Massive evidence from all sources including zoology, neurobiology and immunology has confirmed that psychological factors can raise remarkable physiological effects. Researchers have long been aware of the potential value of these effects and wanted to harness them in the development of new drugs and therapies, for which the mechanism study is a necessary prerequisite. However, most of these studies are restricted to neuroscience, or starts with blood sample and fall into the area of immunity. In this study, we choose to focus on the psychological factor of happiness, mining existing publicly available single cell RNA sequencing (scRNA-seq) data for the expression of happiness-related genes collected from various sources of literature in all types of cells in the samples, finding that the expression of these genes is not restricted within neuro-regulated cells or tissue-resident immune cells, on the opposite, cell types that are unique to tissue and organ without direct regulation from nervous system account for the majority to express the happiness-related genes. Our research is a preliminary exploration of where our body respond to our mind at cell level, and lays the foundation for more detailed mechanism research.
Collapse
Affiliation(s)
- Ziwei Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, China
| | - Ying Zhang
- Department of Anesthesiology, Hospital T.C.M Affiliated to Southwest Medical University, Luzhou, China
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology, China; Yangtze Delta Region Institute Quzhou, University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
| | - Qing Liu
- Department of Algology, Hospital T.C.M Affiliated to Southwest Medical University, Luzhou, China.
| |
Collapse
|
12
|
Ye Q, Singh S, Qian PR, Guo NL. Immune-Omics Networks of CD27, PD1, and PDL1 in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:4296. [PMID: 34503105 PMCID: PMC8428355 DOI: 10.3390/cancers13174296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
To date, there are no prognostic/predictive biomarkers to select chemotherapy, immunotherapy, and radiotherapy in individual non-small cell lung cancer (NSCLC) patients. Major immune-checkpoint inhibitors (ICIs) have more DNA copy number variations (CNV) than mutations in The Cancer Genome Atlas (TCGA) NSCLC tumors. Nevertheless, CNV-mediated dysregulated gene expression in NSCLC is not well understood. Integrated CNV and transcriptional profiles in NSCLC tumors (n = 371) were analyzed using Boolean implication networks for the identification of a multi-omics CD27, PD1, and PDL1 network, containing novel prognostic genes and proliferation genes. A 5-gene (EIF2AK3, F2RL3, FOSL1, SLC25A26, and SPP1) prognostic model was developed and validated for patient stratification (p < 0.02, Kaplan-Meier analyses) in NSCLC tumors (n = 1163). A total of 13 genes (COPA, CSE1L, EIF2B3, LSM3, MCM5, PMPCB, POLR1B, POLR2F, PSMC3, PSMD11, RPL32, RPS18, and SNRPE) had a significant impact on proliferation in 100% of the NSCLC cell lines in both CRISPR-Cas9 (n = 78) and RNA interference (RNAi) assays (n = 92). Multiple identified genes were associated with chemoresponse and radiotherapy response in NSCLC cell lines (n = 117) and patient tumors (n = 966). Repurposing drugs were discovered based on this immune-omics network to improve NSCLC treatment.
Collapse
Affiliation(s)
- Qing Ye
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Salvi Singh
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Peter R. Qian
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
| | - Nancy Lan Guo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|