1
|
Bi S, Xu Z, Wang Z, Liu Y, Yu B, Tian J, Liu C, Qiao L, Zhang Y. Polydatin from Polygoni Cuspidati Rhizoma et Radix regulates glucolipid metabolism in the liver of diabetic rats: Multiscale analysis of network pharmacology and multiomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155992. [PMID: 39216300 DOI: 10.1016/j.phymed.2024.155992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Polygoni Cuspidati Rhizoma et Radix (Huzhang in Chinese), refers to the root and rhizome of Polygonum cuspidatum Sieb. et Zucc. Huzhang is commonly used in clinical practice for the prevention and treatment of diabetes and its complications, but its active components and regulatory mechanisms have not yet been thoroughly analyzed. PURPOSE The network pharmacology combined with multi-omics analysis will be employed to dissect the substance basis and action mechanism of Huzhang in exerting its anti-diabetic activity. METHODS This study employed phenotypic indicators for baseline assessment, followed by integrated analysis using network pharmacology, metabolomics, transcriptomics, and qPCR technology to elucidate the active components and pharmacological mechanisms of Huzhang. RESULTS The analysis of network pharmacology revealed that polydatin is a potential active component responsible for the anti-T2DM pharmacological effects of Huzhang. In vivo experimental results demonstrated that polydatin significantly regulates blood glucose, lipid levels, liver function, and liver pathological damage in diabetic rats. Analysis results from transcriptomics, metabolomics, and qPCR validation showed that polydatin comprehensively regulates glucose and lipid metabolism in T2DM by modulating bile acid metabolism, fatty acid oxidation, and lipogenesis. CONCLUSION Polydatin is a key component of Huzhang in treating T2DM, and its regulatory mechanisms are diverse, indicating significant development potential.
Collapse
Affiliation(s)
- Shijie Bi
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhenzhen Xu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zewen Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanxia Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bin Yu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaye Tian
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chaoqun Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liansheng Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Ding Z, Ge W, Xu X, Xu X, Sun Q, Xu X, Zhang J. A crucial role of adenosine deaminase in regulating gluconeogenesis in mice. J Biol Chem 2024; 300:107425. [PMID: 38823639 PMCID: PMC11231709 DOI: 10.1016/j.jbc.2024.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Adenosine deaminase (ADA) catalyzes the irreversible deamination of adenosine (ADO) to inosine and regulates ADO concentration. ADA ubiquitously expresses in various tissues to mediate ADO-receptor signaling. A significant increase in plasma ADA activity has been shown to be associated with the pathogenesis of type 2 diabetes mellitus. Here, we show that elevated plasma ADA activity is a compensated response to high level of ADO in type 2 diabetes mellitus and plays an essential role in the regulation of glucose homeostasis. Supplementing with more ADA, instead of inhibiting ADA, can reduce ADO levels and decrease hepatic gluconeogenesis. ADA restores a euglycemic state and recovers functional islets in db/db and high-fat streptozotocin diabetic mice. Mechanistically, ADA catabolizes ADO and increases Akt and FoxO1 phosphorylation independent of insulin action. ADA lowers blood glucose at a slower rate and longer duration compared to insulin, delaying or blocking the incidence of insulinogenic hypoglycemia shock. Finally, ADA suppresses gluconeogenesis in fasted mice and insulin-deficient diabetic mice, indicating the ADA regulating gluconeogenesis is a universal biological mechanism. Overall, these results suggest that ADA is expected to be a new therapeutic target for diabetes.
Collapse
Affiliation(s)
- Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiaogang Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Qi Sun
- Department of Physiology, Bengbu Medical University, Bengbu, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
3
|
Wu Y, Zhu X, Jiang W, Li J, Li H, Zhang K, Yang Y, Qu S, Guan X, Bai Y, Guo H, Dai L. LMNA-related muscular dystrophy involving myoblast proliferation and apoptosis through the FOXO1/GADD45A pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166943. [PMID: 37951507 DOI: 10.1016/j.bbadis.2023.166943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
LMNA-related muscular dystrophy is a major disease phenotype causing mortality and morbidity in laminopathies, but its pathogenesis is still unclear. To explore the molecular pathogenesis, a knock-in mouse harbouring the Lmna-W520R mutation was modelled. Morphological and motor functional analyses showed that homozygous mutant mice revealed severe muscular atrophy, profound motor dysfunction, and shortened lifespan, while heterozygotes showed a variant arrangement of muscle bundles and mildly reduced motor capacity. Mechanistically, the FOXO1/GADD45A pathway involving muscle atrophy processes was found to be altered in vitro and in vivo assays. The expression levels of FOXO1 and its downstream regulatory molecule GADD45A significantly increased in atrophic muscle tissue. The elevated expression of FOXO1 was associated with decreased H3K27me3 in its gene promotor region. Overexpression of GADD45A induced apoptosis and cell cycle arrest of myoblasts in vitro, and it could be partially restored by the FOXO1 inhibitor AS1842856, which also slowed the muscle atrophy process with improved motor function and prolonged survival time of homozygous mutant mice in vivo. Notably, the inhibitor also partly rescued the apoptosis and cell cycle arrest of hiPSC-derived myoblasts harbouring the LMNA-W520R mutation. Together, these data suggest that the activation of the FOXO1/GADD45A pathway contributes to the pathogenesis of LMNA-related muscle atrophy, and it might serve as a potential therapeutic target for laminopathies.
