1
|
Wei D, Wang Z, Yue J, Chen Y, Meng J, Niu X. Effect of low-intensity focused ultrasound therapy on postpartum uterine involution in puerperal women: A randomized controlled trial. PLoS One 2024; 19:e0301825. [PMID: 38687759 PMCID: PMC11060566 DOI: 10.1371/journal.pone.0301825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Short-term poor uterine involution manifests as uterine contraction weakness. This is one of the important causes of postpartum hemorrhage, posing a serious threat to the mother's life and safety. The study aims to investigate whether low-intensity focused ultrasound (LIFUS) can effectively shorten lochia duration, alleviate postpartum complications, and accelerate uterine involution compared with the sham treatment. METHODS A multicenter, concealed, randomized, blinded, and sham-controlled clinical trial was conducted across three medical centers involving 176 subjects, utilizing a parallel group design. Enrollment occurred between October 2019 and September 2020, with a 42-day follow-up period. Participants meeting the inclusion and exclusion criteria based on normal prenatal examinations were randomly divided into the LIFUS group or the sham operation group via computer-generated randomization. Patients in the LIFUS group received usual care with the LIFUS protocol, wherein a LIFUS signal was transmitted to the uterine site through coupling gel, or sham treatment, where no low-intensity ultrasound signal output was emitted. The primary outcome, lochia duration, was assessed via weekly telephonic follow-ups post-discharge. The involution of the uterus, measured by uterine fundus height, served as the secondary outcome. RESULTS Among the 256 subjects screened for eligibility, 176 subjects were enrolled and randomly assigned to either the LIFUS group (n = 88) or the Sham group (n = 88). Data on the height of the uterine fundus were obtained from all the patients, with 696 out of 704 measurements (99%) successfully recorded. Overall, a statistically significant difference was noted in time to lochia termination (hazard ratio: 2.65; 95% confidence interval [CI]: 1.82-3.85; P < 0.001). The decline in fundal height exhibited notable discrepancies between the two groups following the second treatment session (mean difference: -1.74; 95% CI: -1.23 to -2.25; P < 0.001) and the third treatment session (mean difference: -3.26; 95% CI: -2.74 to -3.78; P < 0.001) after delivery. None of the subjects had any adverse reactions, such as skin damage or allergies during the treatment. CONCLUSIONS This study found that LIFUS treatment can promote uterine involution and abbreviate the duration of postpartum lochia. Ultrasound emerges as a safe and effective intervention, poised to address further clinical inquiries in the domain of postpartum rehabilitation.
Collapse
Affiliation(s)
- Dongmei Wei
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhijian Wang
- Department of Gynecology and Obstetrics, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Jun Yue
- Department of Gynecology and Obstetrics, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yueyue Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jian Meng
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoyu Niu
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Dubey P, Fang Y, Tukei KL, Kuila S, Liu X, Sahota A, Frolova AI, Reinl EL, Malik M, England SK, Imoukhuede PI. Understanding the effects of oxytocin receptor variants on OXT-OXT receptor binding: A mathematical model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582600. [PMID: 38559157 PMCID: PMC10979843 DOI: 10.1101/2024.02.28.582600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Approximately half of U.S. women giving birth annually receive Pitocin, the synthetic form of oxytocin (OXT), yet its effective dose can vary significantly. This variability presents safety concerns due to unpredictable responses, which may lead to adverse outcomes for both mother and baby. To address the need for improved dosing, we developed a data-driven mathematical model to predict OXT receptor (OXTR) binding. Our study focuses on five prevalent OXTR variants (V45L, P108A, L206V, V281M, and E339K) and their impact on OXT-OXTR binding dynamics in two distinct cell types: human embryonic kidney cells (HEK293T), commonly used in experimental systems, and human myometrial smooth muscle cells, containing endogenous OXTR. We parameterized the model with cell-specific OXTR surface localization measurements. To strengthen the robustness of our study, we conducted a comprehensive meta-analysis of OXT- OXTR binding, enabling parameterization of our model with cell-specific OXT-OXTR binding kinetics (myometrial OXT-OXTR K d = 1.6 nM, kon = 6.8 × 10 5 M -1 min -1 , and koff = 0.0011 min -1 ). Our meta-analysis revealed significant homogeneity in OXT-OXTR affinity across experiments and species with a K d = 0.52 - 9.32 nM and mean K d = 1.48 ± 0.36 nM. Our model achieves several valuable insights into designing dosage strategies. First, we predicted that the OXTR complex reaches maximum occupancy at 10 nM OXT in myometrial cells and at 1 µM in HEK293T cells. This information is pivotal for guiding experimental design and data interpretation when working with these distinct cell types, emphasizing the need to consider effects for specific cell types when choosing OXTR-transfected cell lines. Second, our model recapitulated the significant effects of genetic variants for both experimental and physiologically relevant systems, with V281M and E339K substantially compromising OXT-OXTR binding capacity. These findings suggest the need for personalized oxytocin dosing based on individual genetic profiles to enhance therapeutic efficacy and reduce risks, especially in the context of labor and delivery. Third, we demonstrated the potential for rescuing the attenuated cell response observed in V281M and E339K variants by increasing the OXT dosage at specific, early time points. Cellular responses to OXT, including Ca 2+ release, manifest within minutes. Our model indicates that providing V281M- and E339K-expressing cells with doubled OXT dose during the initial minute of binding can elevate OXT-OXTR complex formation to levels comparable to wild-type OXTR. In summary, our study provides a computational framework for precision oxytocin dosing strategies, paving the way for personalized medicine.
