1
|
Deguchi R, Komori T, Yamashita S, Hisaoka T, Kajimoto M, Kohjimoto Y, Hara I, Morikawa Y. Suppression of renal crystal formation, inflammation, and fibrosis by blocking oncostatin M receptor β signaling. Sci Rep 2024; 14:28913. [PMID: 39572752 PMCID: PMC11582566 DOI: 10.1038/s41598-024-80411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Oncostatin M (OSM) has pleiotropic effects on various inflammatory diseases, including kidney stone disease. The prevalence of kidney stones has increased worldwide, despite recent therapeutic advances, due to its high recurrence rate, suggesting the importance of prevention of repeated recurrence in the treatment of kidney stone disease. Using a mouse model of renal crystal formation, we investigated the preventive effects of blockade of OSM receptor β (OSMRβ) signaling on the development of kidney stone disease by treatment with a monoclonal anti-OSMRβ antibody that we generated. The anti-OSMRβ antibody abrogated OSM-induced phosphorylation of STAT3 and expression of crystal-binding molecules (Opn, Anxa1, Anxa2) and inflammation/fibrosis-associated molecules (Tnfa, Tgfb, Col1a2) in renal tubular epithelial cells and fibroblasts. In glyoxylate-injected mice, a mouse model of renal crystal formation, there was significant suppression of crystal deposits and expression of crystal-binding molecules (Opn, Anxa1, Anxa2), a tubular injury marker (Kim-1), and inflammation/fibrosis-associated molecules (Tnfa, Il1b, Mcp-1, Tgfb, Col1a2) in the kidneys of the anti-OSMRβ antibody-treated mice, compared with those in vehicle- or isotype control antibody-treated mice. In addition, treatment with the anti-OSMRβ antibody significantly decreased infiltrating macrophages and fibrosis in the kidneys. These findings suggest that anti-OSMRβ antibody-treatment may be effective in preventing kidney stone disease.
Collapse
Affiliation(s)
- Ryusuke Deguchi
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Tadasuke Komori
- Department of Anatomy & Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan.
| | - Shimpei Yamashita
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Tomoko Hisaoka
- Department of Anatomy & Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Mizuki Kajimoto
- Department of Anatomy & Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Yoshihiro Morikawa
- Department of Anatomy & Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan.
| |
Collapse
|
2
|
He W, Wang H, Yang G, Zhu L, Liu X. The Role of Chemokines in Obesity and Exercise-Induced Weight Loss. Biomolecules 2024; 14:1121. [PMID: 39334887 PMCID: PMC11430256 DOI: 10.3390/biom14091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a global health crisis that is closely interrelated to many chronic diseases, such as cardiovascular disease and diabetes. This review provides an in-depth analysis of specific chemokines involved in the development of obesity, including C-C motif chemokine ligand 2 (CCL2), CCL3, CCL5, CCL7, C-X-C motif chemokine ligand 8 (CXCL8), CXCL9, CXCL10, CXCL14, and XCL1 (lymphotactin). These chemokines exacerbate the symptoms of obesity by either promoting the inflammatory response or by influencing metabolic pathways and recruiting immune cells. Additionally, the research highlights the positive effect of exercise on modulating chemokine expression in the obese state. Notably, it explores the potential effects of both aerobic exercises and combined aerobic and resistance training in lowering levels of inflammatory mediators, reducing insulin resistance, and improving metabolic health. These findings suggest new strategies for obesity intervention through the modulation of chemokine levels by exercise, providing fresh perspectives and directions for the treatment of obesity and future research.
Collapse
Affiliation(s)
- Wenbi He
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Huan Wang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Gaoyuan Yang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (W.H.); (H.W.); (G.Y.)
| | - Lin Zhu
- School of Sport and Health, Guangzhou Sport University, Guangzhou 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiaoguang Liu
- School of Sport and Health, Guangzhou Sport University, Guangzhou 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
3
|
Gunasekara N, Clauss D, Bloch W. Effects of Exercise-Induced Changes in Myokine Expression on the Tumor Microenvironment. Sports Med Int Open 2024; 8:a22831663. [PMID: 38933599 PMCID: PMC11204211 DOI: 10.1055/a-2283-1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/26/2024] [Indexed: 06/28/2024] Open
Abstract
In this narrative review, we summarize the direct and indirect effects that myokines have on the tumor microenvironment. We took studies of various cancer types and species into account. Systematic reviews and meta-analyses that matched the search terms were also considered. We searched databases for six months. As a narrative approach was chosen, no data was analyzed or reanalyzed. The goal of this narrative review is to create an overview on the topic to identify research gaps and answer the questions as to whether myokine expression may be relevant in cancer research in regard to the tumor microenvironment. Six commonly known myokines were chosen. We found strong links between the influence exercise has on interleukin-6, oncostatin M, secreted protein acidic and rich in cysteine, and irisin in the context of tumor progression and inhibition via interactions with the tumor microenvironment. It became clear that the effects of myokines on the tumor microenvironment can vary and contribute to disease progression or regression. Interactions among myokines and immune cells must also be considered and require further investigation. To date, no study has shown a clear connection, while multiple studies suggest further investigation of the topic, similar to the effects of exercise on myokine expression.
