1
|
Schillaci FA, Lanza G, Salluzzo MG, L'Episcopo F, Ferri R, Salemi M. The Role of ETNPPL in Dopaminergic Neuron Stability: Insights from Neuromelanin-Associated Protein Expression in Parkinson's Disease. Int J Mol Sci 2024; 25:13107. [PMID: 39684817 DOI: 10.3390/ijms252313107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
More than six million people worldwide are affected by Parkinson's disease (PD), a multifactorial disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Several immunohistochemical studies suggest that neuromelanin (NM), found in these neurons, plays a key role in their degeneration. In this study, twelve formalin-fixed, paraffin-embedded (FFPE) brain sections were analyzed, comprising six samples from PD patients and six from healthy controls. Immunohistochemistry (IHC) was conducted to assess the expression of the ETNPPL protein in these samples. ETNPPL was detected in both PD and control samples. Additionally, we examined the expression of ETNPPL mRNA using Quantitative Real-Time PCR (qRT-PCR) in the same sample set. Notably, in control samples, ETNPPL protein was closely associated with the dark NM pigment in the cytoplasm of SNc dopaminergic neurons. In contrast, PD samples showed weak cytoplasmic expression of ETNPPL, with no association with the NM pigment. No nuclear ETNPPL signal was detected in dopaminergic neurons from either PD patients or controls. qRT-PCR results revealed lower ETNPPL mRNA expression in individual PD patients compared to controls. Importantly, we observed a higher concentration of ETNPPL protein at the NM level in the SNc neurons of controls, consistent with mRNA expression patterns. These findings suggest a potential role for ETNPPL in the normal function of dopaminergic neurons and underscore its altered expression in Parkinson's disease.
Collapse
Affiliation(s)
| | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy
| | | | | | | | | |
Collapse
|
2
|
A Elmihi K, Leonard KA, Nelson R, Thiesen A, Clugston RD, Jacobs RL. The emerging role of ethanolamine phosphate phospholyase in regulating hepatic phosphatidylethanolamine and plasma lipoprotein metabolism in mice. FASEB J 2024; 38:e70063. [PMID: 39312446 DOI: 10.1096/fj.202401321r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Ethanolamine phosphate phospholyase (ETNPPL) is an enzyme that irreversibly degrades phospho-ethanolamine (p-ETN), an intermediate in the Kennedy pathway of phosphatidylethanolamine (PE) biosynthesis. PE is the second most abundant phospholipid in mammalian membranes. Disturbance of hepatic phospholipid homeostasis has been linked to the development of metabolic dysfunction-associated steatotic liver disease (MASLD). We generated whole-body Etnppl knockout mice to investigate the impact of genetic deletion of Etnppl on hepatic lipid metabolism. Primary hepatocytes isolated from Etnppl-/- mice showed increased conversion of [3H]ethanolamine to [3H]p-ETN and [3H]PE compared to Etnppl+/+ mice. Male and female Etnppl+/+ and Etnppl-/- mice were fed either a chow or a western-type diet (WTD). Irrespective of diet, Etnppl-/- mice had elevated fasting levels of total plasma cholesterol, triglyceride (TG) and apolipoprotein B100 (VLDL particles). Interestingly, hepatic TG secretion was unchanged between groups. Although hepatic lipids (phosphatidylcholine (PC), PE, TG, and cholesterol) were not different between mice, RNA sequencing analysis showed downregulation in genes related to cholesterol biosynthesis in Etnppl-/- mice. Furthermore, hepatic low-density lipoprotein receptor-related protein1 (LRP1) protein level was lower in female Etnppl-/- mice, which may indicate reduced uptake of remnant VLDL particles from circulation. Hepatic PE levels were only increased in WTD-fed female Etnppl-/- mice, not chow diet-fed mice. However, hepatic lipid accumulation and metabolic dysfunction-associated steatohepatitis (MASH) development were unchanged between Etnppl+/+ and Etnppl-/- mice. To conclude, ETNPPL has a role in regulating plasma lipoprotein metabolism independent of hepatic TG levels.