Collapse
|
3
|
Uvnäs-Moberg K. The physiology and pharmacology of oxytocin in labor and in the peripartum period. Am J Obstet Gynecol 2024; 230:S740-S758. [PMID: 38462255 DOI: 10.1016/j.ajog.2023.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 03/12/2024]
Abstract
Oxytocin is a reproductive hormone implicated in the process of parturition and widely used during labor. Oxytocin is produced within the supraoptic nucleus and paraventricular nucleus of the hypothalamus and released from the posterior pituitary lobe into the circulation. Oxytocin is released in pulses with increasing frequency and amplitude in the first and second stages of labor, with a few pulses released in the third stage of labor. During labor, the fetus exerts pressure on the cervix of the uterus, which activates a feedforward reflex-the Ferguson reflex-which releases oxytocin. When myometrial contractions activate sympathetic nerves, it decreases oxytocin release. When oxytocin binds to specific myometrial oxytocin receptors, it induces myometrial contractions. High levels of circulating estrogen at term make the receptors more sensitive. In addition, oxytocin stimulates prostaglandin synthesis and release in the decidua and chorioamniotic membranes by activating a specific type of oxytocin receptor. Prostaglandins contribute to cervical ripening and uterine contractility in labor. The oxytocin system in the brain has been implicated in decreasing maternal levels of fear, pain, and stress, and oxytocin release and function during labor are stimulated by a social support. Moreover, studies suggest, but have not yet proven, that labor may be associated with long-term, behavioral and physiological adaptations in the mother and infant, possibly involving epigenetic modulation of oxytocin production and release and the oxytocin receptor. In addition, infusions of synthetic oxytocin are used to induce and augment labor. Oxytocin may be administered according to different dose regimens at increasing rates from 1 to 3 mIU/min to a maximal rate of 36 mIU/min at 15- to 40-minute intervals. The total amount of synthetic oxytocin given during labor can be 5 to 10 IU, but lower and higher amounts of oxytocin may also be given. High-dose infusions of oxytocin may shorten the duration of labor by up to 2 hours compared with no infusion of oxytocin; however, it does not lower the frequency of cesarean delivery. When synthetic oxytocin is administered, the plasma concentration of oxytocin increases in a dose-dependent way: at infusion rates of 20 to 30 mIU/min, plasma oxytocin concentration increases approximately 2- to 3-fold above the basal level. Synthetic oxytocin administered at recommended dose levels is not likely to cross the placenta or maternal blood-brain barrier. Synthetic oxytocin should be administered with caution as high levels may induce tachystole and uterine overstimulation, with potentially negative consequences for the fetus and possibly the mother. Of note, 5 to 10 IU of synthetic oxytocin is often routinely given as an intravenous or intramuscular bolus administration after delivery to induce uterine contractility, which, in turn, induces uterine separation of the placenta and prevents postpartum hemorrhage. Furthermore, it promotes the expulsion of the placenta.
Collapse
Affiliation(s)
- Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agriculture, Uppsala, Sweden.
| |
Collapse
|
4
|
Fang Y, Reinl EL, Liu A, Prochaska TD, Malik M, Frolova AI, England SK, Imoukhuede PI. Quantification of surface-localized and total oxytocin receptor in myometrial smooth muscle cells. Heliyon 2024; 10:e25761. [PMID: 38384573 PMCID: PMC10878913 DOI: 10.1016/j.heliyon.2024.e25761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Oxytocin acts through the oxytocin receptor (OXTR) to modulate uterine contractility. We previously identified OXTR genetic variants and showed that, in HEK293T cells, two of the OXTR protein variants localized to the cell surface less than wild-type OXTR. Here, we sought to measure OXTR in the more native human myometrial smooth muscle cell (HMSMC) line on both the cell-surface and across the whole cell, and used CRISPR editing to add an HA tag to the endogenous OXTR gene for anti-HA measurement. Quantitative flow cytometry revealed that these cells possessed 55,000 ± 3200 total OXTRs and 4900 ± 390 cell-surface OXTRs per cell. To identify any differential wild-type versus variant localization, we transiently transfected HMSMCs to exogenously express wild-type or variant OXTR with HA and green fluorescent protein tags. Total protein expression of wild-type OXTR and all tested variants were similar. However, the two variants with lower surface localization in HEK293T cells also presented lower surface localization in HMSMCs. Overall, we confirm the differential surface localization of variant OXTR in a more native cell type, and further demonstrate that the quantitative flow cytometry technique is adaptable to whole-cell measurements.