Collapse
Affiliation(s)
- Yue Wu
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xintong Zhu
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wen Jiang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Li
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hongyan Li
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Kun Zhang
- Department of Pathogenic Biology, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yixuan Yang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Song Qu
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xingying Guan
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Gynecology and Obstetrics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
4
|
Sui K, Yasrebi A, Longoria CR, MacDonell AT, Jaffri ZH, Martinez SA, Fisher SE, Malonza N, Jung K, Tveter KM, Wiersielis KR, Uzumcu M, Shapses SA, Campbell SC, Roepke TA, Roopchand DE. Coconut Oil Saturated Fatty Acids Improved Energy Homeostasis but not Blood Pressure or Cognition in VCD-Treated Female Mice. Endocrinology 2023; 164:bqad001. [PMID: 36626144 PMCID: PMC11009791 DOI: 10.1210/endocr/bqad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Obesity, cardiometabolic disease, cognitive decline, and osteoporosis are symptoms of postmenopause, which can be modeled using 4-vinylcyclohexene diepoxide (VCD)-treated mice to induce ovarian failure and estrogen deficiency combined with high-fat diet (HFD) feeding. The trend of replacing saturated fatty acids (SFAs), for example coconut oil, with seed oils that are high in polyunsaturated fatty acids, specifically linoleic acid (LA), may induce inflammation and gut dysbiosis, and worsen symptoms of estrogen deficiency. To investigate this hypothesis, vehicle (Veh)- or VCD-treated C57BL/6J mice were fed a HFD (45% kcal fat) with a high LA:SFA ratio (22.5%: 8%), referred to as the 22.5% LA diet, or a HFD with a low LA:SFA ratio (1%: 31%), referred to as 1% LA diet, for a period of 23 to 25 weeks. Compared with VCD-treated mice fed the 22.5% LA diet, VCD-treated mice fed the 1% LA diet showed lower weight gain and improved glucose tolerance. However, VCD-treated mice fed the 1% LA diet had higher blood pressure and showed evidence of spatial cognitive impairment. Mice fed the 1% LA or 22.5% LA diets showed gut microbial taxa changes that have been associated with a mix of both beneficial and unfavorable cognitive and metabolic phenotypes. Overall, these data suggest that consuming different types of dietary fat from a variety of sources, without overemphasis on any particular type, is the optimal approach for promoting metabolic health regardless of estrogen status.