Collapse
Affiliation(s)
- Kholoud A Elmihi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Kelly-Ann Leonard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Randy Nelson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Robin D Clugston
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Zhang F, Huang K, Chen R, Liu Z, Zhao Q, Hou S, Ma W, Li Y, Peng Y, Chen J, Wang DO, Wei W, Li X. starTracer is an accelerated approach for precise marker gene identification in single-cell RNA-Seq analysis. Commun Biol 2024; 7:1128. [PMID: 39266658 PMCID: PMC11393126 DOI: 10.1038/s42003-024-06790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Revealing the heterogeneity among tissues is the greatest advantage of single-cell-sequencing. Marker genes not only act as the key to correctly identify cell types, but also the bio-markers for cell-status under certain experimental imputations. Current analysis methods such as Seurat and Monocle employ algorithms which compares one cluster to all the rest and select markers according to statistical tests. This pattern brings redundant calculations and thus, results in low calculation efficiency, specificity and accuracy. To address these issues, we introduce starTracer, a novel algorithm designed to enhance the efficiency, specificity and accuracy of marker gene identification in single-cell RNA-seq data analysis. starTracer operates as an independent pipeline, which exhibits great flexibility by accepting multiple input file types. The primary output is a marker matrix, where genes are sorted by the potential to function as markers, with those exhibiting the greatest potential positioned at the top. The speed improvement ranges by 2 ~ 3 orders of magnitude compared to Seurat, as observed across three independent datasets with lower false positive rate as observed in a simulated testing dataset with ground-truth. It's worth noting that starTracer exhibits increasing speed improvement with larger data volumes. It also excels in identifying markers in smaller clusters. These advantages solidify starTracer as an important tool for single-cell RNA-seq data, merging robust accuracy with exceptional speed.
Collapse
Affiliation(s)
- Feiyang Zhang
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaixin Huang
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruixi Chen
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zechen Liu
- Totem Laboratory, School of Computer Science, Wuhan University, Wuhan, China
| | - Qiongyi Zhao
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Shengqun Hou
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wenhao Ma
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
| | | | | | - Jincao Chen
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Ohtan Wang
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital, Second Clinical School, Wuhan University, Wuhan, China.
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan, China.
- Sino-Italian Ascula Brain science Joint Laboratory, Wuhan, China.
| |
Collapse
|
4
|
Megagiannis P, Mei Y, Yan RE, Yuan L, Wilde JJ, Eckersberg H, Suresh R, Tan X, Chen H, Farmer WT, Cha K, Le PU, Catoire H, Rochefort D, Kwan T, Yee BA, Dion P, Krishnaswamy A, Cloutier JF, Stifani S, Petrecca K, Yeo GW, Murai KK, Feng G, Rouleau GA, Ideker T, Sanjana NE, Zhou Y. Autism-associated CHD8 controls reactive gliosis and neuroinflammation via remodeling chromatin in astrocytes. Cell Rep 2024; 43:114637. [PMID: 39154337 DOI: 10.1016/j.celrep.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help us to understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of autism spectrum disorder (ASD)-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an adeno-associated virus (AAV)-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting chromatin remodelers in reactive gliosis and neuroinflammation in injury and neurological diseases.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuan Mei
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA; Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rachel E Yan
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Lin Yuan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jonathan J Wilde
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailey Eckersberg
