1
|
Necker-Brown A, Kooi C, Thorne AJ, Bansal A, Mostafa MM, Chandramohan P, Gao A, Kalyanaraman K, Milani A, Gill S, Georgescu A, Sasse SK, Gerber AN, Leigh R, Newton R. Inducible gene expression of IκB-kinase ε is dependent on nuclear factor-κB in human pulmonary epithelial cells. Biochem J 2024; 481:959-980. [PMID: 38941070 DOI: 10.1042/bcj20230461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 06/29/2024]
Abstract
While IκB-kinase-ε (IKKε) induces immunomodulatory genes following viral stimuli, its up-regulation by inflammatory cytokines remains under-explored. Since airway epithelial cells respond to airborne insults and potentiate inflammation, IKKε expression was characterized in pulmonary epithelial cell lines (A549, BEAS-2B) and primary human bronchial epithelial cells grown as submersion or differentiated air-liquid interface cultures. IKKε expression was up-regulated by the pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumour necrosis factor-α (TNFα). Thus, mechanistic interrogations in A549 cells were used to demonstrate the NF-κB dependence of cytokine-induced IKKε. Furthermore, chromatin immunoprecipitation in A549 and BEAS-2B cells revealed robust recruitment of the NF-κB subunit, p65, to one 5' and two intronic regions within the IKKε locus (IKBKE). In addition, IL-1β and TNFα induced strong RNA polymerase 2 recruitment to the 5' region, the first intron, and the transcription start site. Stable transfection of the p65-binding regions into A549 cells revealed IL-1β- and TNFα-inducible reporter activity that required NF-κB, but was not repressed by glucocorticoid. While critical NF-κB motifs were identified in the 5' and downstream intronic regions, the first intronic region did not contain functional NF-κB motifs. Thus, IL-1β- and TNFα-induced IKKε expression involves three NF-κB-binding regions, containing multiple functional NF-κB motifs, and potentially other mechanisms of p65 binding through non-classical NF-κB binding motifs. By enhancing IKKε expression, IL-1β may prime, or potentiate, responses to alternative stimuli, as modelled by IKKε phosphorylation induced by phorbol 12-myristate 13-acetate. However, since IKKε expression was only partially repressed by glucocorticoid, IKKε-dependent responses could contribute to glucocorticoid-resistant disease.
Collapse
Affiliation(s)
- Amandah Necker-Brown
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Cora Kooi
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Lung Health Research Group. Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew J Thorne
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Akanksha Bansal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Mahmoud M Mostafa
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Priyanka Chandramohan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Alex Gao
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Arya Milani
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sachman Gill
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Andrei Georgescu
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, CO, U.S.A
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, CO, U.S.A
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, U.S.A
| | - Richard Leigh
- Department of Medicine, Lung Health Research Group. Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Newton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Mun SJ, Cho E, Kim HK, Gil WJ, Yang CS. Enhancing acute inflammatory and sepsis treatment: superiority of membrane receptor blockade. Front Immunol 2024; 15:1424768. [PMID: 39081318 PMCID: PMC11286478 DOI: 10.3389/fimmu.2024.1424768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Conditions such as acute pancreatitis, ulcerative colitis, delayed graft function and infections caused by a variety of microorganisms, including gram-positive and gram-negative organisms, increase the risk of sepsis and therefore mortality. Immune dysfunction is a characterization of sepsis, so timely and effective treatment strategies are needed. The conventional approaches, such as antibiotic-based treatments, face challenges such as antibiotic resistance, and cytokine-based treatments have shown limited efficacy. To address these limitations, a novel approach focusing on membrane receptors, the initiators of the inflammatory cascade, is proposed. Membrane receptors such as Toll-like receptors, interleukin-1 receptor, endothelial protein C receptor, μ-opioid receptor, triggering receptor expressed on myeloid cells 1, and G-protein coupled receptors play pivotal roles in the inflammatory response, offering opportunities for rapid regulation. Various membrane receptor blockade strategies have demonstrated efficacy in both preclinical and clinical studies. These membrane receptor blockades act as early stage inflammation modulators, providing faster responses compared to conventional therapies. Importantly, these blockers exhibit immunomodulatory capabilities without inducing complete immunosuppression. Finally, this review underscores the critical need for early intervention in acute inflammatory and infectious diseases, particularly those posing a risk of progressing to sepsis. And, exploring membrane receptor blockade as an adjunctive treatment for acute inflammatory and infectious diseases presents a promising avenue. These novel approaches, when combined with antibiotics, have the potential to enhance patient outcomes, particularly in conditions prone to sepsis, while minimizing risks associated with antibiotic resistance and immune suppression.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Hyo Keun Kim
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Woo Jin Gil