Collapse
Affiliation(s)
- Ke Sui
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ali Yasrebi
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Candace R Longoria
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Avery T MacDonell
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zehra H Jaffri
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Savannah A Martinez
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Samuel E Fisher
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Natasha Malonza
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Katie Jung
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kevin M Tveter
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kimberly R Wiersielis
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Mehmet Uzumcu
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sara C Campbell
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Troy A Roepke
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Ismail Y, Fahmy DM, Ghattas MH, Ahmed MM, Zehry W, Saleh SM, Abo-elmatty DM. Integrating experimental model, LC-MS/MS chemical analysis, and systems biology approach to investigate the possible antidiabetic effect and mechanisms of Matricaria aurea (Golden Chamomile) in type 2 diabetes mellitus. Front Pharmacol 2022; 13:924478. [PMID: 36160451 PMCID: PMC9490514 DOI: 10.3389/fphar.2022.924478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a heterogeneous disease with numerous abnormal targets and pathways involved in insulin resistance, low-grade inflammation, oxidative stress, beta cell dysfunction, and epigenetic factors. Botanical drugs provide a large chemical space that can modify various targets simultaneously. Matricaria aurea (MA, golden chamomile) is a widely used herb in Middle Eastern communities for many ailments, including diabetes mellitus, without any scientific basis to support this tradition. For the first time, this study aimed to investigate the possible antidiabetic activity of MA in a type 2 diabetic rat model, identify chemical constituents by LC-MS/MS, and then elucidate the molecular mechanism(s) using enzyme activity assays, q-RTPCR gene expression analysis, network pharmacology analysis, and molecular docking simulation. Our results demonstrated that only the polar hydroethanolic extract of MA had remarkable antidiabetic activity. Furthermore, it improved dyslipidemia, insulin resistance status, ALT, and AST levels. LC-MS/MS analysis of MA hydroethanolic extract identified 62 compounds, including the popular chamomile flavonoids apigenin and luteolin, other flavonoids and their glycosides, coumarin derivatives, and phenolic acids. Based on pharmacokinetic screening and literature, 46 compounds were chosen for subsequent network analysis, which linked to 364 candidate T2DM targets from various databases and literature. The network analysis identified 123 hub proteins, including insulin signaling and metabolic proteins: IRS1, IRS2, PIK3R1, AKT1, AKT2, MAPK1, MAPK3, and PCK1, inflammatory proteins: TNF and IL1B, antioxidant enzymes: CAT and SOD, and others. Subsequent filtering identified 40 crucial core targets (major hubs) of MA in T2DM treatment. Functional enrichment analyses of the candidate targets revealed that MA targets were mainly involved in the inflammatory module, energy-sensing/endocrine/metabolic module, and oxidative stress module. q-RTPCR gene expression analysis showed that MA hydroethanolic extract was able to significantly upregulate PIK3R1 and downregulate IL1B, PCK1, and MIR29A. Moreover, the activity of the antioxidant hub enzymes was substantially increased. Molecular docking scores were also consistent with the networks’ predictions. Based on experimental and computational analysis, this study revealed for the first time that MA exerted antidiabetic action via simultaneous modulation of multiple targets and pathways, including inflammatory pathways, energy-sensing/endocrine/metabolic pathways, and oxidative stress pathways.
Collapse
Affiliation(s)
- Yassin Ismail
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
- *Correspondence: Yassin Ismail,
| | - Dina M. Fahmy
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Maivel H. Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mai M. Ahmed
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Walaa Zehry
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samy M. Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Zhang ZH, Li J, Li J, Ma Z, Huang XJ. Veratrilla baillonii Franch Ameliorates Diabetic Liver Injury by Alleviating Insulin Resistance in Rats. Front Pharmacol 2021; 12:775563. [PMID: 34899339 PMCID: PMC8662784 DOI: 10.3389/fphar.2021.775563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and polygenic disorder with diverse complications. Veratrilla baillonii Franch (V. baillonii) has been applied in the intervention and treatment a diverse range of diseases, including diabetes. In this study, we revealed that water extracts of V. baillonii (WVBF) can ameliorate liver injury and insulin resistance in T2DM rat model. To elucidate the anti-diabetic mechanisms of WVBF, we performed liver transcriptome analysis that displayed WVBF treatment significantly suppressed many gene expressions involved in insulin resistance. Furthermore, functional experiments showed that WVBF treatment reduced the pathological damages of liver and pancreas, which may be regulated by Foxo1, Sirt1, G6pc, c-Met, Irs1, Akt1, Pik3r1. These results indicated that WVBF improves diabetic liver injury and insulin resistance in diabetic rats. Therefore, this study demonstrated WVBF could be used as a promising therapeutic agent for intervention and treatment of diabetes.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
7
|
Howard EJ, Lam TKT, Duca FA. The Gut Microbiome: Connecting Diet, Glucose Homeostasis, and Disease. Annu Rev Med 2021; 73:469-481. [PMID: 34678047 DOI: 10.1146/annurev-med-042220-012821] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes rates continue to rise unabated, underscoring the need to better understand the etiology and potential therapeutic options available for this disease. The gut microbiome plays a role in glucose homeostasis, and diabetes is associated with alterations in the gut microbiome. Given that consumption of a Western diet is associated with increased metabolic disease, and that a Western diet alters the gut microbiome, it is plausible that changes in the gut microbiota mediate the dysregulation in glucose homeostasis. In this review, we highlight a few of the most significant mechanisms by which the gut microbiome can influence glucose regulation, including changes in gut permeability, gut-brain signaling, and production of bacteria-derived metabolites like short-chain fatty acids and bile acids. A better understanding of these pathways could lead to the development of novel therapeutics to target the gut microbiome in order to restore glucose homeostasis in metabolic disease. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Elizabeth J Howard
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Tony K T Lam
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85721, USA.,BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA;
| |
Collapse
|