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Hong Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Kuwook Cha
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Phuong Uyen Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Helene Catoire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Daniel Rochefort
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Tony Kwan
- McGill Genome Center and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Patrick Dion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Jean-Francois Cloutier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Zhang Y, Zhang Y, Yin R, Fang X, Miao R, Guan H, Yao Y, Tian J. Multi-omics characterization of type 2 diabetes mellitus-induced gastroenteropathy in the db/db mouse model. Front Cell Dev Biol 2024; 12:1417255. [PMID: 39211388 PMCID: PMC11357919 DOI: 10.3389/fcell.2024.1417255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Gastrointestinal dysfunction are often associated with type 2 diabetes mellitus (T2DM), a complicated metabolic illness. Contributing factors have been proposed, including genetic predisposition, gene environmental, and lifestyle interactions, but the pathophysiology remains unknown. Methods We aim to explore the possible causes behind gastrointestinal dysfunction caused by type 2 diabetes in this study. A comprehensive analysis of the gastric sinus metabolome, transcriptome, and proteome in db/db mice with gastrointestinal dysfunction was conducted. Results The model group of mice had considerably lower small intestine propulsion and gastric emptying rates, higher blood glucose levels, and were significantly obese compared to the control group. We identified 297 genes, 350 proteins, and 1,001 metabolites exhibiting significant differences between db/db and control mice (p < 0.05). Moreover, multi-omics analysis revealed that the genes, proteins, and metabolites in the T2DM-induced gastroenteropathy mice group were involved in arachidonic acid metabolism, glycerophospholipid metabolism and vitamin digestion and absorption. Specifically, Cbr3, Etnppl, and Apob were the major mRNAs associated with T2DM-induced gastrointestinal dysfunction, while Cyp2b10, Cyp2b19, Pgs1, Gpat3, Apoa4, and Tcn2 were the major proteins associated with T2DM-induced gastrointestinal injury, and 16(R)-HET, 5-HETE, LysoPC (22:0), and Pantothenic acid were the major metabolites associated with T2DM-induced gastrointestinal disorders. Conclusion The mechanism of action of diabetic gastroenteropathy may be related to vitamin digestion and absorption, glycerophospholipid metabolism, and arachidonic acid metabolism.
Collapse
Affiliation(s)
- Yuxin Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Huifang Guan
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Yiqi Yao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
van Rosmalen L, Deota S, Maier G, Le HD, Lin T, Ramasamy RK, Hut RA, Panda S. Energy balance drives diurnal and nocturnal brain transcriptome rhythms. Cell Rep 2024; 43:113951. [PMID: 38508192 PMCID: PMC11330649 DOI: 10.1016/j.celrep.2024.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Plasticity in daily timing of activity has been observed in many species, yet the underlying mechanisms driving nocturnality and diurnality are unknown. By regulating how much wheel-running activity will be rewarded with a food pellet, we can manipulate energy balance and switch mice to be nocturnal or diurnal. Here, we present the rhythmic transcriptome of 21 tissues, including 17 brain regions, sampled every 4 h over a 24-h period from nocturnal and diurnal male CBA/CaJ mice. Rhythmic gene expression across tissues comprised different sets of genes with minimal overlap between nocturnal and diurnal mice. We show that non-clock genes in the suprachiasmatic nucleus (SCN) change, and the habenula was most affected. Our results indicate that adaptive flexibility in daily timing of behavior is supported by gene expression dynamics in many tissues and brain regions, especially in the habenula, which suggests a crucial role for the observed nocturnal-diurnal switch.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geraldine Maier
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Terry Lin
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh K Ramasamy
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, the Netherlands.