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
3
|
Lehtola T, Nummenmaa E, Nieminen R, Hämäläinen M, Vuolteenaho K, Moilanen E. The glucocorticoid dexamethasone alleviates allergic inflammation through a mitogen-activated protein kinase phosphatase-1-dependent mechanism in mice. Basic Clin Pharmacol Toxicol 2024; 134:686-694. [PMID: 38439200 DOI: 10.1111/bcpt.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/06/2024]
Abstract
Glucocorticoids are widely used in the treatment of allergic and inflammatory diseases. Glucocorticoids have a widespread action on gene expression resulting in their pharmacological actions and also an array of adverse effects which limit their clinical use. It remains, however, to be studied which target gene effects are essential for the anti-allergic activity of glucocorticoids. Mitogen-activated protein kinase phosphatase-1 (MKP-1) inhibits proinflammatory signalling by suppressing the activity of mitogen activated protein kinase (MAP kinase) pathways. MKP-1 is one of the anti-inflammatory genes whose expression is enhanced by glucocorticoids. In the present study, we aimed to investigate the role of MKP-1 in the therapeutic effects of the glucocorticoid dexamethasone in acute allergic reaction. The effects of dexamethasone were studied in wild-type and MKP-1 deficient mice. The mice were first sensitized to ovalbumin, and the allergic reaction was then induced by a subcutaneous ovalbumin injection in the hind paw. Inflammatory edema was quantified with plethysmometer and expression of inflammatory factors was measured by quantitative reverse transcription polymerase chain reaction (RT-PCR). Dexamethasone reduced the ovalbumin-induced paw edema at 1.5, 3 and 6 h time points in wild-type mice by 70%, 95% and 89%, respectively. The effect was largely abolished in MKP-1 deficient mice. Furthermore, dexamethasone significantly attenuated the expression of ovalbumin-induced inflammatory factors cyclooxygenase-2 (COX-2); inducible nitric oxide synthase (iNOS); interleukins (IL) 1β, 6 and 13; C-C motif chemokine 11 (CCL-11); tumour necrosis factor (TNF) and thymic stromal lymphopoietin (TSLP) in wild-type mice by more than 40%. In contrast, in MKP-1 deficient mice dexamethasone had no effect or even enhanced the expression of these inflammatory factors. The results suggest that dexamethasone alleviates allergic inflammation through an MKP-1-dependent mechanism. The results also demonstrate MKP-1 as an important conveyor of the favourable glucocorticoid effects in ovalbumin-induced type I allergic reaction. Together with previous findings, the present study supports the concept of MKP-1 enhancing compounds as potential novel anti-inflammatory and anti-allergic drugs.
Collapse
Affiliation(s)
- Tiina Lehtola
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
4
|
Bansal A, Kooi C, Kalyanaraman K, Gill S, Thorne A, Chandramohan P, Necker-Brown A, Mostafa MM, Milani A, Leigh R, Newton R. Synergy between Interleukin-1 β, Interferon- γ, and Glucocorticoids to Induce TLR2 Expression Involves NF- κB, STAT1, and the Glucocorticoid Receptor. Mol Pharmacol 2023; 105:23-38. [PMID: 37863662 DOI: 10.1124/molpharm.123.000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to downregulate inflammatory gene expression and are effective treatments for mild to moderate asthma. However, in severe asthma and virus-induced exacerbations, glucocorticoid therapies are less efficacious, possibly due to reduced repressive ability and/or the increased expression of proinflammatory genes. In human A549 epithelial and primary human bronchial epithelial cells, toll-like receptor (TLR)-2 mRNA and protein were supra-additively induced by interleukin-1β (IL-1β) plus dexamethasone (IL-1β+Dex), interferon-γ (IFN-γ) plus dexamethasone (IFN-γ+Dex), and IL-1β plus IFN-γ plus dexamethasone (IL-1β+IFN-γ+Dex). Indeed, ∼34- to 2100-fold increases were apparent at 24 hours for IL-1β+IFN-γ+Dex, and this was greater than for any single or dual treatment. Using the A549 cell model, TLR2 induction by IL-1β+IFN-γ+Dex was antagonized by Org34517, a competitive GR antagonist. Further, when combined with IL-1β, IFN-γ, or IL-1β+IFN-γ, the enhancements by dexamethasone on TLR2 expression required GR. Likewise, inhibitor of κB kinase 2 inhibitors reduced IL-1β+IFN-γ+Dex-induced TLR2 expression, and TLR2 expression induced by IL-1β+Dex, with or without IFN-γ, required the nuclear factor (NF)-κB subunit, p65. Similarly, signal transducer and activator of transcription (STAT)-1 phosphorylation and γ-interferon-activated sequence-dependent transcription were induced by IFN-γ These, along with IL-1β+IFN-γ+Dex-induced TLR2 expression, were inhibited by Janus kinase (JAK) inhibitors. As IL-1β+IFN-γ+Dex-induced TLR2 expression also required STAT1, this study reveals cooperation between JAK-STAT1, NF-κB, and GR to upregulate TLR2 expression. Since TLR2 agonism elicits inflammatory responses, we propose that synergies involving TLR2 may occur within the cytokine milieu present in the immunopathology of glucocorticoid-resistant disease, and this could promote glucocorticoid resistance. SIGNIFICANCE STATEMENT: This study highlights that in human pulmonary epithelial cells, glucocorticoids, when combined with the inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ), can synergistically induce the expression of inflammatory genes, such as TLR2. This effect involved positive combinatorial interactions between NF-κB/p65, glucocorticoid receptor, and JAK-STAT1 signaling to synergistically upregulate TLR2 expression. Thus, synergies involving glucocorticoid enhancement of TLR2 expression may occur in the immunopathology of glucocorticoid-resistant inflammatory diseases, including severe asthma.