Collapse
Affiliation(s)
- Yingye Fang
- Department of Bioengineering, University of Washington, Seattle, WA, 98109, USA
| | - Erin L. Reinl
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Audrey Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Trinidi D. Prochaska
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Manasi Malik
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Antonina I. Frolova
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | | |
Collapse
|
5
|
Wei D, Yue J, Meng J, Gao J, Yang L, Niu X, Wang Z. Preliminary study of the effect of low-intensity focused ultrasound on postpartum uterine involution and breast pain in puerperal women: a randomised controlled trial. Sci Rep 2024; 14:658. [PMID: 38182657 PMCID: PMC10770318 DOI: 10.1038/s41598-024-51328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
To evaluate the safety and efficacy of low-intensity focused ultrasound (LIFU) therapy in facilitating fundus descent and relieving postpartum breast pain compared with sham treatment. A multicentre, randomised, sham-controlled, blinded trial was conducted. A cohort of 176 eligible participants, who had normal prenatal check-ups and met the inclusion and exclusion criteria, were recruited from three medical centres and subsequently randomized into either the LIFU or sham group. All participants received three treatment sessions, wherein LIFU signal was applied to the uterus and breast sites using coupling gel, with the absence of ultrasound signal output in the sham group. Fundal height measurement and breast pain score were performed after each treatment. The primary outcome, uterine involution, was presented by measuring the fundal height of the uterus. The visual analogue scale (VAS) score, as a secondary outcome, was used to assess breast pain and determine the correlation between breast pain and fundal height as the outcome simultaneously. All participants were randomly assigned to either the LIFU group (n = 88) or sham group (n = 88), with seven individuals not completing the treatment. Overall, a statistically significant difference was noted in the rate and index of fundus descent after each treatment. The rate and index of fundus descent showed greater significance following the second treatment (rate: 1.5 (1.0, 2.0) cm/d; index: 0.15 (0.1, 0.18), P < 0.001) and third treatment (rate: 1.67 (1.33, 2.0) cm/d; index: 0.26 (0.23, 0.3), P < 0.001) in the LIFU group. VAS scores, which were based on the continuous variables for the baseline, first, second, and third treatments in the LIFU group (2.0 (2.0, 3.0), 1.0 (0.0, 2.0), 0.0 (0.0, 1.0), and 0.0 (0.0, 0.0) points, respectively), and the sham group (2.0 (2.0, 2.0), 2.0 (1.0, 2.0), 2.0 (1.0, 3.0), and 3.0 (1.0, 3.0) points, respectively), showed a statistically significant difference between the two groups. Meanwhile, the discrepancies in VAS score classification variables between the two groups were statistically significant. After the third treatment, a notable correlation was observed between the VAS score decrease and fundus descent rate; the more the VAS score decreased, the faster was the fundal decline rate in the LIFU group. LIFU therapy is safe and effective, contributing to the acceleration of uterine involution and the relief of postpartum breast pain.Trial ID The study has registered in the Chinese Clinical Trial Registry (ChiCTR2100049586) at 05/08/2021.
Collapse
Affiliation(s)
- Dongmei Wei
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jun Yue
- Department of Gynecology and Obstetrics, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jian Meng
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jing Gao
- Department of Medicine, LIFU Research Institute, Chengdu, China
| | - Lei Yang
- Department of Medicine, LIFU Research Institute, Chengdu, China
| | - Xiaoyu Niu
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Zhijian Wang
- Department of Gynecology and Obstetrics, Southern Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Fang Y, Chen L, Imoukhuede PI. Toward Blood-Based Precision Medicine: Identifying Age-Sex-Specific Vascular Biomarker Quantities on Circulating Vascular Cells. Cell Mol Bioeng 2023; 16:189-204. [PMID: 37456786 PMCID: PMC10338416 DOI: 10.1007/s12195-023-00771-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Abnormal angiogenesis is central to vascular disease and cancer, and noninvasive biomarkers of vascular origin are needed to evaluate patients and therapies. Vascular endothelial growth factor receptors (VEGFRs) are often dysregulated in these diseases, making them promising biomarkers, but the need for an invasive biopsy has limited biomarker research on VEGFRs. Here, we pioneer a blood biopsy approach to quantify VEGFR plasma membrane localization on two circulating vascular proxies: circulating endothelial cells (cECs) and circulating progenitor cells (cPCs). Methods Using quantitative flow cytometry, we examined VEGFR expression on cECs and cPCs in four age-sex groups: peri/premenopausal females (aged < 50 years), menopausal/postmenopausal females (≥ 50 years), and younger and older males with the same age cut-off (50 years). Results cECs in peri/premenopausal females consisted of two VEGFR populations: VEGFR-low (~ 55% of population: population medians ~ 3000 VEGFR1 and 3000 VEGFR2/cell) and VEGFR-high (~ 45%: 138,000 VEGFR1 and 39,000-236,000 VEGFR2/cell), while the menopausal/postmenopausal group only possessed the VEGFR-low cEC population; and 27% of cECs in males exhibited high plasma membrane VEGFR expression (206,000 VEGFR1 and 155,000 VEGFR2/cell). The absence of VEGFR-high cEC subpopulations in menopausal/postmenopausal females suggests that their high-VEGFR cECs are associated with menstruation and could be noninvasive proxies for studying the intersection of age-sex in angiogenesis. VEGFR1 plasma membrane localization in cPCs was detected only in menopausal/postmenopausal females, suggesting a menopause-specific regenerative mechanism. Conclusions Overall, our quantitative, noninvasive approach targeting cECs and cPCs has provided the first insights into how sex and age influence VEGFR plasma membrane localization in vascular cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00771-1.