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Islam M, Samal A, Davis DJ, Behura SK. Ablation of placental REST deregulates fetal brain metabolism and impacts gene expression of the offspring brain at the postnatal and adult stages. FASEB J 2024; 38:e23349. [PMID: 38069914 DOI: 10.1096/fj.202301344r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
In this study, the transcriptional repressor REST (Repressor Element 1 Silencing Transcription factor) was ablated in the mouse placenta to investigate molecular and cellular impacts on the offspring brain at different life stages. Ablation of placental REST deregulated several brain metabolites, including glucose and lactate that fuel brain energy, vitamin C (ascorbic acid) that functions in the epigenetic programming of the brain during postnatal development, and glutamate and creatine that help the brain to respond to stress conditions during adult life. Bulk RNA-seq analysis showed that a lack of placental REST persistently altered multiple transport genes, including those related to oxygen transportation in the offspring brain. While metabolic genes were impacted in the postnatal brain, different stress response genes were activated in the adult brain. DNA methylation was also impacted in the adult brain due to the loss of placental REST, but in a sex-biased manner. Single-nuclei RNA-seq analysis showed that specific cell types of the brain, particularly those of the choroid plexus and ependyma, which play critical roles in producing cerebrospinal fluid and maintaining metabolic homeostasis, were significantly impacted due to the loss of placental REST. These cells showed significant differential expression of genes associated with the metabotropic (G coupled protein) and ionotropic (ligand-gated ion channel) glutamate receptors, suggesting an impact of ablation of placental REST on the glutamatergic signaling of the offspring brain. The study expands our understanding of placental influences on the offspring brain.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ananya Samal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Interdisciplnary Reproductive and Health Group, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
8
|
Zhang Y, Shen L, Wang B, Wu X. Ethanolamine-phosphate phospho-lyase (ETNPPL) contributes to the diagnosis, prognosis, and therapy of hepatocellular carcinoma. PeerJ 2023; 11:e15834. [PMID: 37637156 PMCID: PMC10448887 DOI: 10.7717/peerj.15834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is characterized by high mortality, difficulty in early screening, relapse, and poor prognosis. This study aimed to explore the expression of ethanolamine-phosphate phospho-lyase (ETNPPL) and its clinical significance in HCC. Methods Differentially expressed mRNAs were screened using microarray analysis. Functional enrichment was performed using GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. We used qRT-PCR to measure the expression of ETNPPL in HCC tissues and paired paracarcinoma tissues. A receiver operating characteristic (ROC) curve and Kaplan-Meier curve were conducted to assess the diagnostic and prognostic values. Cell behaviors were evaluated using a scratch test and transwell assay. Results The results showed that numerous mRNAs are abnormally expressed in HCC. ETNPPL was decreased in HCC tissues and cells. The area under curve (AUC) of ETNPPL was 0.9089, demonstrating that ETNPPL had diagnostic value. Low expression of ETNPPL was related to poor prognosis for patients with HCC. Moreover, the over-expression of ETNPPL inhibited HCC cell migration and invasion. Conclusions In conclusion, downregulated ETNPPL was found in HCC and is related to poor patient prognosis and the promotion of cell metastasis. This suggests that ETNPPL serves both as a promising diagnosis and prognosis biomarker, and a therapy target of HCC.
Collapse
Affiliation(s)
- Yun Zhang
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Li Shen
- Disinfection Supply Center, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Bojun Wang
- Department of General Surgery, Yixing Fourth People’s Hospital, Yixing, Jiangsu, China
| | - Xiaohong Wu
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| |
Collapse
|
9
|
Zhao H, Li X, Zheng Y, Zhu X, Qi X, Huang X, Bai S, Wu C, Sun G. Fasudil may alleviate alcohol-induced astrocyte damage by modifying lipid metabolism, as determined by metabonomics analysis. PeerJ 2023; 11:e15494. [PMID: 37304877 PMCID: PMC10252813 DOI: 10.7717/peerj.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