Collapse
Affiliation(s)
- Nadira Gunasekara
- Institute of Cardiology and Sports Medicine, German Sport University
Cologne, Cologne, Germany
| | - Dorothea Clauss
- Institute of Cardiology and Sports Medicine, German Sport University
Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University
Cologne, Cologne, Germany
| |
Collapse
|
4
|
Kump DS. Mechanisms Underlying the Rarity of Skeletal Muscle Cancers. Int J Mol Sci 2024; 25:6480. [PMID: 38928185 PMCID: PMC11204341 DOI: 10.3390/ijms25126480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle (SKM), despite comprising ~40% of body mass, rarely manifests cancer. This review explores the mechanisms that help to explain this rarity, including unique SKM architecture and function, which prohibits the development of new cancer as well as negates potential metastasis to SKM. SKM also presents a unique immune environment that may magnify the anti-tumorigenic effect. Moreover, the SKM microenvironment manifests characteristics such as decreased extracellular matrix stiffness and altered lactic acid, pH, and oxygen levels that may interfere with tumor development. SKM also secretes anti-tumorigenic myokines and other molecules. Collectively, these mechanisms help account for the rarity of SKM cancer.
Collapse
Affiliation(s)
- David S Kump
- Department of Biological Sciences, Winston-Salem State University, 601 Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| |
Collapse
|
5
|
Dollet L, Lundell LS, Chibalin AV, Pendergrast LA, Pillon NJ, Lansbury EL, Elmastas M, Frendo-Cumbo S, Jalkanen J, de Castro Barbosa T, Cervone DT, Caidahl K, Dmytriyeva O, Deshmukh AS, Barrès R, Rydén M, Wallberg-Henriksson H, Zierath JR, Krook A. Exercise-induced crosstalk between immune cells and adipocytes in humans: Role of oncostatin-M. Cell Rep Med 2024; 5:101348. [PMID: 38151020 PMCID: PMC10829726 DOI: 10.1016/j.xcrm.2023.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/01/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
The discovery of exercise-regulated circulatory factors has fueled interest in organ crosstalk, especially between skeletal muscle and adipose tissue, and the role in mediating beneficial effects of exercise. We studied the adipose tissue transcriptome in men and women with normal glucose tolerance or type 2 diabetes following an acute exercise bout, revealing substantial exercise- and time-dependent changes, with sustained increase in inflammatory genes in type 2 diabetes. We identify oncostatin-M as one of the most upregulated adipose-tissue-secreted factors post-exercise. In cultured human adipocytes, oncostatin-M enhances MAPK signaling and regulates lipolysis. Oncostatin-M expression arises predominantly from adipose tissue immune cell fractions, while the corresponding receptors are expressed in adipocytes. Oncostatin-M expression increases in cultured human Thp1 macrophages following exercise-like stimuli. Our results suggest that immune cells, via secreted factors such as oncostatin-M, mediate a crosstalk between skeletal muscle and adipose tissue during exercise to regulate adipocyte metabolism and adaptation.
Collapse
Affiliation(s)
- Lucile Dollet
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Leonidas S Lundell
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Logan A Pendergrast
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth L Lansbury
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Merve Elmastas
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jutta Jalkanen
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Daniel T Cervone
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Oksana Dmytriyeva
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Institute of Molecular and Cellular Pharmacology, CNRS and Université Côte d'Azur, Valbonne, France
| | - Mikael Rydén
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Inland Norway University of Applied Sciences, Lillehammer, Norway.