Collapse
Affiliation(s)
- Yingye Fang
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Ling Chen
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO USA
| | - P. I. Imoukhuede
- Department of Bioengineering, University of Washington, Seattle, WA USA
| |
Collapse
|
7
|
Saurabh K, Mbadhi MN, Prifti KK, Martin KT, Frolova AI. Sphingosine 1-Phosphate Activates S1PR3 to Induce a Proinflammatory Phenotype in Human Myometrial Cells. Endocrinology 2023; 164:bqad066. [PMID: 37120767 PMCID: PMC10201982 DOI: 10.1210/endocr/bqad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
One of the common mechanisms responsible for obstetric complications, affecting millions of women every year, is abnormal uterine contractility. Despite the critical importance of this process for women's health, the mechanisms of uterine contraction regulation remain poorly understood. The initiation of uterine smooth muscle (myometrial) contraction is an inflammatory process, accompanied by upregulation of proinflammatory genes and cytokine release. In this study, we show that sphingolipid metabolism is activated during human labor and that sphingosine 1-phosphate (S1P), the main bioactive sphingolipid, may modify the myometrial proinflammatory phenotype. Our data in both primary and immortalized human myometrial cells show that exogenous S1P induces a proinflammatory gene signature and upregulates the expression of known inflammatory markers of parturition, such as IL8 and COX2. Using expression of IL8 as a readout for S1P activity in myometrial cells, we established that these S1P effects are mediated through the activation of S1P receptor 3 (S1PR3) and downstream activation of ERK1/2 pathways. Inhibition of S1PR3 in human myometrial cells attenuates upregulation of IL8, COX2, and JUNB both at the mRNA and protein levels. Furthermore, activation of S1PR3 with a receptor-specific agonist recapitulated the effects seen after treatment with exogenous S1P. Collectively, these results suggest a signaling pathway activated by S1P in human myometrium during parturition and propose new targets for development of novel therapeutics to alter uterine contractility during management of preterm labor or labor dystocia.
Collapse
Affiliation(s)
- Kumar Saurabh
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Magdaleena Naemi Mbadhi
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin K Prifti
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kaci T Martin
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antonina I Frolova
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Fang Y, Malik M, England SK, Imoukhuede PI. Absolute Quantification of Plasma Membrane Receptors Via Quantitative Flow Cytometry. Methods Mol Biol 2022; 2475:61-77. [PMID: 35451749 PMCID: PMC9261967 DOI: 10.1007/978-1-0716-2217-9_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plasma membrane receptors are transmembrane proteins that initiate cellular response following the binding of specific ligands (e.g., growth factors, hormones, and cytokines). The abundance of plasma membrane receptors can be a diagnostic or prognostic biomarker in many human diseases. One of the best techniques for measuring plasma membrane receptors is quantitative flow cytometry (qFlow). qFlow employs fluorophore-conjugated antibodies against the receptors of interest and corresponding fluorophore-loaded calibration beads offers standardized and reproducible measurements of plasma membrane receptors. More importantly, qFlow can achieve absolute quantification of plasma membrane receptors when phycoerythrin (PE) is the fluorophore of choice. Here we describe a detailed qFlow protocol to obtain absolute receptor quantities on the basis of PE calibration. This protocol is foundational for many previous and ongoing studies in quantifying tyrosine kinase receptors and G-protein-coupled receptors with in vitro cell models and ex vivo cell samples.
Collapse
Affiliation(s)
- Yingye Fang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Manasi Malik
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah K England
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - P I Imoukhuede
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|