Alcohol dependence is a chronic, relapsing encephalopathy characterized by compulsive craving for alcohol, loss of control over alcohol use, and the presence of negative emotions and physical discomfort when alcohol is unavailable. Harmful use of alcohol is one of the greatest risk factors for death, illness, and disability. Rho kinase inhibitors have neuroprotective effects. This study used metabonomics analysis to assess untreated astrocytes, astrocytes exposed to 75 mmol/L of alcohol, and astrocytes exposed to 75 mmol/L of alcohol and treated with 15 µg/mL fasudil for 24 h. One of the clearest differences between the alcohol-exposed and fasudil-treated alcohol-exposed groups was the abundance of lipids and lipid-like molecules, although glycerophospholipid metabolism was comparable in both groups. Our findings show that fasudil may alleviate alcohol-induced astrocyte damage by modifying lipid metabolism, providing a new approach for preventing and treating alcohol dependence.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Neurology, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xintong Li
- Department of Neurology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yongqi Zheng
- Department of Internal Medicine, Yichun Forestry Administration Central Hospital, Yichun, Heilongjiang, China
| | - Xiaofeng Zhu
- Department of Neurology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Xunzhong Qi
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xinyan Huang
- Department of Neurology, The Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Chengji Wu
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Guangtao Sun
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
10
|
Wang C, Li X, Zhang W, Liu W, Lv Z, Gui R, Li M, Li Y, Sun X, Liu P, Fan X, Yang S, Xiong Y, Qian L. ETNPPL impairs autophagy through regulation of the ARG2-ROS signaling axis, contributing to palmitic acid-induced hepatic insulin resistance. Free Radic Biol Med 2023; 199:126-140. [PMID: 36841363 DOI: 10.1016/j.freeradbiomed.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Excessive free fatty acids (FFAs) accumulation is a leading risk factor for the pathogenesis of insulin resistance (IR) in metabolic tissues, including the liver. Ethanolamine-phosphate phospho-lyase (ETNPPL), a newly identified metabolic enzyme, catalyzes phosphoethanolamine (PEA) to ammonia, inorganic phosphate, and acetaldehyde and is highly expressed in hepatic tissue. Whether it plays a role in regulating FFA-induced IR in hepatocytes has yet to be understood. In this study, we established an in vitro palmitic acid (PA)-induced IR model in human HepG2 cells and mouse AML12 cells with chronic treatment of PA. Next, we overexpressed ETNPPL by using lentivirus-mediated ectopic to investigate the effects of ETNPPL per se on IR without PA stimulation. We show that ETNPPL expression is significantly elevated in PA-induced IR and that silencing ETNPPL ameliorates this IR in hepatocytes. Inversely, overexpressing ETNPPL under normal conditions without PA promotes IR, reactive oxygen species generation, and ARG2 activation in both HepG2 and AML12 cells. Moreover, ETNPPL depletion markedly down-regulates ARG2 expression in hepatocytes. Besides, silencing ARG2 prevents ETNPPL-induced ROS accumulation and inhibition of autophagic flux and IR in hepatocytes. Finally, we found that phytopharmaceutical disruption of ETNPPL by quercetin ameliorates PA-induced IR in hepatocytes. Our study discloses that ETNPPL inhibiting autophagic flux mediates insulin resistance triggered by PA in hepatocytes via ARG2/ROS signaling cascade. Our findings provide novel insights into elucidating the pathogenesis of obesity-associated hepatic IR, suggesting that targeting ETNPPL might represent a potential approach for T2DM therapy.
Collapse
Affiliation(s)
- Caihua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Wei Zhang
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Wenxuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Ziwei Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Runlin Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Yujia Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Xiaomin Sun
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Ping Liu
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Shiyao Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China.
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China.