Collapse
Affiliation(s)
- Akanksha Bansal
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Cora Kooi
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Keerthana Kalyanaraman
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sachman Gill
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andrew Thorne
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Priyanka Chandramohan
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arya Milani
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Richard Leigh
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
5
|
Lara-Espinosa JV, Arce-Aceves MF, Barrios-Payán J, Mata-Espinosa D, Lozano-Ordaz V, Becerril-Villanueva E, Ponce-Regalado MD, Hernández-Pando R. Effect of Low Doses of Dexamethasone on Experimental Pulmonary Tuberculosis. Microorganisms 2023; 11:1554. [PMID: 37375056 DOI: 10.3390/microorganisms11061554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tuberculosis (TB) is the deadliest disease caused by a bacterial agent. Glucocorticoids (GCs) have a typical anti-inflammatory effect, but recently it has been shown that they can present proinflammatory activity, mainly by increasing molecules from innate immunity. In the current study, we evaluated the effect of low doses of dexamethasone on Mycobacterium tuberculosis in vivo and in vitro. We used an established mice model of progressing tuberculosis (TB) in the in vivo studies. Intratracheal or intranasal dexamethasone therapy administered with conventional antibiotics in the late stage of the disease decreased the lung bacilli load and lung pneumonia, and increased the survival of the animals. Finally, the treatment decreased the inflammatory response in the SNC and, therefore, sickness behavior and neurological abnormalities in the infected animals. In the in vitro experiments, we used a cell line of murine alveolar macrophages infected with Mtb. Low-dose dexamethasone treatment increased the clearance capacity of Mtb by MHS macrophages, MIP-1α, and TLR2 expression, decreased proinflammatory and anti-inflammatory cytokines, and induced apoptosis, a molecular process that contributes to the control of the mycobacteria. In conclusion, the administration of low doses of dexamethasone represents a promising adjuvant treatment for pulmonary TB.
Collapse
Affiliation(s)
- Jacqueline V Lara-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - María Fernanda Arce-Aceves
- Laboratorio de Estudios en Tripasomiasis y Leishmaniasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - Vasti Lozano-Ordaz
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - María Dolores Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Av Rafael Casillas Aceves 120, Tepatitlán de Morelos 47620, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
6
|
Thorne A, Bansal A, Necker-Brown A, Mostafa MM, Gao A, Georgescu A, Kooi C, Leigh R, Newton R. Differential regulation of BIRC2 and BIRC3 expression by inflammatory cytokines and glucocorticoids in pulmonary epithelial cells. PLoS One 2023; 18:e0286783. [PMID: 37289679 PMCID: PMC10249814 DOI: 10.1371/journal.pone.0286783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Roles for the baculoviral inhibitor of apoptosis repeat-containing (BIRC) genes, BIRC2 and BIRC3, may include signaling to the inflammatory transcription factor, nuclear factor-κB (NF-κB) and protection from cell death. However, distinct functions for each BIRC are not well-delineated. Given roles for the epithelium in barrier function and host defence, BIRC2 and BIRC3 expression was characterized in pulmonary epithelial cell lines and primary human bronchial epithelial cells (pHBECs) grown as undifferentiated cells in submersion culture (SC) or as highly differentiated cells at air-liquid interface (ALI). In A549 cells, interleukin-1β (IL1B) and tumor necrosis factor α (TNF) induced BIRC3 mRNA (~20-50-fold), with maximal protein expression from 6-24 h. Similar effects occurred in BEAS-2B and Calu-3 cells, as well as SC and ALI pHBECs. BIRC2 protein was readily detected in unstimulated cells, but was not markedly modulated by IL1B or TNF. Glucocorticoids (dexamethasone, budesonide) modestly increased BIRC3 mRNA and protein, but showed little effect on BIRC2 expression. In A549 cells, BIRC3 mRNA induced by IL1B was unchanged by glucocorticoids and showed supra-additivity with TNF-plus-glucocorticoid. Supra-additivity was also evident for IL1B-plus-budesonide induced-BIRC3 in SC and ALI pHBECs. Using A549 cells, IL1B- and TNF-induced BIRC3 expression, and to a lesser extent, BIRC2, was prevented by NF-κB inhibition. Glucocorticoid-induced BIRC3 expression was prevented by silencing and antagonism of the glucocorticoid receptor. Whereas TNF, but not IL1B, induced degradation of basal BIRC2 and BIRC3 protein, IL1B- and TNF-induced BIRC3 protein remained stable. Differential regulation by cytokines and glucocorticoids shows BIRC2 protein expression to be consistent with roles in rapid signaling events, whereas cytokine-induced BIRC3 may be more important in later effects. While TNF-induced degradation of both BIRCs may restrict their activity, cytokine-enhanced BIRC3 expression could prime for its function. Finally, shielding from glucocorticoid repression, or further enhancement by glucocorticoid, may indicate a key protective role for BIRC3.