| |
Collapse
|
6
|
Komori T, Hisaoka T, Kotaki A, Iwamoto M, Miyajima A, Esashi E, Morikawa Y. Blockade of OSMRβ signaling ameliorates skin lesions in a mouse model of human atopic dermatitis. FASEB J 2024; 38:e23359. [PMID: 38102969 DOI: 10.1096/fj.202301529r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by severe pruritus and eczematous skin lesions. Although IL-31, a type 2 helper T (Th2)-derived cytokine, is important to the development of pruritus and skin lesions in AD, the blockade of IL-31 signaling does not improve the skin lesions in AD. Oncostatin M (OSM), a member of IL-6 family of cytokines, plays important roles in the regulation of various inflammatory responses through OSM receptor β subunit (OSMRβ), a common receptor subunit for OSM and IL-31. However, the effects of OSM on the pathogenesis of AD remain to be elucidated. When AD model mice were treated with OSM, skin lesions were exacerbated and IL-4 production was increased in the lymph nodes. Next, we investigated the effects of the monoclonal antibody (mAb) against OSMRβ on the pathogenesis of AD. Treatment with the anti-OSMRβ mAb (7D2) reduced skin severity score in AD model mice. In addition to skin lesions, scratching behavior was decreased by 7D2 mAb with the reduction in the number of OSMRβ-positive neurons in the dorsal root ganglia of AD model mice. 7D2 mAb also reduced the serum concentration of IL-4, IL-13, and IgE as well as the gene expressions of IL-4 and IL-13 in the lymph nodes of AD model mice. Blockade of both IL-31 and OSM signaling is suggested to suppress both pruritus and Th2 responses, resulting in the improvement of skin lesions in AD. The anti-OSMRβ mAb may be a new therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Tadasuke Komori
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| | - Tomoko Hisaoka
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| | - Ayumi Kotaki
- Ginkgo Biomedical Research Institute, R&D Department, SBI Biotech Co. Ltd, Fujisawa, Japan
| | - Miki Iwamoto
- Department of Pediatrics, Kainan Municipal Medical Center, Kainan, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Eiji Esashi
- Ginkgo Biomedical Research Institute, R&D Department, SBI Biotech Co. Ltd, Fujisawa, Japan
| | - Yoshihiro Morikawa
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
7
|
Ikeda S, Sato K, Takeda M, Shinozaki M, Miki K, Hirano M, Fukuda K, Shiba N. Oncostatin M mediates cardioprotection via angiogenesis in ischemic heart disease. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 35:100331. [PMID: 38511182 PMCID: PMC10946052 DOI: 10.1016/j.ahjo.2023.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 03/22/2024]
Abstract
Objective Oncostatin M (OSM) is an inflammatory cytokine belonging to the interleukin-6 family member, which plays an important role in various cardiovascular diseases. We recently reported increased serum OSM levels in patients with coronary artery disease. However, the specific role in HF with ischemic heart disease (IHD) remains unclear. Methods and results A total of 120 patients with HF and 48 control subjects were enrolled in this study. Serum OSM levels were measured using a sandwich technique immunoassay during the compensated state. The results revealed significantly higher serum OSM levels in HF patients compared to controls. Importantly, HF patients with IHD had higher OSM levels, and those with collateral flow showed the even higher levels, indicating a potential involvement in angiogenesis. Furthermore, a positive correlation was found between serum OSM levels and levels of vascular endothelial growth factor (VEGF). In vitro experiments demonstrated that recombinant OSM upregulated VEGF production in cultured human coronary artery endothelial cells. We additionally observed that endogenous OSM levels were enhanced through exercise. Lastly, we identified the potential of SGLT2 inhibitors to enhance OSM production. Conclusions Serum OSM levels were elevated in HF patients, particularly in those with IHD Our data indicated that endogenous OSM induces VEGF production in the heart, suggesting the activation of angiogenesis, which can be further enhanced by exercise or SGLT2 inhibitors.
Collapse
Affiliation(s)
- Shohei Ikeda
- Department of Cardiovascular Medicine, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Koichi Sato
- Department of Cardiovascular Medicine, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Morihiko Takeda
- Department of Cardiovascular Medicine, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Mariko Shinozaki
- Department of Cardiovascular Medicine, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Keita Miki
- Department of Cardiovascular Medicine, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Michinori Hirano
- Department of Cardiovascular Medicine, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Koji Fukuda
- Department of Cardiovascular Medicine, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Nobuyuki Shiba
- Department of Cardiovascular Medicine, International University of Health and Welfare Hospital, Tochigi, Japan
| |
Collapse
|
8
|
Pfaff DH, Poschet G, Hell R, Szendrödi J, Teleman AA. Walking 200 min per day keeps the bariatric surgeon away. Heliyon 2023; 9:e16556. [PMID: 37274680 PMCID: PMC10238728 DOI: 10.1016/j.heliyon.2023.e16556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Exercise and increased physical activity are vital components of the standard treatment guidelines for many chronic diseases such as diabetes, obesity and cardiovascular disease. Although strenuous exercise cannot be recommended to people with numerous chronic conditions, walking is something most people can perform. In comparison to high-intensity training, the metabolic consequences of low-intensity walking have been less well studied. We present here a feasibility study of a subject who performed an exercise intervention of low-intensity, non-fatiguing walking on a deskmill/treadmill for 200 min daily, approximately the average time a German spends watching television per day. This low-impact physical activity has the advantages that it can be done while performing other tasks such as reading or watching TV, and it can be recommended to obese patients or patients with heart disease. We find that this intervention led to substantial weight loss, comparable to that of bariatric surgery. To study the metabolic changes caused by this intervention, we performed an in-depth metabolomic profiling of the blood both directly after walking to assess the acute changes, as well as 1.5 days after physical activity to identify the long-term effects that persist. We find changes in acylcarnitine levels suggesting that walking activates fatty acid beta oxidation, and that this mitochondrial reprogramming is still visible 1.5 days post-walking. We also find that walking mildly increases gut permeability, leading to increased exposure of the blood to metabolites from the gut microbiome. Overall, these data provide a starting point for designing future intervention studies with larger cohorts.
Collapse
Affiliation(s)
- Daniel H. Pfaff
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Julia Szendrödi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Aurelio A. Teleman
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|