| |
Collapse
|
11
|
Chen X, Liu P, Zhang W, Li X, Wang C, Han F, Liu W, Huang Y, Li M, Li Y, Sun X, Fan X, Li W, Xiong Y, Qian L. ETNPPL modulates hyperinsulinemia-induced insulin resistance through the SIK1/ROS-mediated inactivation of the PI3K/AKT signaling pathway in hepatocytes. J Cell Physiol 2023; 238:1046-1062. [PMID: 36924049 DOI: 10.1002/jcp.30993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Hyperinsulinemia is a critical risk factor for the pathogenesis of insulin resistance (IR) in metabolic tissues, including the liver. Ethanolamine phosphate phospholyase (ETNPPL), a newly discovered metabolic enzyme that converts phosphoethanolamine (PEA) to ammonia, inorganic phosphate, and acetaldehyde, is abundantly expressed in liver tissue. Whether it plays a role in the regulation of hyperinsulinemia-induced IR in hepatocytes remains elusive. Here, we established an in vitro hyperinsulinemia-induced IR model in the HepG2 human liver cancer cell line and primary mouse hepatocyte via a high dose of insulin treatment. Next, we overexpressed ETNPPL by using lentivirus-mediated ectopic to investigate the effects of ETNPPL per se on IR without insulin stimulation. To explore the underlying mechanism of ETNPPL mediating hyperinsulinemia-induced IR in HepG2, we performed genome-wide transcriptional analysis using RNA sequencing (RNA-seq) to identify the downstream target gene of ETNPPL. The results showed that ETNPPL expression levels in both mRNA and protein were significantly upregulated in hyperinsulinemia-induced IR in HepG2 and primary mouse hepatocytes. Upon silencing ETNPPL, hyperinsulinemia-induced IR was ameliorated. Under normal conditions without IR in hepatocytes, overexpressing ETNPPL promotes IR, reactive oxygen species (ROS) generation, and AKT inactivation. Transcriptome analysis revealed that salt-inducible kinase 1 (SIK1) is markedly downregulated in the ETNPPL knockdown HepG2 cells. Moreover, disrupting SIK1 prevents ETNPPL-induced ROS accumulation, damage to the PI3K/AKT pathway and IR. Our study reveals that ETNPPL mediates hyperinsulinemia-induced IR through the SIK1/ROS-mediated inactivation of the PI3K/AKT signaling pathway in hepatocyte cells. Targeting ETNPPL may present a potential strategy for hyperinsulinemia-associated metabolic disorders such as type 2 diabetes.
Collapse
Affiliation(s)
- Xueyi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Ping Liu
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Wei Zhang
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Caihua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Wenxuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Yaoyao Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Man Li
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Yujia Li
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Xiaomin Sun
- Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Wenqing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China.,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, China
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Shaanxi, Xi'an, China.,Department of Endocrinology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, P.R. China.,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Shaanxi, Xi'an, China
| |
Collapse
|
12
|
Overnight Corticosterone and Gene Expression in Mouse Hippocampus: Time Course during Resting Period. Int J Mol Sci 2023; 24:ijms24032828. [PMID: 36769150 PMCID: PMC9917930 DOI: 10.3390/ijms24032828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of the experiment was to test the effect of an elevated level of glucocorticoids on the mouse hippocampal transcriptome after 12 h of treatment with corticosterone that was administered during an active phase of the circadian cycle. Additionally, we also tested the circadian changes in gene expression and the decay time of transcriptomic response to corticosterone. Gene expression was analyzed using microarrays. Obtained results show that transcriptomic responses to glucocorticoids are heterogeneous in terms of the decay time with some genes displaying persistent changes in expression during 9 h of rest. We have also found a considerable overlap between genes regulated by corticosterone and genes implicated previously in stress response. The examples of such genes are Acer2, Agt, Apod, Aqp4, Etnppl, Fabp7, Fam107a, Fjx1, Fmo2, Galnt15, Gjc2, Heph, Hes5, Htra1, Jdp2, Kif5a, Lfng, Lrg1, Mgp, Mt1, Pglyrp1, Pla2g3, Plin4, Pllp, Ptgds, Ptn, Slc2a1, Slco1c1, Sult1a1, Thbd and Txnip. This indicates that the applied model is a useful tool for the investigation of mechanisms underlying the stress response.