Collapse
Affiliation(s)
- Andrew Thorne
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Akanksha Bansal
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M. Mostafa
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alex Gao
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrei Georgescu
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Lung Health Research Group, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Bai X, Bai A, Tomasicchio M, Hagman JR, Buckle AM, Gupta A, Kadiyala V, Bevers S, Serban KA, Kim K, Feng Z, Spendier K, Hagen G, Fornis L, Griffith DE, Dzieciatkowska M, Sandhaus RA, Gerber AN, Chan ED. α1-Antitrypsin Binds to the Glucocorticoid Receptor with Anti-Inflammatory and Antimycobacterial Significance in Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1746-1759. [PMID: 36162872 PMCID: PMC10829398 DOI: 10.4049/jimmunol.2200227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2024]
Abstract
α1-Antitrypsin (AAT), a serine protease inhibitor, is the third most abundant protein in plasma. Although the best-known function of AAT is irreversible inhibition of elastase, AAT is an acute-phase reactant and is increasingly recognized to have a panoply of other functions, including as an anti-inflammatory mediator and a host-protective molecule against various pathogens. Although a canonical receptor for AAT has not been identified, AAT can be internalized into the cytoplasm and is known to affect gene regulation. Because AAT has anti-inflammatory properties, we examined whether AAT binds the cytoplasmic glucocorticoid receptor (GR) in human macrophages. We report the finding that AAT binds to GR using several approaches, including coimmunoprecipitation, mass spectrometry, and microscale thermophoresis. We also performed in silico molecular modeling and found that binding between AAT and GR has a plausible stereochemical basis. The significance of this interaction in macrophages is evinced by AAT inhibition of LPS-induced NF-κB activation and IL-8 production as well as AAT induction of angiopoietin-like 4 protein, which are, in part, dependent on GR. Furthermore, this AAT-GR interaction contributes to a host-protective role against mycobacteria in macrophages. In summary, this study identifies a new mechanism for the gene regulation, anti-inflammatory, and host-defense properties of AAT.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO;
- Department of Academic Affairs, National Jewish Health, Denver, CO
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO
| | - An Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO
| | - Michele Tomasicchio
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, UCT Lung Institute and the MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- PTNG Bio, Melbourne, Victoria, Australia
| | - Arnav Gupta
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO
- Department of Medicine, National Jewish Health, Denver, CO
| | | | - Shaun Bevers
- Biophysics Core Facility, University of Colorado School of Medicine, Aurora, CO
| | | | - Kevin Kim
- Department of Academic Affairs, National Jewish Health, Denver, CO
| | - Zhihong Feng
- Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kathrin Spendier
- Department of Physics & Energy Science, University of Colorado, Colorado Springs, CO
- BioFrontiers Center, University of Colorado, Colorado Springs, CO; and
| | - Guy Hagen
- Department of Physics & Energy Science, University of Colorado, Colorado Springs, CO
- BioFrontiers Center, University of Colorado, Colorado Springs, CO; and
| | | | | | - Monika Dzieciatkowska
- Proteomic Mass Spectrometry Facility, University of Colorado School of Medicine, Aurora, CO
| | | | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
- Department of Medicine, National Jewish Health, Denver, CO
| | - Edward D Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, CO;
- Department of Academic Affairs, National Jewish Health, Denver, CO
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|