Collapse
|
13
|
Tsujioka H, Yamashita T. Utilization of ethanolamine phosphate phospholyase as a unique astrocytic marker. Front Cell Neurosci 2023; 17:1097512. [PMID: 36794261 PMCID: PMC9922850 DOI: 10.3389/fncel.2023.1097512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
Astrocytes play diverse roles in the central nervous system (CNS) in both physiological and pathological conditions. Previous studies have identified many markers of astrocytes to analyze their complicated roles. Recently, closure of the critical period by mature astrocytes has been revealed, and the need for finding mature astrocyte-specific markers has been growing. We previously found that Ethanolamine phosphate phospholyase (Etnppl) was almost not expressed in the developing neonatal spinal cord, and its expression level slightly decreased after pyramidotomy in adult mice, which showed weak axonal sprouting, suggesting that its expression level negatively correlates with axonal elongation. Although the expression of Etnppl in astrocytes in adult is known, its utility as an astrocytic marker has not yet been investigated in detail. Here, we showed that Etnppl was selectively expressed in astrocytes in adult. Re-analyses using published RNA-sequencing datasets revealed changes in Etnppl expression in spinal cord injury, stroke, or systemic inflammation models. We produced high-quality monoclonal antibodies against ETNPPL and characterized ETNPPL localization in neonatal and adult mice. Expression of ETNPPL was very weak in neonatal mice, except in the ventricular and subventricular zones, and it was heterogeneously expressed in adult mice, with the highest expression in the cerebellum, olfactory bulb, and hypothalamus and the lowest in white matter. Subcellular localization of ETNPPL was dominant in the nuclei with weak expression in the cytosol in the minor population. Using the antibody, astrocytes in adult were selectively labeled in the cerebral cortex or spinal cord, and changes in astrocytes were detected in the spinal cord after pyramidotomy. ETNPPL is expressed in a subset of Gjb6 + astrocytes in the spinal cord. The monoclonal antibodies we created, as well as fundamental knowledge characterized in this study, will be valuable resources in the scientific community and will expand our understanding of astrocytes and their complicated responses in many pathological conditions in future analyses.
Collapse
Affiliation(s)
- Hiroshi Tsujioka
- Graduate School of Medicine, Osaka University, Osaka, Japan,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan,*Correspondence: Hiroshi Tsujioka,
| | - Toshihide Yamashita
- Graduate School of Medicine, Osaka University, Osaka, Japan,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan,Toshihide Yamashita,
| |
Collapse
|
14
|
Chen Y, Yuan H, Yu Q, Pang J, Sheng M, Tang W. Bioinformatics Analysis and Structure of Gastric Cancer Prognosis Model Based on Lipid Metabolism and Immune Microenvironment. Genes (Basel) 2022; 13:genes13091581. [PMID: 36140749 PMCID: PMC9498347 DOI: 10.3390/genes13091581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The reprogramming of lipid metabolism is a new trait of cancers. However, the role of lipid metabolism in the tumor immune microenvironment (TIME) and the prognosis of gastric cancer remains unclear. METHODS Consensus clustering was applied to identify novel subgroups. ESTIMATE, TIMER, and MCPcounter algorithms were used to determine the TIME of the subgroups. The underlying mechanisms were elucidated using functional analysis. The prognostic model was established using the LASSO algorithm and multivariate Cox regression analysis. RESULTS Three molecular subgroups with significantly different survival were identified. The subgroup with relatively low lipid metabolic expression had a lower immune score and immune cells. The differentially expressed genes (DEGs) were concentrated in immune biological processes and cell migration via GO and KEGG analyses. GSEA analysis showed that the subgroups were mainly enriched in arachidonic acid metabolism. Gastric cancer survival can be predicted using risk models based on lipid metabolism genes. CONCLUSIONS The TIME of gastric cancer patients is related to the expression of lipid metabolism genes and could be used to predict cancer prognosis accurately.
Collapse
|
15
|
Ren J, Li C, Wei S, He Y, Huang P, Xu J. Identifying Antidepressant Effects of Brain-Derived Neurotrophic Factor and IDO1 in the Mouse Model Based on RNA-Seq Data. Front Genet 2022; 13:890961. [PMID: 35711916 PMCID: PMC9195421 DOI: 10.3389/fgene.2022.890961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022] Open
Abstract
Deletion of brain-derived neurotrophic factor (BDNF) and upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) are associated with depression severity in animals. The neurotransmitter hypothesis of depression at the transcriptomic level can be tested using BDNF- and IDO1-knockout mouse models and RNA-seq. In this study, BDNF+/−, IDO1−/−, and chronic ultra-mild stress (CUMS)-induced depression mouse models and controls were developed, and the differentially expressed genes were analyzed. Furthermore, the ceRNA package was used to search the lncRNA2Target database for potential lncRNAs. Finally, a protein–protein interaction (PPI) network was constructed using STRINGdb. By comparing the control and CUMS model groups, it was found that pathway enrichment analysis and ceRNA network analysis revealed that most differentially expressed genes (DEGs) were associated with protection of vulnerable neuronal circuits. In addition, we found the enriched pathways were associated with nervous system development and synapse organization when comparing the control and BDNF+/−model groups. When replicating the neurotransmitter disruption features of clinical patients, such comparisons revealed the considerable differences between CUMS and knockdown BDNF models, and the BDNF+/−model may be superior to the classic CUMS model. The data obtained in the present study implicated the potential DEGs and their enriched pathway in three mouse models related to depression and the regulation of the ceRNA network-mediated gene in the progression of depression. Together, our findings may be crucial for uncovering the mechanisms underlying the neurotransmitter hypothesis of depression in animals.
Collapse
Affiliation(s)
- Jing Ren
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Students Affairs Division, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chenyang Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yanjun He
- Emergency Department, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Peng Huang
- Women and Children Medical Research Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Jiangping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Yang X, Sun W, Wu Q, Lin H, Lu Z, Shen X, Chen Y, Zhou Y, Huang L, Wu F, Liu F, Chu D. Excess Folic Acid Supplementation before and during Pregnancy and Lactation Alters Behaviors and Brain Gene Expression in Female Mouse Offspring. Nutrients 2021; 14:nu14010066. [PMID: 35010941 PMCID: PMC8746785 DOI: 10.3390/nu14010066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Use of folic acid (FA) during early pregnancy protects against birth defects. However, excess FA has shown gender-specific neurodevelopmental toxicity. Previously, we fed the mice with 2.5 times the recommended amount of FA one week prior to mating and during the pregnancy and lactation periods, and detected the activated expression of Fos and related genes in the brains of weaning male offspring, as well as behavioral abnormalities in the adults. Here, we studied whether female offspring were affected by the same dosage of FA. An open field test, three-chamber social approach and social novelty test, an elevated plus-maze, rotarod test and the Morris water maze task were used to evaluate their behaviors. RNA sequencing was performed to identify differentially expressed genes in the brains. Quantitative real time-PCR (qRT-PCR) and Western blots were applied to verify the changes in gene expression. We found increased anxiety and impaired exploratory behavior, motor coordination and spatial memory in FA-exposed females. The brain transcriptome revealed 36 up-regulated and 79 down-regulated genes in their brains at weaning. The increase of Tlr1; Sult1a1; Tph2; Acacb; Etnppl; Angptl4 and Apold1, as well as a decrease of Ppara mRNA were confirmed by qRT-PCR. Among these genes; the mRNA levels of Etnppl; Angptl4andApold1 were increased in the both FA-exposed female and male brains. The elevation of Sult1a1 protein was confirmed by Western blots. Our data suggest that excess FA alteres brain gene expression and behaviors in female offspring, of which certain genes show apparent gender specificity.
Collapse
Affiliation(s)
- Xingyue Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (H.L.); (F.W.)
| | - Wenyan Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China; (W.S.); (Z.L.); (Y.C.); (Y.Z.)
| | - Qian Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
| | - Hongyan Lin
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (H.L.); (F.W.)
| | - Zhixing Lu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China; (W.S.); (Z.L.); (Y.C.); (Y.Z.)
| | - Xin Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
| | - Yongqi Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China; (W.S.); (Z.L.); (Y.C.); (Y.Z.)
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China; (W.S.); (Z.L.); (Y.C.); (Y.Z.)
| | - Li Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (H.L.); (F.W.)
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Correspondence: (F.L.); (D.C.)
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
- Correspondence: (F.L.); (D.C.)
| |
Collapse
|